
Improving the Interface Between Business and Product Development Using Agile
Practices and the Cycles of Control Framework

 Jari Vanhanen Juha Itkonen Petteri Sulonen
 Helsinki University of Technology Helsinki University of Technology Avain Technologies Oy
 jari.vanhanen@hut.fi juha.itkonen@hut.fi petteri.sulonen@avaintec.com

Abstract

The paper describes how we created and adopted an
agile product development process in a small software
company based on the Cycles of Control framework by
combining selected agile practices and principles from
the Scrum and XP methodologies. Describing the
development process using the framework helped in
identifying the crucial control points between business
and development and enabled defining practical and
well-functioning connections between them. The control
points enable visibility and flexible management of
product development status and direction. Currently
Business understands development status better, which
has led to fewer interruptions between the control points,
and thus improved working conditions for Development.
Positive experiences are reported of newly adopted
practices such as scrum meetings, pair programming, and
unit testing. However, finding and adopting technical
tools to facilitate the process proved to be challenging.

1. Introduction

Sooner or later, most growing software companies face
the challenge of bringing more structure to their product
development process. The reasons are many, e.g., getting
more predictability to the release schedules, providing
visibility to the development progress, improving software
quality, and facilitating initiation of new workers.
Recently, we created and adopted an agile product
development process for a small but growing software
company facing these and many other challenges. The
new process was created based on the Cycles of Control
framework [3] and by combining selected agile practices
and principles from the Scrum and XP methodologies into
this framework.

1.1. The company

The company, Avain Technologies Oy, specializes in
building secure digital transaction solutions. While
delivering several customer-specific solutions, the
company has simultaneously created a first product
version out of their solution. The product is a system for
secure digital signatures of XML forms over the Internet.

Previously the company had only a few developers,
who mostly worked for customer-specific projects. They
followed ad-hoc development practices but managed to
perform well as a small team. At present, the strategic
focus of the company is to move to the product business
and grow the company to become a global player in the
market. This means increases in the number of developers
and other personnel and strict requirements for software
quality. The need for a more rigorously defined
development process is evident. However, the company
does not want to lose flexibility, efficiency, and innovative
work culture.

1.2. The Cycles of Control framework

Cycles of Control [3] is a general framework for
managing software product development in small
organizations created in the SEMS research project at
Helsinki University of Technology. It provides a common
language in which the practices, pacing and phasing of the
incremental software development process can be
communicated to the whole organization.

The basic idea of an iterative and incremental
development process is to deliver working software early
to get user feedback on it. At the same time technical
feedback on system performance or other non-functional
aspects can be made available. The feedback is used in
planning the subsequent development cycle(s).

The framework (Figure 1) combines business and
product development processes through four cycles of
control: (1) portfolio management provides the

interface between business and product development and
manages the set of products and services offered by the
company, for example, by product roadmapping, (2)
release project management handles the development of
individual product versions, (3) increment management
deals with the incremental development of product
functionality within release projects, and, (4) heartbeats
are used for daily or weekly task scheduling and
monitoring and synchronizing the effort of individuals or
teams to get an indication of system status during
development. Portfolio management should also provide
guidelines for how product development efforts should be
organized in terms of release cycle length and
development rhythm [6].

Portfolio
Management

Release
Project
Management

Increment
Mgmt Heartbeat-

Figure 1. The Cycles of Control framework

1.3. Creating the new development process

The process definition and improvement work at Avain
Technologies began in October 2002. The co-operation
between the company and three researchers of the SEMS
research project began around the same time. The product
development manager led the process improvement work,
spending a considerable amount of his work time for this
from October to December. The researchers participated
actively by observing, commenting on the plans and
providing new ideas and references. The process
improvement began with a kick-off day, where the whole
development team and the researchers participated. Later,
senior developers and the managing director participated
in some of the meetings where the new process was
discussed. Other developers read through the process
descriptions and were encouraged to comment on them.

Several weaknesses in the current ad-hoc development
process had already been identified. The unpredictability
of release dates and vague ideas of their content made
planning hard for the sales and marketing departments.
The process could not be efficiently scaled up for a larger
team, or taught to another team. Transfer of knowledge
within the team did not work well. The valuable time of
senior developers was wasted in customer support and
maintenance tasks. The challenge was to make it possible
to plan, predict, and steer the development and yet to

maintain the responsiveness. The answer was to devise a
minimum-overhead process that provides the necessary
degree of control, and to create a separate service team for
supporting the existing customer projects and
installations.

 First, the new process and practices were brainstormed
in a rather ad-hoc manner. The ideas were documented as
a narrative text document. However, the communication
of the process was problematic, because it was hard to
form a common vocabulary and understanding of the
concepts that were used to describe the process. Soon
after that, the Cycles of Control framework was
introduced in the company and used to give clear cyclic
structure for the process. The framework also clarified the
terms and concepts for all stakeholders and thus improved
communication and made process construction
significantly easier. Some agile practices were introduced
as a part of the implemented process to define the work
practices in the heartbeats.

2. The new development process

In this section we describe the proposal for a new
development process as it was initially adopted at Avain
Technologies. It was clear that the process did not yet
cover all activities and was not perfect, but the best way to
improve it was through piloting. We present the
experiences of the adoption, and the changes and
improvements to the process during the first release cycle
in Section 3.

2.1. Organizational structure

The company has four departments: Business,
Development, Service, and Administration. The managing
director, two sales managers and the international
functions manager, who are responsible for the sales and
marketing, represent Business. Development contains the
product development manager, five developers and a
tester. The development team is split into three teams, two
product teams and one team producing special
components for the products. One of the developers works
in a different country, but others are co-located in two big
rooms next to each other. Service takes care of delivering
solutions to the customers.

Improving the communication between Business and
Development was a high priority challenge for the new
process, and is in a key role in the development process
description. This can be seen in the strong emphasis on
requirements management. An overview of the rhythm of
the development and the control points available for
Business to change development plans can be seen in
Figure 2.

Scrum CycleSprintStrategic
Planning
Cycle

Release
Cycle

Continuous 4 months 1 month ½ week

Control points
for business

Figure 2. The implementation of the Cycles of
Control framework at Avaintec

2.2. Cycles of Control

The control cycles were adopted straight from the
Cycles of Control framework. The practices for managing
requirements in each of these cycles are largely affected
by the backlog management practices in Scrum [4].

In the strategic planning cycle, a coherent product
vision is continuously maintained. The product vision is
expressed as a Product Backlog (PBL) and an idea pool.
The PBL contains a prioritized list of requirements to be
implemented sometime in the future. All changes to the
content and priorities of the PBL go through the managing
director. The idea pool contains all kinds of ideas for the
product’s future not yet in the PBL. Anyone can commit
ideas to it.

A feasibility study must be made for any item before
proposing it to the PBL. The depth and scope of
feasibility studies vary depending on the scope and
immediacy of the requirement being studied. At its
simplest it can mean a rough estimate by Business about
the commercial feasibility of the item followed by an
equally rough estimate about the effort required to
develop and maintain it and other possible technical
implications from Development. At its most complex it
can mean two sprints worth of requirements and
architectural exploration for a large set of new
functionality.

The release cycle results in a release that can be either
commercial or internal. There may be different types of
releases of different products in the end of the same
release cycle. Commercial releases are made based on
strategic decisions, e.g., once a year. Other releases are
internal and their main purpose is to converge the work
regularly showing the real progress status.

The release cycle contains three phases: planning &
exploration, development and stabilization. The lengths of
the phases are planned at the beginning of the release
cycle and embedded into the four one-month sprints. The

lengths may vary a lot, e.g., the planning & exploration
phase may take from a minimum of one day to even a
whole sprint. In the planning & exploration phase
Business and Development play a kind of planning game,
where the highest priority items in the PBL are discussed
in more detail, and estimated by Development. The results
of the game are the definition of the release goal,
preliminary sprint goals and sprint themes, and a
prioritized list of items for the release, i.e. the Release
Backlog (RBL). An item may be a feature, high-level
architectural task, or exploration of, e.g., domain-specific
standards or legislation. The priorities are based on both
architectural and business criticality, the former having
more weight in a case of a conflict. After the development
phase the system is acceptance tested and documented in
the stabilization phase.

At the beginning of the sprint cycle, Business and
Development hold a sprint-planning meeting, where the
sprint goal and theme(s) are revised. Here Business may
propose changes to the RBL as long as achieving the
release goal is not compromised. Then development picks
a reasonable amount of items from the top of the RBL and
expands them to tasks. These tasks form the Sprint
Backlog (SBL), i.e. the plan for the sprint. In the end of
the sprint Development holds an internal sprint debrief
session and gives a demo for Business in order to
communicate what has been accomplished.

At the beginning of the scrum cycle, Development has
a status meeting. Based on these meetings the scrum
master, who is the leader of scrum meetings and
responsible for managing the development work at the
scrum level, maintains the SBL and tracks the progress of
the sprint.

Feedback from each of the cycles is propagated to the
previous cycle in a pre-defined rhythm via scrum
meetings, sprint demos, and releases.

The role of general goals for the cycles is to push
decisions of details later and allow being more adaptive to
changes. Upper management need not be involved in
accepting changes as long as the cycle’s goal is not
compromised. The control points are clearly defined both
in schedule (timing of cycles) and in the significance of
the accepted changes (goals of the cycles). Only highly
critical changes in the environment may override these
control points.

2.3. Development practices

All developers agreed on using some development
practices: automated unit testing, pair programming [7] in
a slightly modified form (real pair programming for hard
tasks, otherwise close co-operation between two
developers), CVS for version control, and coding

standards. XP practices [1], simple design, collective
ownership, continuous refactoring, 40-hour week, were
listed in the process definition, but they were not
emphasized to the developers as much as the other
practices.

 “Red-Flag”-practice is used to manage unexpected
work not related to achieving the sprint goal, such as
preparing demonstrations for potential customers or fixing
problems in previous customer installations. Red flags are
included in the SBL as high-priority tasks. A constant
amount of effort (40%) is reserved for non-development
work, including red flags.

2.4. Quality Assurance

Before the first release, the focus of the process
definition and improvement work had been on the overall
structure, pacing, cycles and the core development
practices. Because the communication between Business
and Development was one of the main issues, the process
had been defined from the requirements management
viewpoint and the testing and quality assurance issues
were intentionally left with less attention. Also, there were
not many testable features expected from the first release
due to its technical nature.

By the first release the defined quality assurance
practices were automated unit tests written by the
developers and the test-first practice for writing those unit
tests. In addition, the process description stated that
before a sprint backlog item could be labeled as
completed, the system tests for that functionality must be
created and the test results provided to the scrum master
to support the decision of completeness.

The process work on QA practices continued during
the first release. The primary focus areas in this work were
defining the defect management process, deploying the
Bugzilla open source defect tracking system and
describing the hand-off and release procedures between
developers, testing and the service team. These hand-off
procedures between developers, testing and service are
essential because cyclic, incremental development is
based on frequent code hand-offs between different
stakeholders. The communication that accompanies these
hand-offs is the most important and accurate information
on the current functionality and status of the system since
no prescriptive specifications are created beyond the
backlog items. This means that the system testing will be
based on the hand-off documentation as well as
communication and collaboration between the developers
and testing.

The testing processes were not defined during the first
release cycle and the tester was hired to the company only
after the release cycle had started. In addition, the testing

environments and hardware were not established during
the first release, which made it difficult to start system
testing during the first release cycle.

3. Realized process

The first release has now been carried out using the
new process. The SEMS researchers have been observing
and affecting the process improvement work during the
first release, and the representatives from both Business
and Development were interviewed after the release about
how they had followed the new process and felt about it.

Quantitative data is scarce because neither the old nor
the new process contains more than very simple basic
metrics. Thus the evaluation of the new process is largely
based on the subjective opinions of the employees.

3.1. Organizational structure

The structure of the development team was changed
after the third sprint from the product and component
team based division to front-end/back-end division. The
problem was that the component team could not
successfully synchronize their work with the product
teams. In the new structure both products have a
responsible lead developer, and the “external” component
team has been embedded to the back-end team. The new
division has improved the customer/producer relationship
between the developers, and allows developers to work
better within their area of expertise. For example, if the
lead developer of product 1, who is in the front-end team,
recognizes that a feature would best be implemented as a
back-end component, he can order one from the back-end
team. Formerly, the path of least resistance would have
been to try to figure out a “front-end” solution to the
problem, or attempt to write the back-end component
himself (which would have been less efficient and would
have had a negative impact on product quality). The role
of the product development manager also changed from
developer-manager to full-time manager. Managing the
team and simultaneously being able to contribute to high-
concentration development tasks proved to be too
strenuous in the long run.

The amount of effort spent by a developer on
development work was typically between 50-60%, which
matched quite well the original estimate of 60%.
However, one of the developers could use only 26% of his
effort on development work due to intense participation in
existing customer projects.

3.2. Cycles of Control

Previously, no common idea pool had been used, but
the product ideas were scattered here and there. At the
beginning of the first release all existing ideas were
collected into an Excel sheet called the product backlog.
There were a total of 30 items identified. Each item was
documented by one row containing a column for all the
attributes listed in Table 1. The item is described in the
product backlog by a short textual description and each
item is assigned a priority number that describes the
implementation order of the items. The scope of the item
is described by estimating how long it would take to
implement the feature. The scale is from less than one
scrum cycle (1/2 week) to more than two releases (over
eight months). The schedule is estimated by assigning
each feature to some future release, e.g., II/03 means the
second release of year 2003. The business feasibility and
architectural importance of items are estimated using the
scale: high, medium, or low. Each item is also associated
to a product or common component. Links are provided to
connect additional documentation to backlog items.

An idea pool that was initially empty was also
deployed. During the first release, service and sales
proposed three new ideas to the idea pool. They described
the idea by a few paragraphs of text, each in a separate
file. The product development manager added his
comments about the feasibility of the ideas to the same
files. The files were collected to a shared directory
accessible for the whole organization.

Table 1. The product backlog
Attribute Type/scale
Description A few words
Priority Implementation order
Scope <1 scrum to >2 releases
Release I/03, II/03, III/03, undefined
Business feasibility High, medium, low
Architectural importance High, medium, low
Product Prod. 1, prod. 2, components
Links Supporting documentation

The release-planning meeting took one day. The

managing director, sales managers, and the whole
development team participated. In the planning meeting
all items in the product backlog were briefly discussed,
and most of the items were tentatively assigned to one of
the three next releases. Three items were selected for the
first release: porting the product to a new version of the
technology platform (size: 1 release), starting the
development of a new product (>2 releases), and one new,
big feature (2 releases). The sizes of the selected items
were large, but splitting them would not have provided
useable features from the customer perspective. Most of

the other items were of smaller sizes (1-2 sprints or
smaller). The rough unit for the estimates was used in
order not to produce too high confidence in the rather
vague estimates. The release goals and sprint goals were
defined for the product teams and the component team,
i.e. they all had their own goals.

Table 2. The release backlog
Attribute Type/scale
Description A few words
Priority Implementation order
Scope <1 to 2 scrums (½ week)
Sprint I, II, III, IV
Product Prod. 1, prod. 2, components
Status Completed, prototype, open, on hold, deferred

The three selected items were split into 18 more

detailed items, and documented in another sheet called the
release backlog (Table 2). The release-planning meeting
for the second release has also been carried out. It was a
clearer and more structured meeting than the first one,
because the agenda for the meeting, the terminology used
and the development process were more familiar to the
participants.

At the beginning of each sprint a sprint-planning
meeting was held. Only the developers participated in the
three first meetings, because there were no changes to the
plans that Business wanted to propose. However in the
fourth sprint-planning meeting there was a need to cut
down the scope. The progress was late due to lack of
resources for the development work, and too small
estimates for some tasks. The tuning of the scope for the
last sprint was made together with Business in a
preliminary meeting between the managing director, a
sales director, and the development team manager.

Each item from the release backlog generated several
tasks to the sprint backlog (Table 3), meaning that the
sprint backlog contained 20-40 tasks in each sprint. The
person who would be responsible for implementing a task
estimated its effort. Estimation was not done in a very
disciplined manner. The tasks were estimated roughly in
man-scrums required to complete each of them. At the
scrum meetings, the estimates were refined to man-hours,
with an assumption of 12 man-hours available per
developer per scrum

The realized effort and status fields were not typically
updated in the sprint backlog, because the progress was
followed mostly through the scrum meetings and the
resulting scrum logs.

Table 3. The sprint backlog
Attribute Type/scale
Description A few words
Priority Implementation order
Scope (estimated) <1 to 4 scrums (½ week)
Scope (realized) <1 to 4 scrums (½ week)
Product Prod. 1, prod. 2, components
Status Completed, prototype, open, on hold,

deferred

Scrum meetings were held on Mondays and

Wednesdays. Only a few scheduled meetings were
cancelled, although scrums were occasionally rescheduled
due to customer meetings, sickness, leave, or other
reasons. There was no week during which no scrums were
held. In the meeting developers told what they had done
since the last meeting, and what they were going to do in
the next scrum cycle. A developer told the hours he had
spent on each task, the status of the task, and possible
problems. The scrum master wrote the data into the scrum
log (excel sheet per person) immediately and compared
what had been done to the plan the developer had
presented in the previous meeting. Then the developer
told which tasks he is going to spend time on and how
much time in the next scrum. Tasks were related, but not
explicitly linked to those in the sprint backlog. Red flags
were listed to the scrum logs, but not added to the sprint
backlog.

In the end of each sprint a demo and a short
presentation evaluating the success of the sprint were
given by Development. The managing director
participated in these, but there were problems getting the
sales directors to the first three meetings due to
sicknesses, other meetings, etc. This made the developers
feel that Business did not consider these meetings
important. In addition, some developers questioned the
value of the demo, because they had been doing very
technical things, and there were not really many new
features to show. After the third demo, the managing
director emphasized the importance of the demos to the
sales directors, and they participated in the last demo.

3.3. Release and sprint goal achievement

The release goals were reached even though the lowest
priority item of the three selected items from the product
backlog was not finished. Implementing the big, new
feature failed because a third party could not provide
necessary specifications in time. This item was discarded
in the second sprint-planning meeting, and it released
quite a lot of resources to other tasks. However, all the
released resources were needed to fulfill the other tasks,
meaning that the original plans had been too optimistic,

and were achieved only due to this “lucky” decrease in
scope.

After the first two sprints, the sprint themes and the
phases of the release faded to the background. After the
exploration and design phase, the release project remained
in the development phase without reaching the
stabilization phase. This was largely due to the fact that
the planned release was an internal, not a commercial one:
the real stabilization phase is expected in the later release
cycles of the year.

In the first sprint the sprint goal was reached even
though some low priority tasks were discarded. The
second sprint was optimal, no unexpected problems were
faced, the amount of red flags was low, and the goal was
easily reached. The third sprint was quite the opposite,
containing big red flags, and hard technical problems. The
problems were solved but it took so much time that the
goal was not completely reached. Some of the unfinished
tasks had to be postponed to the fourth sprint, meaning
that the original goal for the fourth sprint had to be tuned
to be realistic. The tuned sprint goal was reached, and
luckily the tuning did not compromise the remaining
release goals.

4. Evaluating the process

Generally, all stakeholders have accepted the new
process very easily. There may be several reasons for this.
From Business, the new process had not really required
more effort or change in their way of working. However,
the new process has made it possible for them to do their
work better, because they can get better knowledge about
the current status and future of the product they are
selling, and they know when they can affect the
development plans (sprint meetings, release planning),
and what the consequences of these changes are. From the
developers the new process has of course required more
adaptation, except from the two new hires that never saw
the ad-hoc process. Their positive reactions are probably
due to the improvements that the process has brought
without causing unnecessary bureaucracy. The product
development manager was one of the developers earlier
and knew the situation from their point of view. This
combined with the fact that developers participated in the
process definition work probably helped to avoid the not-
invented-here syndrome. The chemistry within the
development team has been very good, allowing talking
about all issues in the scrum meetings.

The product development manager was very pleased
with the use of the Cycles of Control framework as an aid
in defining the process. He believes that the process
improvement has certainly progressed faster with the aid
of the framework than without it. Strong support from the

managing director has also helped the adoption of the new
process.

4.1. The linkage between Business and
Development

Common understanding of the interfaces of the
development and sales processes improved the
communication between Business and Development.
Business knows the release dates and contents well in
advance, allowing them to prepare for marketing and start
sales at the right time. Business can also clearly see what
is left out of a release if new features are added to it
during the release, or if un-manageable amounts of non-
product-development work are assigned to the developers.
Of course, just knowing the plans does not lead to success.
Changing the plans must be possible and the plans must
be realizable. The short duration of cycles on different
levels allows seeing possible problems early and reacting
to them. All this means that the organization’s risk of
committing to unrealistic development plans has
decreased significantly.

There were, however, some misconceptions about the
types of the releases. For Development it was clear that
only an internal release was under way, but for Business it
was not clear what this meant. Could they start
demonstrating the system or delivering it to pilot
customers? The problem was emphasized when discussing
the tentative plans for the future releases. The solution
was to define the type of release for each
product/releasable component separately in a clear way.
Alpha release means an internal release for the purpose of
demonstrating the system and converging the work. Beta
release can be delivered to reliable pilot customers, but it
has not yet passed a thorough stabilization phase.
Commercial release is adequate for being sold to
customers. Especially knowing the dates of commercial
releases in time is crucial for Business in order for them to
prepare marketing and start sales in a timely manner.

Overall, Business considered they had enough
possibilities to affect the plans, and were able to pick a
reasonable amount of functionality for the releases.
Business followed the development progress through
discussions with the product development manager, sprint
backlogs, and sprint demos. However, it seemed that
Business did not really use the possibility to change the
plans. They did not propose any changes after the sprint
demos, and the number of new ideas sent to the idea pool
was only three, out of which two came from the service
team and one from Business. Actually the service team is
in closer contact with the existing customers, who are able
to propose detailed new improvement ideas to the
product. Business sells the system to new customers who

really do not know the system yet. This may mean that
Business hears only very high-level ideas for the product,
if any.

The clear division of roles and responsibilities
simplified, streamlined, and organized intra-company
communication. The company now has a coherent product
vision for the next year and concrete near-term
development plans. Business understands development
status better, meaning fewer interruptions by Business
between the control points, and thus improved working
conditions for Development.

4.2. Development practices

The experiences from pair programming have been
positive, although the practice of pair programming turned
out to be different from what was anticipated. Pair
programming in the strictest sense was used only for
difficult tasks in order to implement them carefully
avoiding bugs and bad design. However, most code
modules had two persons responsible for them and the
pair bounced the code back and forth in order to edit and
audit it. Even this kind of practice made the programmers
write more understandable code. The stated purposes of
pair programming were achieved: code ownership became
collective, knowledge about the code was spread between
the programmers, and the expertise of the developers was
shared among the team. Pair programming proved to be a
good way to get new developers started. New developers
also considered pair programming more useful than more
experienced ones. Pair programming together with a more
understandable development process made taking on new
developers much easier than previously.

The experiences from unit testing have also been
positive. Unit tests have greatly reduced the debugging
time, improved the design, and lead to smaller
components. The productivity gains outweigh the time
spent developing unit tests.

Getting unit tests to run has been more work than
expected, but once the testing framework is in place, it is
expected to become easier. Of course, all the modules
cannot be unit tested. Automated unit-tests were written
for those modules where it was technically possible
without unreasonable effort. The developers found
automated unit tests useful and felt that the existence of
the tests made them more confident when making changes
to the code. However, the most experienced developer
pointed out that the unit tests do not find any new defects.

The test-first practice was more difficult to adopt and
two of the developers said that they write tests first and
two others said that they write tests first only occasionally.
Developers that were not using the test-first practice

consistently felt it unnatural and laborious even though
they also felt the test-first practice useful.

Developers considered the scrum meeting a very good
practice. It makes you work a little bit harder, helps you
learn to plan and estimate your work better, and is an
efficient way to find out what others are doing. However,
it could be even more efficient if all developers prepared
themselves for the meeting in order to be able to briefly
describe their situation.

Only two red flags were large enough to be added to
the sprint backlog during the release. Approximately two
or three smaller ones a week on the average were assigned
directly to the developers in scrum meetings or during the
scrum cycles.

4.3. Tools

Not much effort was put to create the first “tool” to
facilitate the management of the backlogs and scrum logs.
The idea was to get the process running and get better
tools, as the requirements are understood better. Some
effort was spent in order to find a suitable open source
tool, but no good candidate was found. The initial “tool”
contained a few simple Excel sheets without any
automation. After the experiences from the first release a
better tool is clearly required for managing the backlogs.
The current Excel-based solution is awkward when
moving items from one backlog to another, when updating
estimates, and when making reports. Also, it cannot
preserve history of the contents of the backlogs or
previous work estimates of the items. The problem is not
just the tool, but also a certain level of vagueness in the
management of backlogs, estimates and reporting.
Probably it had not even been possible to specify the real
needs for the tool, before using the process for a few
sprints.

5. Improvement suggestions

After the first release where the new process was
piloted, it is natural that we came up with several
suggestions for improving the process further.

5.1. Product roadmap

A common understanding of future releases is one of
the most crucial pieces of information Business needs.
This information should be presented in an easily
understandable and available form. A solution could be a
single picture, a product roadmap, which presents all
planned releases of all products on a time axis for the next
1-2 years [5]. Different types of releases (alpha, beta,
commercial) should be clearly differentiated.

The contents of the currently developed releases are
specified in detail in the release backlog. For the future
releases tentative content may be specified in the product
backlog. In each release-planning meeting, or before
them, the contents of the future releases may be refined, or
even the product roadmap updated by changing the dates
and types of the planned releases.

The roadmap can also help in high-level resource
planning in a longer perspective. Because the products of
the company require some specialized skills from some
developers, the roadmap may also help arranging their
optimal utilization and help avoiding unrealistic plans.
High loads of non-development work by the developers
should also be noted as limitations in the roadmap. The
roadmap can also help evaluate the need for further
recruitment.

5.2. Continuous product planning

The number of new ideas generated for the product
during the first release was very low. In dynamic markets
the company should continuously observe the
environment and brainstorm new ideas for the product,
even if the development plans for the next couple of
releases are defined. In each release planning the new and
old ideas should be re-prioritized based on changes in the
environment.

Even small improvement ideas should be stored
somewhere, so that they are not forgotten and can be seen
by everyone in the company. Bugzilla could be used also
for this kind of “reports” as an easy solution.

The service team could participate more actively in the
sprint-planning meeting, because they may actually have
the best vision of the improvement needs based on close
customer collaboration.

5.3. Estimation

Estimation needs to be made with different granularity
in different backlogs. In the product backlog there may be
both very detailed feature proposals and very large,
unclearly defined items, e.g., implement a new sub-
product. It is impossible to accurately estimate the effort
of large items, whose content is not specified. Instead it is
possible and probably useful to roughly estimate how
much effort is needed to implement some kind of alpha
prototype.

When large items are considered for the release
backlog they should be refined by splitting them to more
concrete parts and re-estimating the parts. The new
estimates should be available for Business, before they
make final decisions on the content of the release backlog.
Making these estimates more accurate may require doing

small spikes etc. This means that the release-planning
meeting must be split into two parts containing enough
time for making spikes in between.

On all levels the estimates should be done using units
of effort, whose purpose is clearly understood by all
stakeholders. If there are special limitations to the
minimum calendar time required for a task this should be
an additional note to clearly separate the effort estimation
from schedule estimation. Even if the effort needed for an
item is hard to estimate, it should be estimated using a
clear figure. Otherwise, it is hard to track release/iteration
progress and remaining effort, and learn to estimate things
better in the future. In addition, another figure could be
used to express the uncertainty related to the estimate.
Being wrong in the estimates in the beginning is natural
and should be understood by Business. However,
improving estimation skills and lightweight estimation
techniques should be a constant learning process.

5.4. Backlog tools

The initial Excel sheets for managing backlogs were
not satisfactory. Making any summaries of the effort spent
on items on any level should be available automatically
based on the time logs entered into the sheets in the scrum
meetings. It should be possible to easily compare the
original estimates and realizations on all levels in order to
improve the estimation accuracy on a personal level as
well as on the iteration/release level. The ratio of the
development and non-development work should be
available in order to know the amount of development
effort available for future releases. When the data is
entered in a more structured form, a burn-down graph of
the remaining effort can be drawn. All these changes can
be implemented easily using quite simple Excel sheets.

Currently the different backlogs are in several files,
some containing several of the backlogs. The current
backlogs (product, release, sprint, scrum) should be easily
available, e.g., linked to an intranet page. The goals of the
releases and sprints and the phases of the release should
also be collected from the sheets to a more visible form,
e.g., to the intranet page or placed on the walls.

For the second release, the company deployed an
internal NNTP news server with a newsgroup devoted to
the planning game. Its intended use is preliminary
discussion of product ideas, before proceeding to a full-
scale feasibility study or committal to the “formal” idea
pool. It is too early to have concrete results from working
with the newsgroups, but they have been favorably
received and are in daily use. In addition, the
communications model between the different departments
of the company (Business, Service, Development) was
defined, and tools for facilitating it should be researched.

5.5. Reflection meetings

As things change and the team’s experience increases,
it is necessary to tune the process continuously. Reflection
meetings proposed by Cockburn [2] after each iteration
and release, where the process is evaluated and
improvements conceived, might be a good way to do this
constant improvement. Basic metrics for progress, product
quality, estimation accuracy etc. should be analyzed in
order to evaluate the effects of process improvements.

6. Conclusions

The Cycles of Control framework increased the
understanding of the development process throughout the
company and helped understanding the linkage between
the product development and business processes.
Describing the development process using the framework
helped in identifying the crucial control points between
Business and Development and enabled defining practical
and well-functioning connections between them. With the
framework we created and adopted an effective agile
development process in a short time with reasonable
effort.

Overall, the social change needed to adopt the process
and get Business to understand development status better
turned out to be easier to achieve than anticipated. This
means fewer interruptions by Business between the
control points, and thus improved working conditions for
Development. However, it turned out to be difficult and
time-consuming to find and adopt technical tools needed
to facilitate the process.

As expected there are several details in the process that
still require improvement, but also some areas that were
seen very successful from the beginning, such as clearer
communication between Business and Development and
scrum meetings.

References

[1] Beck, K., Extreme Programming Explained, Addison-

Wesley, 2000.

[2] Cockburn, A., Agile Software Development, Addison-

Wesley, 2002, pp. 184-195.

[3] Rautiainen, K., C. Lassenius, and R. Sulonen, "4CC: A

Framework for Managing Software Product Development",
Engineering Management Journal, Vol. 14, No. 2, June
2002.

[4] Schwaber, K. and M. Beedle, Agile Software Development

with Scrum, Prentice Hall, 2002.

[5] Vähäniitty, J., C. Lassenius, and K. Rautiainen, “An
Approach to Product Roadmapping in Small Software
Product Businesses”, 7th European Conference on Software
Quality (ECSQ2002) Conference Notes, Helsinki, Finland,
June 2002, pp. 13-14.

[6] Vähäniitty, J., “Key Decisions in Strategic New Product

Development for Small Software Product Businesses”,
EuroMicro Conference 2003 (forthcoming), Antalya,
Turkey, October 2003.

[7] Williams, L and R. Kessler, Pair Programming Illuminated,

Addison-Wesley, 2002.

