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Abstract. 1 A generalization of logic program rules is proposed where
rules are built from weight constraints with type information for each
predicate instead of simple literals. These kinds of constraints are useful
for concisely representing di�erent kinds of choices as well as cardinality,
cost and resource constraints in combinatorial problems such as product
con�guration. A declarative semantics for the rules is presented which
generalizes the stable model semantics of normal logic programs. It is
shown that for ground rules the complexity of the relevant decision prob-
lems stays in NP. The �rst implementation of the language handles a
decidable subset where function symbols are not allowed. It is based on
a new procedure for computing stable models for ground rules extending
normal programs with choice and weight constructs and a compilation
technique where a weight rule with variables is transformed to a set of
such simpler ground rules.

1 Introduction

The implementation techniques for normal logic programs with the stable model
semantics have advanced considerably during the last years. The performance
of their state of the art implementations, e.g. the smodels system [12, 13], is
approaching the level needed in realistic applications. Recently, logic program
rules with the stable model semantics have also been proposed as a methodol-
ogy for expressing constraints capturing for example combinatorial, graph and
planning problems, see, e.g., [9, 11]. This indicates that interesting applications
can be handled using normal programs and stable models. However, there are
important aspects of combinatorial problems which do not seem to have a com-
pact representation using normal rules. We explain these diÆculties by �rst
introducing the basic ideas behind the methodology of using rules for problem
solving [9, 11]. Then we examine a number of examples involving cardinality, cost
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and resource constraints which are diÆcult to express using normal programs,
i.e., programs consisting of rules without disjunction but with default negation
in the body. On the basis of the examples we present an extension of normal
rules where a generalized notion of cardinality constraints is used and which is
suitable for handling choices with cardinality, cost and resource constraints in
the examples.

When solving, e.g., a combinatorial problem using the stable model semantics
the idea is to write a program such that the stable models of the program
correspond to the solutions to the problem [9, 11]. As an example consider the
3-coloring problem where given a graph, we can build a program where for each
vertex v in the graph we take the three rules on the left and for each edge (v; u)
the three rules on the right

v(1) not v(2);not v(3)
v(2) not v(1);not v(3)
v(3) not v(1);not v(2)

 v(1); u(1)
 v(2); u(2)
 v(3); u(3)

Now a stable model of the program, which is a set of atoms of the form v(n),
gives a legal coloring of the graph where a node v is colored with the color
n i� v(n) is included in the stable model. These kinds of logic programming
codings of di�erent kinds of combinatorial, constraint satisfaction and planning
problems can be found, e.g., in [9, 11]. The encodings demonstrate nicely the
expressivity of normal programs. However, there are a number of conditions
which are hard to capture using normal programs. For example, in the product
con�guration domain [14] choices with cardinality, cost and resource constraints
need to be handled. Next we consider some motivating examples demonstrating
the diÆculties and show that extending normal rules by a suitable notion of
cardinality constraints is an interesting approach to handling the problems. By
a cardinality constraint we mean an expression written in the form

L � fa1; : : : ; an;not b1; : : : ;not bmg � U : (1)

The intuitive idea is that such a constraint is satis�ed by any model (a set
of atoms) where the cardinality of the subset of the literals satis�ed by the
model is between the integers L and U . For example, the cardinality constraint
1 � fa;not b;not cg � 2 is satis�ed by the model fa; bg but not by fag. These
kinds of cardinality constraints are useful in a number of settings and rules
extended with such constraints can be used to express di�erent kinds of choices
and cardinality restrictions. For example, vertex covers of size less than K could
be captured in the following way. For a given graph, we build a program by
including for each edge (v; u) a rule

1 � fv; ug  

and then adding an integrity constraint

 K � fv1; : : : ; vng



where fv1; : : : ; vng is the set of vertices in the graph. The �rst rule expresses a
choice saying that at least one end point for each edge should be selected and
the second rule states a cardinality restriction saying that the cover must have
size less than K. Now stable models of the program directly represent vertex
covers of the graph. It seems that the choice rule cannot be expressed by normal
rules without introducing additional atoms in the program and that there are
no compact encodings of the cardinality restriction using normal rules.

For applications it is important to be able to work with �rst-order rules hav-
ing variables. Hence, this kind of a cardinality constraint needs to be generalized
to the �rst-order case where the set on which the constraint is imposed could
be given compactly using expressions with variables. Consider, e.g., the problem
of capturing cliques in a graph which is given by two relations vertex and edge ,
i.e., two sets of ground facts vertex (v) and edge(v; u) specifying the vertices and
edges of the graph, respectively. The idea is to de�ne the set of ground atoms in
the constraint by attaching conditions to non-ground literals which are local to
each constraint, i.e., using conditional literals, for example, in the following way:

0 � fclique(X) : vertex (X)g  (2)

where the set of atoms in the constraint consists of those instances of clique(v)
for which vertex (v) holds. Such a rule chooses a subset of vertices and cliques.
Cliques, i.e., subsets of vertices where each pair of vertices is connected by an
edge, can be captured by including the rule

 clique(X); clique(Y );not (X = Y );not edge(X;Y ) :

It is also useful to allow both local and global variables in a rule. The scope of
a local variable is one constraint, as for the variable X in (2), but the scope of
a global variable is the whole rule. The �rst of the following rules capturing the
colorings of a graph demonstrates the usefulness of this distinction.

1 � fcolored (V;C) : color (C)g � 1 vertex (V ) (3)

 edge(V; U); colored (V;C); colored (U;C) (4)

Here V is a global variable in the �rst rule stating the requirement that for each
vertex v exactly one instance of colored (v; c) should be chosen such that color (c)
holds for the term c. The set of facts color (c) provides the available colors.

As the examples show cardinality constraints are quite expressive and useful
in practice. However, in for instance product con�guration [14] applications there
are conditions which are hard to capture even using cardinality constraints. One
important class is resource or cost constraints. A typical example of these is the
knapsack problem where the task is to choose a set of items ij each having a
weight wj and value vj such that the sum of the weights of the chosen items
does not exceed a given limit W but the sum of the values exceeds a given limit
V .

It turns out that these kinds of constraints can be captured by generalizing
cardinality constraints in a suitable way which becomes obvious by noticing that



a cardinality constraint of the form (1) can be seen as a linear inequality

L � a1 + � � �+ an + b1 + � � �+ bm � U

where ai; bj are variables with values 0 or 1 such that x+x = 1 for all variables x.
We can generalize this by allowing a real-valued coeÆcient for each variable, i.e.,
a weight for each atom in the cardinality constraint. Hence we are considering
constraints of the form

L � fa1 = wa1 ; : : : ; an = wan ;not b1 = wb1 ; : : : ;not bm = wbmg � U (5)

where, e.g., wa1 is a real-valued weight for the atom a1. The idea is that a stable
model satis�es the constraint if the sum of the weights of the literals satis�ed by
the model is between L and U . For example, 1:02 � fa = 1:0; b = 0:02;not c =
0:04g � 1:03 is satis�ed by fa; b; cg but not by fag. Hence, a weight constraint
of the form (5) corresponds to a linear inequality

L � wa1 � a1 + � � �+ wan � an + wb1 � b1 + � � �+ wbm � bm � U (6)

Using weight constraints the knapsack problem can be captured using the
following rules:

0 � fi1 = w1; : : : ; in = wng �W  

 fi1 = v1; : : : ; in = vng � V

In the light of the examples it seems that weight constraints provide an
expressive and uniform framework for handling large classes of combinatorial
problems. In this paper we present a novel rule language which extends normal
rules by taking weight constraints as the basic building blocks of the rules. Hence,
the extended rules which we call weight rules are of the form

C0  C1; : : : ; Cn : (7)

Here each Ci is a weight constraint

L � fa1 : c1 = w1; : : : ; an : cn = wn;

not an+1 : cn+1 = wn+1; : : : ;not am : cm = wmg � U (8)

where ai; ci are atomic formulae possibly containing variables. These kinds of
constraints are a �rst-order generalization of weight constraints of the form (5).

The weight rules are given a declarative nonmonotonic semantics that ex-
tends the stable model semantics of normal logic programs [4] and generalizes
the propositional choice rules presented in [16] to the �rst-order case where type
information and weight constraints can be used. Unlike the approaches based
on associating priorities, preferences, costs, probabilities or certainty factors to
rules (see e.g. [1, 8, 10, 6] and the references there), our aim is to provide a rel-
atively simple way of associating weights or costs to atoms and representing
constraints using the weights. Approaches such as NP-SPEC [3], constraint logic



programs (CLP) and constraint satisfaction problems are not based on stable
model semantics like ours and thus do not include default negation. In addi-
tion, our semantics treats the constraints, rules and choices uniformly unlike
the CLP and NP-SPEC approaches. There is also some related work based on
stable models. For example, in [2] priorities are added to integrity constraints.
However, this is done to express weak constraints, as many of which as possible
should be satis�ed, and not weight constraints which must all be satis�ed. In [5]
several types of aggregates are integrated to Datalog in a framework based on
stable models in order to express dynamic programming optimization problems.
This contrasts with our approach which is not primarily intended to capture
optimization. In addition, their approach covers only the subclass of programs
with strati�ed negation and choice constructs. Our approach also di�ers from
the main semantics of disjunctive logic programs in that they are based on sub-
set minimal choices through disjunction while we support a general notion of
cardinality constraints.

The computational complexity of the decision problem for the language is
analyzed and found to remain in NP for ground rules. The �rst implementa-
tion of the language handles a decidable subset of weight rules where function
symbols are not allowed. Although the semantics of the language is based on
real-valued weights, the implementation handles only integer weights in order
to avoid problems arising from �nite precision of real number arithmetic. The
implementation is based on the smodels-2 procedure [15] which is a new ex-
tended version of the smodels procedure [12, 13]. It computes stable models
for ground logic programs but supports several types of rules extending normal
logic programs. Our language extends that handled by smodels-2 further: it is
�rst-order with conditional literals, variables, and built-in functions; both upper
and lower bounds of a constraint can be given and a weight constraint is allowed
also in the head of a rule. However, we show that it is possible to translate a set
of weight rules containing variables to a set of simple ground rules supported by
smodels-2. This provides the basis for our implementation.

2 Weight Constraint Rules

We extend logic program rules by allowing weight constraints of the type (8) with
conditional literals that have real-valued weights. First we develop a semantics
for ground rules and then we show how to generalize this to rules with variables.

2.1 Ground Rules

The basic building block of a weight constraint is a conditional atom which is
an expression of the form p : q where the proper part p and conditional part q
are atomic formulae. In ground rules formulae p and q are variable-free (ground)
atoms. If q is >, i.e., always valid, it is typically omitted. A conditional literal
is a conditional atom or its negation, an expression of the form not p : q. Note
that the not is intended as a nonmonotonic, default negation.



A weight constraint C is an expression of the form:

l(C) � lit(C) � u(C)

where lit(C) is a set of conditional literals and l(C); u(C) two real numbers de-
noting the lower and upper bounds, respectively. The bounds l(C); u(C) can also
be missing in which case we denote them by l(C) = �1; u(C) =1, respectively.
To each constraint C we associate a local weight function w(C) from the set of
literals in C to the real numbers, typically speci�ed directly as in the constraint
for C below:

2:1 � fp : d1 = 1:1;not q : d2 = 1:0001g

where, e.g., w(C)(not q) = 1:0001 and u(C) = 1. The extension to allow < in
the constraints is straightforward but for brevity we discuss only �. Finally, a
weight program is a set of weight rules, i.e., expressions of the form (7) where each
Ci is a weight constraint and where the head C0 contains no negative literals.

Our semantics for weight rules generalizes the stable model semantics for
normal logic programs and is given in terms of models that are sets of atoms.
First we de�ne when a model satis�es a rule and then using this concept the
notion of stable models.

De�nition 1. A set of atoms S satis�es a weight constraint C (S j= C) i� for
the weight W(C; S) of C in S, l(C) �W(C; S) � u(C) holds where

W(C; S) =
X

p2plit(C;S)

w(C)(p) +
X

not p2nlit(C;S)

w(C)(not p)

with plit(C; S) = fp j p : q 2 lit(C); fp; qg � Sg and nlit(C; S) = fnot p j not p :
q 2 lit(C); p 62 S; q 2 Sg which are the positive and negative literals satis�ed by
S, respectively. A rule r of the form (7) is satis�ed by S (S j= r) i� S satis�es
C0 whenever it satis�es C1; : : : ; Cn.

We also allow integrity constraints, i.e., rules without the head constraint C0,
which are satis�ed if at least one of the body constraints C1; : : : ; Cn is not.

Example 1. Consider the weight constraints

C1 : 2 � fp : d1 = 1;not q : d1 = 2; r : d2 = 1:5g � 5

C2 : 2 � fp : d2 = 1;not q : d2 = 2; r : d1 = 1:5g � 5

and a set of atoms S = fp; d1; rg. Now plit(C1; S) = fpg and nlit(C1; S) =
fnot qg and, hence, W(C1; S) = 1 + 2 = 3. Similarly, W(C2; S) = 1:5. Thus,
S j= C1 but S 6j= C2 and S j= C1  C2 but S 6j= C2  C1. Moreover, S j= 
C1; C2 but S 6j= C1.

We de�ne stable models �rst for weight programs with non-negative weights.
We then show how the general case, i.e., programs with negative weights reduce



to this case. In the de�nition we need the notion of a deductive closure of rules
in a special form

P  C1; : : : ; Cn

where P is a ground atom and each weight constraint Ci contains only positive
literals and non-negative weights, and has only a lower bound condition. We
call such rules Horn weight rules. A set of atoms is closed under a set of rules
if each rule is satis�ed by the atom set. A set of Horn weight rules P has a
unique smallest set of atoms closed under P . We call it the deductive closure
and denote it by cl(P ). The uniqueness is implied by the fact that Horn weight
rules are monotonic, i.e., if the body of a rule is satis�ed by a model S, then
it is satis�ed by any superset of S. Note that the closure can be constructed
iteratively by starting from the empty set of atoms and iterating over the set
of rules and updating the set of atoms with the head of a rule not yet satis�ed
until no unsatis�ed rules are left.

Example 2. Consider a set of Horn weight rules P

a 1 � fa = 1g

b 0 � fb = 100g

c 6 � fb = 5; d = 1g; 2 � fb = 2; a = 2g

The deductive closure of P is the set of atoms fbg which can be constructed
iteratively by starting from the empty set and realizing that the body of the
second rule is satis�ed by the empty set and, hence, b should be added to the
closure. This set is already closed under the rules. If a rule

d 1 � fa = 1; b = 1; c = 1g

is added, then the closure is fb; d; cg.

Stable models for programs with non-negative weights are de�ned in the
following way using the concept of a reduct. The idea is to de�ne a stable model
of a program P as an atom set S that satis�es all rules of P and that is the
deductive closure of a reduct of P w.r.t. S. The role of the reduct is to provide
the possible justi�cations for the atoms in S. Each atom in a stable model is
justi�ed by the program P in the sense that it is derivable from the reduct.

We introduce the reduct in two steps. First we de�ne the reduct of a con-
straint and then generalize this to rules. The reduct CS of a constraint C w.r.t.
to a set of atoms S is the constraint

L0 � fp : q = w j p : q = w 2 lit(C)g

where L0 = l(C)�
P

not p2nlit(C;S)w(C)(not p). Hence, in the reduct all negative
literals and the upper bound are removed and the lower bound is decreased by
w for each not p : q = w satis�ed by S. The idea here is that for negative literals
satis�ed by S, their weights contribute to satisfying the lower bound. However,



this does not yet capture the condition part of the negative literals satis�ed by
S. In order to guarantee that the conditions are justi�ed by the program a set
j(C; S) of justi�cation constraints is used:

j(C; S) = f1 � fq = 1g j not p : q = w 2 lit(C); p 62 S; q 2 Sg

For example, for a constraint C: 3 � fnot p : q = 2;not r : p = 3; p : q = 1g � 4
and a set S = fqg we get the reduct and justi�cation constraint

CS = 1 � fp : q = 1g j(C; S) = f1 � fq = 1gg

The reduct PS for a program P w.r.t. a set of atoms S is a set of Horn weight
rules which contains a rule r0 with an atom p as the head if p 2 S and there is
a rule r 2 P such that p : q = w appears in the head with q 2 S, and the upper
bounds of the constraints in the body of r are satis�ed by S. The condition q is
moved to the body as q is the justi�cation condition for p and the body of r0 is
obtained by taking the reduct of the constraints in the body of r and adding the
corresponding justi�cation constraints. Formally the reduct is de�ned as follows.

De�nition 2. Let P be a weight program with non-negative weights and S a set
of atoms. The reduct PS of P w.r.t. S is de�ned by

PS = fp 1 � fq = 1g; CS
1 ; j(C1; S); : : : ; C

S
n ; j(Cn; S) j C0  C1; : : : ; Cn 2 P;

p : q = w 2 lit(C0); fp; qg � S; for all i = 1; : : : ; n;W(Ci; S) � u(Ci)g

De�nition 3. Let P be a weight program with non-negative weights. Then S is
a stable model of P i� the following two conditions hold:
(i) S j= P ,
(ii) S = cl(PS).

Example 3. Consider �rst program P1 demonstrating the role of justi�cation
constraints.

0 � fp : p = 2g � 2 

2 � fp = 2g � 2 2 � fnot q : p = 3g

The empty set is a stable model of P1 because it satis�es both rules and the
reduct P ;

1 = ; . For S = fpg the reduct PS
1 is

p 1 � fp = 1g
p �1 � fg; 1 � fp = 1g;

Now cl(PS
1 ) = fg implying that S is not a stable model although it satis�es P1.

Consider the program P2

2 � fb = 2; c = 3g � 4 2 � fnot a = 2; b = 4g � 5

The de�nition of stable models guarantees that atoms in a model must be jus-
ti�able by the program in terms of the reduct and thus, e.g., P2 cannot have



a stable model containing a. The empty set is not a stable model as fg 6j= P2.
The same holds if S = fbg because the reduct PS

2 is empty since the upper
bound in the body is exceeded. However, S = fcg is a stable model as S j= P2

and cl(PS
2 ) = fcg where P

S
2 = fc  0 � fb = 4gg. Note that as there are no

conditional literals, no justi�cation constraints are needed.

Our de�nition is a generalization of the stable model semantics for normal
programs as a simple literal l in a normal program can be seen as a shorthand
for 1 � fl = 1g � 1. Thus, e.g., a normal rule a b;not c is a shorthand for

1 � fa = 1g � 1 1 � fb = 1g � 1; 1 � fnot c = 1g � 1 :

The reduct of the rule w.r.t. S = fa; bg is

a 1 � fb = 1g; 0 � fg

whose closure is fg and, hence, S is not a stable model of the rule although it
satis�es the rule. We use this abbreviation frequently and, furthermore, we often
omit the weight of a literal if it is 1.

De�nition 3 does not cover constraints with negative weights. However, it
turns out that these can be transformed to constraints with non-negative weights
by simple linear algebraic manipulation which translates a constraint C

L � fa1 = wa1 ; : : : ; an = wan ;not b1 = wb1 ; : : : ;not bm = wbmg � U

to an equivalent form C 0 with only non-negative weights

L+
X

wai
<0

jwai j+
X
wbi

<0

jwbi j �

fai = wai| {z }
wai

�0

; : : : ; bj = jwbj j| {z }
wbj

<0

; : : : ;not bk = wbk| {z }
wbk

�0

; : : : ;not al = jwal j| {z }
wal

<0

; : : : g

� U +
X

wai
<0

jwai j+
X
wbi

<0

jwbi j

where negative weights are complemented together with the corresponding literal
and the sum of absolute values of all negative weights is added to the bounds.

The equivalence of C and C 0 can be seen using the linear inequality (6) for
C. We can eliminate any negative weight wai by adding

jwai j � (ai + ai) = jwai j (ai + ai = 1)

to the inequality. This leaves the term jwai j � ai in the middle corresponding to
not ai = jwai j. Similarly all negative weights wbi can be eliminated.

Example 4. Consider the rule

a �1 � fa = �4;not b = �1g � 0



where we can eliminate the negative weights in the body using the method above.
Then the resulting rule is

a 4 � fnot a = 4; b = 1g � 5

Let S = fag. Then the reduct for the resulting rule is fa 4 � fb = 1gg. Hence,
S is not a stable model of the rule.

We have demonstrated the expressiveness of weight constraints already by
a number of examples in the introduction. Here we show how they capture
propositional logic and the rule-based con�guration language in [16].

Example 5. (i) We can reduce propositional satis�ability to the problem of �nd-
ing a stable model in the following way without introducing any additional
atoms. Consider a set T of propositional clauses containing the atoms a1; : : : ; ak.
If we construct a program with a rule 0 � fa1; : : : ; akg  together with a rule

 not a1; : : : ;not an; an+1; : : : ; am

for each clause a1_� � �_an_:an+1_� � �_:am 2 T , then the resulting program has
a stable model i� T is satis�able. Furthermore, each stable model corresponds
directly to a propositional model (the atoms in the stable model are true and
the other atoms are false).

(ii) Weight rules generalize also the rule-based con�guration language in [16].
For example, an inclusive choice-rule a j b j c d can be represented as

1 � fa; b; cg  d

and an exclusive choice-rule a� b� c not d is captured by

1 � fa; b; cg � 1 not d

2.2 First-Order Rules

Now we consider the �rst-order case where rules have variables. The semantics is
obtained by the use of Herbrand models. The Herbrand universe of the program
is de�ned as usual, i.e., it consists of terms constructible from constants and
functions appearing in the program. The Herbrand base is the set of ground
atoms constructible from the predicate symbols and the Herbrand universe of
the program. As noted in the introduction, it is useful to provide local variables
for a constraint as well as global, i.e., universally quanti�ed, variables for a rule.
A constraint C with local variables X1; : : : ; Xn is written

l(C) � hX1; : : : ; Xnilit(C) � u(C)

and the variables not local to a constraint are global. With this distinction
we de�ne the Herbrand instantiation of a weight program which consists of all
ground rules obtainable in the following way. First each global variable in a rule



is substituted with a ground term from the Herbrand universe. Now the rule
contains only local variables. Then for each constraint C, the set of literals in
the ground instance of C is obtained by taking every substitution instance of
the literals where the local variables are replaced by terms from the Herbrand
universe. For example, for the rule

1 � hXifp(X;Y ) : d(X;Y )g � 1 q(Y )

Y is a global variable and X is a local variable for the constraint in the head. If
the Herbrand universe is fa; bg, the Herbrand instantiation of the rule is

1 � fp(a; a) : d(a; a); p(b; a) : d(b; a)g � 1 q(a)

1 � fp(a; b) : d(a; b); p(b; b) : d(b; b)g � 1 q(b)

With local and global variables many problems can be expressed quite suc-
cinctly. Consider, e.g., the rule (3) for assigning colors to vertices in a graph.
Notice that it is not necessary to explicate the local variables for a constraint if
we use a convention that all variables appearing in more than one constraint are
global and all other variables are local. This convention is used in (3) and also
in the rest of the paper.

The stable models of a weight program with variables are de�ned using the
Herbrand instantiation of the program.

De�nition 4. Let P be a weight program with variables. Then a set of ground
atoms S is a stable model of P i� it is a stable model of the Herbrand instanti-
ation of P .

Note that the de�nition allows a fairly dynamic notion of weights by associ-
ating a local weight function with each constraint in every ground instance of a
rule.

3 Computational Aspects

Although weight programs extend e.g. normal logic programs considerably, the
computational complexity remains una�ected, i.e., stays in NP.

Theorem 1. The problem of deciding whether a ground weight program has a
stable model is NP-complete.

Proof. NP-hardness is implied by the fact that weight programs generalize nor-
mal logic programs with the stable model semantics for which NP-completeness
has been shown [7]. Containment in NP follows from the property that given
a set of atoms it can be checked in polynomial time whether the set is a stable
model of a given program. The crucial step here is the computation of the closure
of the reduct which can be done iteratively in polynomial time by starting from
the empty set of atoms S and iterating over the set of rules and updating S with
the heads of the rules not yet satis�ed until no unsatis�ed rules are left.



3.1 Implementation

The full �rst-order case of weight rules is clearly undecidable. We have devel-
oped an implementation for a decidable subclass in which function symbols are
not allowed. This subclass o�ers an interesting trade-o� between expressive-
ness and implementability which seems adequate for many practical purposes.
The implementation is based on the smodels-2 procedure [15] (available at
http://www.tcs.hut.fi/pub/smodels/) and a compilation technique where a
rule with variables is transformed to a set of simpler ground propagation rules.
The smodels-2 procedure, which is a new extended version of the smodels pro-
cedure [12, 13], computes stable models for ground logic programs but supports
new types of rules that extends the normal rules. The implementation, avail-
able at http://www.tcs.hut.fi/smodels/lparse/, is a front-end that maps
a general weight program to ground rules from which the stable models of the
original program are computed by the smodels-2 procedure. We �rst de�ne the
subclass of rules that our current implementation accepts and then explain the
compilation technique.

The current implementation works with domain-restricted rules where each
variable in a rule must appear in a positive domain predicate in the same rule and
for each conditional literal the condition part is a domain predicate. A domain
predicate is one that is de�ned non-recursively using other domain predicates
with normal logic program rules. This means that a domain predicate can appear
as the head of a rule only when each constraint in the rule is a simple literal.

Example 6. Consider the rules (3{4) capturing colorings of a graph. Assume
that the predicates vertex , edge , and color are de�ned non-recursively, e.g., by
a set of ground facts. Then they can be taken as domain predicates and the
rule (3) is domain restricted but (4) is not because it contains a variable C not
appearing in a domain predicate in the rule. Rule (4) can be transformed to a
domain-restricted one by adding a domain predicate for C, e.g., as follows:

 edge(V; U); colored (V;C); colored (U;C); color (C)

It is straightforward to extend domain predicates with built-in functions and
predicates, e.g., for arithmetic, and this extension is supported by our imple-
mentation. This allows rules such as

area(C;W �L) width(C;W ); length(C;L) (9)

0 � fcircuit(C) : area(C;A) = Ag � 90 (10)

where area is a domain predicate de�ned by the domain predicates width and
length (giving the width and length of a circuit) and the second rule speci�es a
choice of a subset of circuits with the sum of areas at most 90. Our implemen-
tation also allows expressing weights by rules involving domain predicates as in
the example. In order to avoid complications arising from �nite precision of real
number arithmetic our current implementation supports only integer weights.

Domain-restrictedness enables eÆcient compilation of a program with vari-
ables to a set of ground rules which is typically considerably smaller than the



Herbrand instantiation of the program but still has exactly the same stable mod-
els. This is because for the set of domain predicates D there is a unique set D0

of ground instances of predicates in D that is common to all the stable models
of the program. The set D0 can be computed eÆciently using database tech-
niques because domain predicates are similar to view de�nitions in databases.
The set D0 has the property that program P has the same stable models as
PD0 where PD0 contains those ground instances of rules in P where each ground
instance of a domain predicate is in D0. Furthermore, given D0, PD0 can be com-
puted eÆciently by processing one rule in P at a time. As an example consider
program P with rules (9{10) and predicates width and length given as a set
of facts F = fwidth(c1; 5); length(c1; 10);width(c2; 3); length(c2; 30)g. Our imple-
mentation detects automatically that width , length, and area can be taken as
domain predicates and that the rules are domain-restricted. It computes the set
D0 = F [farea(c1; 50); area(c1; 90)g and from that PD0 where, e.g., for (10) only
one ground instance is included:

0 � fcircuit(c1) : area(c1; 50) = 50; circuit(c1) : area(c2; 90) = 90g � 90 

The whole compilation works as follows. Given a program P the domain
predicates D are determined and the set D0 is computed. Then the set PD0 is
constructed and the condition parts of the literals are removed. Finally the set
of ground rules obtained in this way is transformed to a set of simpler rules
accepted by smodels-2. We �nish the section by explaining this last phase.

The smodels-2 procedure supports many types of extended rules of which
we employ two: choice and weight rules. A choice rule

fh1; : : : ; hkg  a1; : : : ; an;not b1; : : : ;not bm

states that a subset of fh1; : : : ; hkg is in a stable model if the body is satis�ed
by the model. A weight rule

h  fa1 = wa1 ; : : : ; an = wan ;not b1 = wb1 ; : : : ;not bm = wbmg � w

with positive weights wai ; wbi implies the inclusion of the head h into a stable
model S whenever

P
ai2S

wai +
P

bi 62S
wbi � w:

A weight rule C0  C1; : : : ; Cn is encoded as rules handled by smodels-2

as follows. For each constraint Ci

l(Ci) � fc
1
i = w(Ci)(c

1
i ); : : : ; c

k
i = w(Ci)(c

k
i )g � u(Ci)

we construct two weight rules encoding whether the lower bound is satis�ed (Cl
i)

and the upper bound is not (Cu
i ).

Cl
i  fc

1
i = w(C)(c1i ); : : : ; c

k
i = w(C)(cki )g � l(Ci)

Cu
i  fc

1
i = w(C)(c1i ); : : : ; c

k
i = w(C)(cki )g > u(Ci)

where Cl
i ; C

u
i are new atoms. Since only integer weights are allowed in the imple-

mentation, the latter rule can be expressed using `�' instead of `>', by increasing



u(Ci) by one. Then we add a choice and two normal rules

fc10; : : : ; c
k
0g  Cl

1;not C
u
1 ; : : : ; C

l
n;not C

u
n

 not Cl
0; C

l
1;not C

u
1 ; : : : ; C

l
n;not C

u
n

 Cu
0 ; C

l
1;not C

u
1 ; : : : ; C

l
n;not C

u
n

where the �rst one selects a subset of fc10; : : : ; c
k
0g and the two other rules enforce

that the lower and upper bounds of the head of the rule hold if the body of the
rule is satis�ed. Finally negative weights are eliminated as described in Section 2.

Example 7. To give an example, the weight constraint rule

1 � fa; bg � 1 1 � fa; b;not cg � 2

is translated into the program

Cl
0  fa = 1; b = 1g � 1

Cu
0  fa = 1; b = 1g > 1
Cl
1  fa = 1; b = 1;not c = 1g � 1

Cu
1  fa = 1; b = 1;not c = 1g > 2

fa; bg  Cl
1;not C

u
1

 not Cl
0; C

l
1;not C

u
1

 Cu
0 ; C

l
1;not C

u
1

In order to give an idea of the performance of the implementation we provide
some test results for the pigeonhole problem. In Figure 1 running times (w-rules)
are shown for deciding that n + 1 pigeons cannot be put into n holes using the
program on the left for n = 8; 9; 10 (where pigeons and holes are given as facts
p(i)=h(j)). The results compare favorably to those (n-rules) for solving the same
problems using normal logic programs as described in [11].

1 � fin(P;H) : h(H)g � 1 p(P )
 2 � fin(P;H) : p(P )g; h(H)

pigeons/holes w-rules n-rules

9/8 2.4 s 25.1 s
10/9 22 s 258 s
11/10 225 s 2600 s

Fig. 1. The pigeonhole problem and test results for it.

4 Conclusions

We have presented a novel rule language extending normal logic programs with
conditional and weighted literals and weight constraints. The declarative seman-
tics of the language generalizes the stable model semantics of normal programs.
Despite the extensions, the complexity of �nding a stable model remains in NP
for the ground case. An implementation of a computationally attractive and use-
ful subset of the language based on the smodels-2 procedure is described. The
language seems to be particularly suitable for product con�guration problems
and an interesting topic for further research is to apply the language in such
problems along the lines presented in [16].
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