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Abstract. A rule-based language is proposed for product con�guration
applications. It is equipped with a declarative semantics providing formal
de�nitions for main concepts in product con�guration, including con�gu-
ration models, requirements and valid con�gurations. The semantics uses
Horn clause derivability to guarantee that each element in a con�gura-
tion has a justi�cation. This leads to favorable computational properties.
For example, the validity of a con�guration can be decided in linear time
and other computational tasks remain in NP. It is shown that CSP and
dynamic CSP can be embedded in the proposed language which seems to
be more suitable for representing con�guration knowledge. The rule lan-
guage is closely related to normal logic programs with the stable model
semantics. This connection is exploited in the �rst implementation which
is based on a translator from rules to normal programs and on an exist-
ing high performance implementation of the stable model semantics, the
Smodels system.

1 Introduction

Product con�guration has been a fruitful topic of research in arti�cial intelligence
for the past two decades (see, e.g. [10, 15, 1, 8]). In the last �ve years product
con�guration has also become a commercially successful application of arti�cial
intelligence techniques. Knowledge-based systems (KBS) employing techniques
such as constraint satisfaction (CSP) [19] have been applied to product con�g-
uration. However, the product con�guration problem exhibits dynamic aspects
which are diÆcult to capture in, e.g., the CSP formalism. The choices form
chains where previous choices a�ect the set of further choices that need to be
made. In addition, making a choice needs to be justi�ed by a chain of previous
choices. This has led to the development of extensions of the CSP formalism,
such as dynamic constraint satisfaction (DCSP) [11] and generative constraint
satisfaction (GCSP) [7].

In this paper, which is a revised version of [17], we present work-in-progress
on developing a logic programming like rule language for product con�guration



applications. The rule language is de�ned with the goal that relevant knowledge
in the con�guration domain can be represented compactly and conveniently.
We provide a simple declarative semantics for the language which guarantees a
justi�cation for each choice.

We study the complexity of the relevant computational tasks for this lan-
guage. The main result is that the task of �nding a con�guration isNP-complete
and that the validity of a con�guration can be checked in linear time. We also
show that our language can be seen as a generalization of the CSP and DCSP
formalisms. There are local and linear solution preserving mappings from the
CSP and DCSP formalisms to the language, but mapping in the other direction
is diÆcult. This is due to the diÆculty of capturing justi�cations in CSP and to
more expressive rules that seem diÆcult to capture in DCSP.

The semantics of the rule language is closely related to the declarative seman-
tics of logic programs. This relation is exploited in developing the �rst implemen-
tation of the language. We present a solution preserving local and polynomial
translation from the rule language to normal logic programs with the stable
model semantics [6]. Our implementation is based on an existing high perfor-
mance implementation of the stable model semantics for normal logic programs,
the Smodels system [12, 13]. For the implementation it is enough to build a
front-end to the Smodels system realizing the translation to normal programs.
In order to estimate the feasibility of our approach we study two simple con�g-
uration problems. We observe that such examples are straightforward to model
in our language and that our implementation exhibits reasonable performance.

2 Product Con�guration Domain

Product con�guration is roughly de�ned as the problem of producing a speci�ca-
tion of a product individual as a collection of prede�ned components. The inputs
of the problem are a con�guration model, which describes the components that
can be included in the con�guration and the rules on how they can be combined
to form a working product, and requirements that specify some properties that
the product individual should have. The output is a con�guration, an accurate
enough description of a product individual to be manufactured. The con�gura-
tion must satisfy the requirements and be valid in the sense that it does not
break any of the rules in the con�guration model and it consists only of the
components that have justi�cations in terms of the con�guration model.

This de�nition of product con�guration does not adequately capture all as-
pects of con�guration problems. Missing features include representing and rea-
soning about attributes, structure and connections of components, resource pro-
duction and use by components [15, 1, 7] and optimality of a con�guration. Our
de�nition is a simpli�cation that nonetheless contains the core aspects of con-
�guration problem solving. It is intended as the foundation on which further
aspects of product con�guration can be de�ned. Correspondingly, we use the
term element to mean any relevant piece of information on a con�guration. An
element can be a component or information on, e.g., the structure of a product.



A product con�gurator is a KBS that is capable of representing the knowledge
included in con�guration models, requirements and con�gurations. In addition,
it is capable of (i) checking whether a con�guration is valid with respect to the
con�guration model and satis�es a set of requirements and/or (ii) generating one
or all valid con�guration(s) for a con�guration model and a set of requirements.

Example 1. As an example of a con�gurable product, consider a PC. The com-
ponents in a typical con�guration model of a PC include di�erent types of dis-
play units, hard disks, CD ROM drives, oppy drives, extension cards and so
on. These have rules on how they can be combined with each other to form a
working product. For example, a PC would typically be de�ned to have a mass
storage which must be chosen from a set of alternatives, e.g. an IDE hard disk,
SCSI hard disk and a oppy drive. A computer would also need a keyboard,
which could have either a Finnish or United Kingdoms layout. Having a SCSI
hard disk in the con�guration of a PC would typically require that an additional
SCSI controller is included in the con�guration as well. In addition, a PC may
optionally have a CD ROM drive. A con�guration model for a PC might also
de�ne that unless otherwise speci�ed, an IDE hard disk will be the default choice
for mass storage.

The fundamental form of knowledge in a con�guration model is that of a
choice [18]. There are basically two types of choices. Either at least one or exactly
one of alternative elements must be chosen. Whether a choice must be made may
depend on some set of elements. Other forms of con�guration knowledge include
the following:

{ A set of elements in the con�guration requires some set of elements to be in
the con�guration as well [18, 8].

{ A set of elements are incompatible with each other [18, 8].
{ An element is optional. Optional elements can be chosen into a con�guration
or they can be left out.

{ An element is a default. It is in the con�guration unless otherwise speci�ed.

3 Con�guration Rule Language

In this section we de�ne a con�guration rule language CRL for representing
con�guration knowledge. The idea is to focus on interactions of the elements
and not on details of a particular con�guration knowledge modeling language.
For simplicity, we have kept the number of primitives in the language low by
focusing on choices and requires and incompatibility interactions. Extending the
language with optional and default choices is straightforward (see Example 4).

The basic construction blocks of the language are propositional atoms, which
are combined through a set of connectives into rules. We assume for simplicity
that atoms can be used to represent elements adequately. We de�ne a con�gu-
ration model and requirements as sets of CRL rules. A con�guration is de�ned
as a set of atoms.



The syntax of CRL is de�ned as follows. The alphabet of CRL consists of
the connectives \,", \ ", \j", \�", \not", parentheses and atomic propositions.
The connectives are read as \and", \requires", \or", \exclusive or" and \not",
respectively. The rules in CRL are of the form

a1� � � � �al  b1; : : : ; bm; not(c1); : : : ; not(cn)

where � 2 fj;�g, a1,. . . ,al, b1,. . . ,bm, c1,. . . ,cn are atoms and l � 0, m � 0,
n � 0. We refer to the subset of a set of rules R with exactly one atom in the
head as requires-rules, Rr, rules with more than one atom in the head separated
by \j" as choice-rules, rules with more than one atom in the head separated
by \�" as exclusive choice-rules Re, and rules with no atoms in the head as
incompatibility-rules, Ri. In the de�nitions below we treat requires-rules as a
special case of choice-rules with only one alternative in the head.

Example 2. A very simple con�guration model RPC of the PC in Example 1
(without the optional CD-ROM and default mass storage) could consist of the
following rules:

computer 
IDEdisk j SCSIdisk j floppydrive computer

F innishlayoutKB� UKlayoutKB computer

SCSIcontroller  SCSIdisk

Next we de�ne when a con�guration satis�es a set of rules and is valid with
respect to a set of rules. We say that a con�guration satis�es requirements if it
satis�es the corresponding set of rules.

De�nition 1. A con�guration C satis�es a set of rules R in CRL, denoted by
C j= R, i� the following conditions hold:

(i) If a1 j � � � j al  b1; : : : ; bm; not(c1); : : : ; not(cn) 2 Rr[Rc, fb1; : : : ; bmg �
C, and fc1; : : : cng \ C = ;, then fa1; : : : ; alg \ C 6= ;.

(ii) If a1�� � ��al  b1; : : : ; bm; not(c1); : : : ; not(cn) 2 Re, fb1; : : : ; bmg � C,
and fc1; : : : cng \ C = ;, then for exactly one a 2 fa1; : : : ; alg, a 2 C.

(iii) If  b1; : : : ; bm; not(c1); : : : ; not(cn) 2 Ri, then it is not the case that
fb1; : : : ; bmg � C and fc1; : : : cng \ C = ; hold.

In order to de�ne the validity of a con�guration, we employ an operator RC that
is a transformation of a set of rules R in CRL.

De�nition 2. Given a con�guration C and a set of rules R in CRL, we denote
by RC the set of rules

fai  b1; : : : ; bm : a1� � � � �al  b1; : : : ; bm; not(c1); : : : ; not(cn) 2 R; � 2 fj;�g;
ai 2 C; 1 � i � l; fc1; : : : cng \ C = ;g

The result of the transformation is a set of Horn clauses if we interpret the sym-
bols \ \ and \," as classical implication and conjunction, respectively. Under
this interpretation the reduct RC has a unique least model, which we denote by



MM(RC). Notice that the least model of a set of Horn clauses coincides with the
set of atoms logically entailed by them and also with the set of atoms derivable
by interpreting them as inference rules. The intuition behind the transformation
is that, given a choice-rule, if any of the alternatives in the head of the rule are
chosen, then the reduct of the transformation includes a rule that can justify
the choice (if the body of the rule can be justi�ed). If some alternative is not
chosen, then there is no need for the choice to be justi�ed and consequently no
corresponding rules are included. The default negation \not(�)" is handled using
a technique similar to that in the stable model semantics of logic programs [6].

De�nition 3. Given a con�guration C and a set of rules R in CRL, C is
R-valid i� C = MM(RC) and C j= R.

The idea of the de�nition is as follows: the �rst �x-point condition guarantees
that a con�guration must be justi�ed by the rules. All the things in the con�g-
uration are derivable from (the reduct of) the con�guration rules. On the other
hand, everything that can be derived using (the reduct of) the rules must be in
the con�guration. The second condition ensures that all the necessary choices
have been made and all the requires and incompatibility-rules are respected.

Example 3. Consider the con�guration model RPC in Example 2, the simple set
of requirements fFinnishlayoutKB g and the con�gurations

C1 = fcomputer; SCSIdisk; UKlayoutKBg
C2 = fcomputer; IDEdisk; F innishlayoutKB; SCSIcontrollerg
C3 = fcomputer; SCSIdisk; F innishlayoutKB; SCSIcontrollerg

The con�guration C1 does not satisfy the con�guration model nor the require-
ments according to De�nition 1 and thus it is not RPC-valid, either. The con�g-
uration C2 does satisfy the con�guration model and the requirements. However,
it is not RPC-valid because the reduct RPC

C2 is

fcomputer  ; IDEdisk  computer;FinnishlayoutKB computer;
SCSIcontroller  SCSIdiskg

The minimal model MM(RPC
C2) = fcomputer; IDEdisk; F innishlayoutKBg

does not contain SCSIcontroller and thus it is not equal to C2. The con�gura-
tion C3 is RPC -valid and satis�es the requirements.

Example 4. Consider the following sets of rules:

R1 :
a j b c

c 

R2 :
a j b c

c� c0  d

d 

R3 :
a j b c

c� c0  d

a not(b); d
d 

The valid con�gurations with respect to R1 are fc; ag, fc; bg and fc; a; bg. The
reducts of R1 with respect to these con�gurations are fa c; c g, fb c; c g



and fa  c; b  c; c  g, respectively. Clearly, the minimal models of these
reducts coincide with the con�gurations and the con�gurations satisfy the rules
in R1. On the other hand, if the latter rule is omitted, the only valid con�guration
is the empty con�guration fg, since a and b cannot have a justi�cation.

Although CRL does not include primitives for some typical forms of con�g-
uration knowledge such as optional choices and default alternatives, they can be
captured fairly straightforwardly. The �rst two rules in R2 demonstrate how to
represent an optional choice-rule whose head consists of the atoms a and b and
whose body is d. The valid con�gurations with respect to R2 are fc

0; dg, fa; c; dg,
fb; c; dg and fa; b; c; dg. In this example either c or c0 must be in a con�guration.
These additional atoms represent the cases where the choice is made and not
made, respectively. Now, consider the rule set R3 obtained by adding the rule
a not(b); d to R2. The valid con�gurations are now fc0; a; dg, fc; a; dg, fc; b; dg
and fc; a; b; dg. This rule set represents a default choice (a is the default) which
is made unless one of the alternatives is explicitly chosen.

4 Relationship to Logic Programming Semantics

The con�guration rule language CRL resembles disjunctive logic programs and
deductive databases. The main syntactic di�erence is that two disjunctive oper-
ators are provided whereas in disjunctive logic programming typically only one
is o�ered. The semantics is also similar to logic programming semantics. The
main di�erence is that leading disjunctive semantics (see, e.g., [3, 5]) have min-
imality of models as a built-in property whereas our semantics does not imply
subset minimality of con�gurations. The rule set R1 above is an example of this.
However, there are semantics allowing non-minimal models and, in fact, if we
consider the subclass with one disjunctive operator, i.e. ordinary choice-rules,
our notion of a valid con�guration coincides with possible models introduced by
Sakama and Inoue [14] for disjunctive programs. They observed that possible
models of disjunctive programs can be captured with stable models of normal
programs by a suitable translation of disjunctive programs to non-disjunctive
programs [14]. Here we extend this idea to exclusive choice-rules and present a
slightly di�erent, more compact and computationally oriented translation.

Given a set of rules R inCRL the corresponding normal logic program is con-
structed as follows. The requires-rules Rr are taken as such. The incompatibility-
rules Ri are mapped to logic program rules with the same body but a head f and
a new rule f 0  not(f 0); f is included where f; f 0 are new atoms not appearing
in R. For each choice-rule

a1 j � � � j al  b1; : : : ; bm; not(c1); : : : ; not(cn)

in Rc we include a rule f  b1; : : : ; bm; not(c1); : : : ; not(cn); â1; : : : ; âl and for all
i = 1; : : : ; l, two rules

ai  not(âi); b1; : : : ; bm; not(c1); : : : ; not(cn) and âi  not(ai)



where â1; : : : ; âl are new atoms. Each exclusive choice-rule is translated the same
way as an ordinary choice-rule except that we include additionally the set of rules
of the form f  b1; : : : ; bm; not(c1); : : : ; not(cn); a

0; a00 where a0 = ai; a
00 = aj for

some i; j, 1 � i < j � l. Note that the number of the additional rules is quadratic
in the number of head atoms, but for ordinary choice-rules the translation is
linear. Now the stable models of the program provide the valid con�gurations
for the rules. The close correspondence implies that an implementation of the
stable model semantics can be used for con�guration tasks.

5 Complexity Issues

In this section we briey consider the complexity of the following key decision
problems in con�guration: (i) C-SAT: decide whether a con�guration satis�es
a set of rules, (ii) EXISTS: determine whether there is a valid con�guration for
a set of rules, and (iii) QUERY: decide whether there is a valid con�guration
C for a set of rules satisfying a set of requirements Q (C j= Q).

First, we observe that C-SAT is decidable in linear time. Second, we note
that checking whether a set of atoms is a valid con�guration can be done in
linear time. This holds as for a set of rules and a candidate con�guration, the
reduct can be computed in linear time and, similarly, the unique least model of a
set of Horn clauses is computable in linear time [4]. This implies that the major
computational tasks in con�guration using our semantics are in NP.

For EXISTS and QUERY, we consider some subclasses of CRL to show
the boundary for NP-completeness. For example, CRLr is the subset where
only requires-rules are allowed, CRLrd permits additionally default negations,
CRLre allows exclusive choice-rules in addition to requires-rules andCRLrci ad-
mits requires-rules, choice-rules and incompatibility-rules. The results are sum-
marized in Table 1. They are fairly straightforward to demonstrate (see [17] for
more details). Most of the results can also be established from the complexity
results for the possible model semantics [14, 5].

Table 1. Complexity results for con�guration tasks

Language C-SAT EXISTS QUERY

CRLr Poly Poly Poly
CRLri Poly Poly Poly
CRLrc Poly Poly NP-compl.
CRLrd Poly NP-compl. NP-compl.
CRLre Poly NP-compl. NP-compl.
CRLrci Poly NP-compl. NP-compl.



6 Relation to Constraint Satisfaction

Con�guration is often cast as a constraint satisfaction or dynamic constraint
satisfaction problem. In this section we aim to show that CRL contains CSP
and DCSP as special cases and is an extension of these two approaches. We note
that for all the formalisms dealt with in this section the problem corresponding
to generating a con�guration is NP-complete.

6.1 Mapping Constraint Formalisms to CRL

We �rst recall that a CSP consists of a set of variables, a set of possible values
for each variable, called the domain of the variable, and a set of constraints.
We assume in the following that the domains are �nite. A constraint de�nes the
allowed combinations of values for a set of variables by specifying a subset of
the Cartesian product of the domains of the variables. A solution to a CSP is an
assignment of values to all variables such that the constraints are satis�ed, i.e.,
the value combinations are allowed by at least one tuple of each constraint.

A DCSP is an extension of a CSP that also has of a set of variables, domains,
and constraints (called here compatibility constraints). However, all the variables
need not be given a value, i.e., be active in a solution. A DCSP additionally
de�nes a set of initial variables that must be active in every solution and a
set of activity constraints. An activity constraint states either that if a given
condition is true then a certain variable is active, or that if a given condition is
true, then a certain variable must not be active. The condition may be expressed
as a compatibility constraint (require and require not activity constraints) or it
may state that some other variable is active (always require and always require
not activity constraints). A solution to a DCSP is an assignment of values to
variables such that it (i) ful�lls the compatibility and activity constraints, (ii)
contains assignments for the initial variables, and (iii) is minimal.

We next de�ne a mapping from the DCSP formalism to CRL. We note
that as CSP is a special case of DCSP with no activity constraints and with
all variables in the set of initial variables, the same mapping can be used for a
CSP. In the mapping from a DCSP to CRL representation we introduce (i) a
new distinct atom for each variable, vi, to encode its activity, (ii) a new distinct
atom sat(ci) for each compatibility constraint ci, and (iii) a new distinct atom
vi(vali;j) for each variable vi and value vali;j in the domain of vi.

Each initially active variable vi is mapped to a fact vi  . Each variable vi
and its domain fvali;1; : : : ; vali;ng is mapped to an exclusive choice-rule of the
following form: vi(vali;1) � � � � � vi(vali;n)  vi. A compatibility constraint on
variables v1; : : : ; vn is represented using a set of requires-rules of form sat(ci) 
v1(val1;j); v2(val2;k); � � � ; vn(valn;l), one rule for each allowed value combination
val1;j ; : : : ; valn;l. An incompatibility-rule of the form  v1; : : : ; vn; not(sat(ci))
is included to enforce the constraint.

Example 5. Given a CSP with two variables, package and frame with do-
mains fluxury; deluxe; standardg and fconvertible; sedan; hatchbackg, respec-
tively, and a constraint c1 = ffluxury; convertibleg; fstandard; hatchbackgg on



package and frame, the following rule set is produced by the mapping:

package 
frame 
package(luxury)� package(deluxe)� package(standard) package

frame(convertible)� frame(sedan)� frame(hatchback) frame

sat(c1) package(luxury); frame(convertible)
sat(c1) package(standard); frame(hatchback)
 package; frame; not(sat(c1))

An always require activity constraint is mapped to a requires-rule v2  v1
where v2 is the activated variable and v1 is the condition variable. An always
require not activity constraint is mapped to an incompatibility-rule  v1; v2
where v1 and v2 are the condition and deactivated variables, respectively. A re-
quire variable activity constraint is mapped to a set of requires-rules, one rule
of the form u  v1(val1;j); : : : ; vn(valn;k) for each allowed value combination
fval1;j ; : : : ; valn;kg of variables v1; : : : ; vn, where u is the activated variable. A re-
quire not activity constraint is mapped to a set of incompatibility-rules, one rule
of the form  u; v1(val1;j); : : : ; vn(valn;k) for each allowed value combination
fval1;j ; : : : ; valn;kg of variables v1; : : : ; vn where u is the deactivated variable.

Example 6. Given a DCSP with two variables, package and sunroof , whose
domains are fluxury; deluxe; standardg and fsr1; sr2g, respectively, a set of
initial variables fpackageg and a require activity constraint that if package has
value luxury, then sunroof is active, the following rule set is produced:

package 
package(luxury)� package(deluxe)� package(standard) package

sunroof(sr1)� sunroof(sr2) sunroof

sunroof  package(luxury)

It is easy to see that each valid con�guration is a solution to the DCSP and
vice versa. The minimality of solutions can be shown by noting that the rules
that can cause a variable to be active can be translated to normal logic programs.
For this subclass of rules the con�gurations coincide with stable models which
are subset minimal [6]. The size of the resulting rule set is linear in the size of
the DCSP problem instance. The mapping is local in the sense that each variable
and its domain, initial variable, compatibility constraint and activity constraint
can be mapped separately from the other elements of the problem instance.

6.2 Expressiveness of CRL vs. CSP

Next we argue that CRL is strictly more expressive than CSP by using the
concept of modularity. A modular representation in some formalism is such that
a small, local change in the knowledge results in a small change in the represen-
tation. This property is important for easy maintenance of a knowledge base.



We show that under mild assumptions the CSP formalism cannot modularly
capture the justi�cations of a con�guration. We say that CRL is modularly
representable by CSP i� for every set of CRL rules there is a CSP such that
rules are represented in the CSP independent of the representation of the basic
facts (i.e. requires-rules with empty bodies) so that a change in the facts does
not lead to a change involving both additions and removals of either allowed
tuples, constraints, variables or values. In addition, the solutions to the CSP
must agree with the CRL con�gurations in that (i) the truth values of the
atoms in a con�guration can be read from the values of Boolean CSP variables
representing the atoms and (ii) these variables have the same truth values as the
corresponding atoms.

Theorem 1. CRL is not modularly representable by CSP.

Proof. Consider the set of rules R = fc  bg and assume that it can be mod-
ularly represented by a CSP. Hence, there is a CSP T(R) such that in all the
solutions of T(R) the variables representing atoms b and c in the con�guration
language have the value false as R has the empty set as its unique valid con-
�guration. Consider now a set of facts F = fb  g. The con�guration model
R [ F has a unique valid con�guration fb; cg. This means that T(R) updated
with F must not have a solution in which variables encoding b and c have the
value false. In addition, T(R) updated with F must have at least one solu-
tion in which the atoms encoding b and c have the value true. It can be shown
that changes including either only additions or only removals of either allowed
tuples, constraints, variables or values cannot both add solutions and remove
them, which is a contradiction and hence the assumption is false.

The fact that there is no modular representation of CRL in the CSP for-
malism is caused by the justi�cation property of CRL which introduces a non-
monotonic behavior. A similar argument can therefore be used for showing a sim-
ilar result for, e.g., propositional logic [17]. We note that the question whether
there is a modular representation of a con�guration model given in CRL as
a DCSP is open. The DCSP formalism exhibits a non-monotonic behavior, so
a similar argument cannot be used for this case. It can be used, however, to
show that there is no modular representation of a DCSP as a CSP. Representing
CRL as DCSP does not seem straightforward, as the DCSP approach does not
directly allow activity constraints that have a choice among a set of variables to
activate or default negation in the condition part.

7 Implementation

In this section we describe briey our implementation of CRL, demonstrate the
use of CRL with a car con�guration problem from [11] and provide information
on performance of the implementation for the car problem.

Our implementation of CRL is based on the translation of CRL to normal
logic programs presented in Sect. 4 and on an existing high performance im-
plementation of the stable model semantics, the Smodels system [12, 13]. This



system seems to be the most eÆcient implementation of the stable model se-
mantics currently available. It is capable of handling large programs, i.e. over
100 000 ground rules, and has been applied successfully in a number of areas
including planning [2], model checking for distributed systems [9], and proposi-
tional satis�ability checking [16].

We have built a front-end to Smodels which takes as input a slightly modi�ed
(see below) set of CRL rules and transforms it to a normal logic program whose
stable models correspond to valid con�gurations. Then Smodels is employed for
generating stable models. The implementation can generate a given number of
con�gurations, all of them, or the con�gurations that satisfy requirements given
as a set of literals.

Smodels is publicly available at http://www.tcs.hut.fi/pub/smodels/.
The front-end is included in the new parser of Smodels, lparse, which accepts
in addition to normal program rules (requires-rules) also \inclusive" choice-rules
and incompatibility-rules. Exclusive choice-rules are supported by rules of the
form  nfa1; : : : ; alg where n is an integer. The rule acts like an integrity con-
straint eliminating models, i.e. con�gurations, with n or more of the atoms from
fa1; : : : ; alg. This allows a succinct coding of, e.g., exclusiveness without the
quadratic overhead which results when using normal rules. Hence, an exclusive
choice-rule a1 � � � � � al  Body can be expressed as a combination of an \in-
clusive" choice-rule a1 j � � � j al  Body and the rule  Body; 2fa1; : : : ; alg.

Our �rst example, CAR, was originally de�ned as a DCSP [11]. In Fig. 1
the problem is translated to CRL using the mappings de�ned in the previous
section with the exception that the compatibility constraints are given a simple
rule form similar to that in [11]. There are several choices of packages, frames,
engines, batteries and so on for a car. At least a package (pack), frame and engine
must be chosen from the alternatives speci�ed for them. Choosing a particular
alternative in a choice-rule can make other choices necessary. For example, if
the package is chosen to be luxury (l), then a sunroof and an airconditioner
(aircond) must be chosen as well. In addition, some combinations of alternatives
are mutually exclusive, e.g., the luxury alternative for package cannot be chosen
with the ac1 alternative for airconditioner. The second example, CARx2, is
modi�ed from CAR by doubling the size of the domain of each variable. In
addition, for each new value and each compatibility and activity constraint in
the original example a new similar constraint referring to the new value is added.

We did some experiments with the two problems inCRL form. The tests were
run on a Pentium II 233 MHz with 128MB of memory, Linux 2.0.35 operating
system, smodels version 1.12 and lparse version 0.9.19. The test cases are avail-
able at http://www.tcs.hut.fi/pub/smodels/tests/padl99.tar.gz. Table 2
presents the timing results for computing one and all valid con�gurations, the
number of valid con�gurations found and the size of the initial search space
which is calculated by multiplying the number of alternatives for each choice.
The execution times include reading and parsing the set of input rules, its trans-
lation to a normal program as well as outputting the con�gurations in a �le. The
times were measured using the Unix time command and they are the sum of



pack(l)� pack(dl)� pack(std) pack

frame(conv)� frame(sedan)� frame(hb) frame

engine(s)� engine(m)� engine(l) engine

battery(s)� battery(m)� battery(l) battery

sunroof(sr1)� sunroof(sr2) sunroof

aircond(ac1)� aircond(ac2) aircond

glass(tinted)� glass(nottinted) glass

opener(auto)� opener(manual) opener

battery(m) opener(auto); aircond(ac1)
battery(l) opener(auto); aircond(ac2)
 sunroof(sr1); aircond(ac2); glass(tinted)
 pack(std); aircond(ac2)
 pack(l); aircond(ac1)
 pack(std); frame(conv)

pack 

frame 

engine 

sunroof  pack(l)
aircond pack(l)
sunroof  pack(dl)
opener sunroof(sr2)
aircond sunroof(sr1)
glass sunroof

battery engine

sunroof  opener

sunroof  glass

 sunroof(sr1); opener
 frame(conv); sunroof
 battery(s); engine(s);

aircond

Fig. 1. Car con�guration example

user and system time. The test results show that for this small problem instance
the computation times are acceptable for interactive applications. For example,
in the larger test case it takes on average less than 0.0004 s to generate a con-
�guration. We are not aware of any other reported test results for solving this
problem in the DCSP or any other form.

Table 2. Results from the car example

Problem Initial Valid one all
search space con�gurations

CAR 1 296 198 0.06 s 0.15 s
CARx2 331 776 44456 0.1 s 15.5 s

8 Previous Work on Product Con�guration

In Sect. 6 we compared our approach to the CSP and DCSP formalisms. In this
section we provide brief comparisons with several other approaches.

The generative CSP (GCSP) [7] approach introduces �rst-order constraints
on activities of variables, on variable values and on resources. Constraints using
arithmetic are also included. Resources are aggregate functions on intensionally
de�ned sets of variables. They may restrict the set of variables active in a solution
or generate new variables into a solution, thus providing a justi�cation for the
variables. In addition, a restricted form of DCSP activity constraints is used
to provide justi�cations for activity of variables. CRL allows more expressive



activity constraints than DCSP and a uniform representation of activity and
other constraints. However, �rst-order rules, arithmetic and resource constraints
are still missing from CRL.

Our approach �ts broadly within the framework of constructive problem solv-
ing (CPS) [8]. In CPS the con�gurations are characterized as (possibly partial)
Herbrand models of a theory in an appropriate logic language. The CPS ap-
proach does not require that elements in a con�guration must have justi�cations
but the need for a meta-level minimality criterion is mentioned.

Some implementations of con�gurators based on logic programming systems
have been presented [15, 1]. In these approaches, similarly to our approach, a
con�guration domain oriented language is de�ned and the problem solving task
is implemented on a variant of Prolog based on a mapping from the high-level
language to Prolog. The languages are more complex and better suited for real
modeling tasks. However, they are not provided a clear declarative semantics and
the implementations use non-logical extensions of pure Prolog such as object-
oriented Prolog and the cut. In contrast, we provide a simple declarative seman-
tics and a sound and complete implementation for CRL.

9 Conclusions and Future Work

We have de�ned a rule-based language for representing typical forms of con-
�guration knowledge, e.g., choices, dependencies between choices and incom-
patibilities. The language is provided with a declarative semantics based on a
straightforward �x-point condition employing a simple transformation operator.
The semantics induces formal de�nitions for the main concepts in product con-
�guration, i.e., con�guration models, requirements, con�gurations, valid condig-
urations and con�gurations that satisfy requirements. A novel feature of the
semantics is that justi�ability of a con�guration (i.e., that each element in a
con�guration has a justication in terms of the con�guration rules) is captured
by Horn clause derivability but without resorting to a minimality condition on
con�gurations. This approach has not been considered in previous work on prod-
uct con�guration. The semantics is closely related to well-known non-monotonic
formalisms such as the stable model semantics [6] and the possible model se-
mantics [14].

Avoiding minimality conditions in the semantics has a favorable e�ect on
the complexity of the con�guration tasks. The basic problems, i.e. validity of
a con�guration and whether a con�guration satis�es a set of requirements, are
polynomially decidable. This is important for practical con�guration problems.
It also implies that the other relevant decision problems are in NP.

We argue that the rule language is more expressive than constraints by show-
ing that it cannot be modularly represented as CSP. The diÆculty lies in captur-
ing the justi�cations for a con�guration using constraints. In addition, we show
that the dynamic constraint satisfaction formalism can be embedded in our lan-
guage but note that there is no obvious way of representing default negation and
inclusive choices of CRL in that formalism.



There are indications that the proposed formal model provides a basis for
solving practically relevant product con�guration problems. An implementation
of the rule language based on a translator to normal logic programs with the
stable model semantics was tested on a small con�guration problem. The results
suggest that this approach is worth further research. Moreover, experiences in
other domains show that eÆcient implementations of the stable model semantics
are capable of handling tens of thousands of ground rules. Compiling a practically
relevant con�guration model from a high level representation into our language
would seem to generate rule sets of approximately that size. Further research is
needed to determine how our implementation scales for larger problems.

It may be possible to develop a more eÆcient algorithm that avoids the over-
head incurred by the additional atoms and loss of information on the structure
of the rules caused by the mapping to normal programs. Devising such an al-
gorithm is an interesting subject of further work. A practically important task
would be to identify additional syntactically restricted but still useful subsets of
the language that would allow more eÆcient computation. Interactive product
con�guration where user makes hard decisions and computer only tractable ones
may be the only feasible alternative for very large or complex problems. This
type of con�guration would be facilitated by devising polynomially computable
approximations for valid con�gurations in CRL. Such approximations could also
be used to prune the search space in an implemention of CRL.

It should be noted that the model does not adequately cover all the aspects of
product con�guration. Further work should include generalizing the rules to the
�rst-order case, adding arithmetic operators to the language and de�ning con-
structs important for the domain such as optional choice directly in the language.
These extensions are needed to conveniently represent resource constraints, at-
tributes, structure and connections of components. Another important extension
would be to de�ne the notion of an optimal con�guration (such as subset mini-
mal, cardinality minimal or resource minimal con�guration) and to analyze the
complexity of optimality-related decision problems.
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