
Copyright 2002 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January
7 – 10, 2002, Big Island, Hawaii.

A Tentative Framework for Managing Software Product Development in Small
Companies

Kristian Rautiainen, Casper Lassenius, Jarno Vähäniitty, Maaret Pyhäjärvi and Jari Vanhanen

Helsinki University of Technology
Software Business and Engineering Institute

POB 9600, FIN-02015 HUT, FINLAND
firstname.lastname@hut.fi

Abstract

Deploying an appropriate software process can
improve the effectiveness of software engineering. Still,
small companies find it hard to allocate resources to
software process improvement and tailor existing process
models for their needs. In this paper we present a
tentative framework for managing software product
development in small companies. The framework
combines business and process management through four
cycles of control: (1) Strategic release management
provides the interface between business management and
product development. (2) Release project management
handles the development of individual product versions.
(3) Iteration management deals with the incremental
development of product functionality within release
projects, and (4) Mini-milestones are used to get an
indication of system status during development.

1. Introduction

It is widely understood that deploying an appropriate
software process can improve the effectiveness and
efficiency of software engineering. However, small
companies find it hard to allocate resources for software
process improvement (SPI) and tailor existing process
models for their needs. Many of the well known software
process models and reference models, such as the
Capability Maturity Model (CMM) developed by the
Software Engineering Institute (SEI) at Carnegie Mellon
University (see e.g. [5]), provide a good basis for SPI, but
they also provide excessive overhead if deployed in full.
Specifically, they do not take the business aspects and the
fact that different process models might be needed in
different situations enough into consideration.
Successfully managing software product development
demands more than having a suitable software process in
place – a more holistic view is needed.

In this paper we present a tentative framework for
managing software product development in small
companies. By small companies we mean companies with
less than 100 employees and less than 50 developers. The
framework is partly based on our previous research on
improving the controllability of product development,
during which we identified the basic components of a
control system for managing product development. To
add to this knowledge and to focus on software product
development we have studied different process models
found in literature. These models provide valuable insight
and alternatives to managing the software engineering
activities of a company. We have also studied the
practices of so-called “agile” processes in order to find
alternatives that focus on small teams and projects. Also,
the framework is based on interviews, discussions and
observations made with the participating companies in
our ongoing research project.

In this paper we focus on providing an overall view of
the framework. The details of the different parts of the
framework are left for subsequent work. First, we present
the components of a control system for managing product
development derived from our previous work. Second, we
shortly present our research project. Third, we present the
tentative framework. Finally, we round up with discussion
and implications for further work.

2. A control system for managing product
development

In our previous research project we studied the
controllability of product development and one of the
findings was a set of basic components for a control
system for managing product development, shown in
Figure 1. Many organizations face problems in managing
their product development operations. The problems can
be summarized into four groups: lack of direction,
competence, motivation, or opportunity.

Copyright 2002 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January
7 – 10, 2002, Big Island, Hawaii.

Portfolio M gmt

Strategy

Competence Mgmt

Project Class 1

Project Mgmt

Process
Mgmt

Multi-Project
Mgmt

Project Class 1

Project Mgmt

Process
Mgmt

Multi-Project
Mgmt

Project Class N

Project Mgmt

Process
Mgmt

Multi-Project
Mgmt

Project Class N

Project Mgmt

Process
Mgmt

Multi-Project
Mgmt

Figure 1. The basic components of a control
system for managing product development

Lack of direction: Getting somewhere demands

understanding where you are (current state) and where
you want to go (goal or target state). Lack of direction can
be caused, e.g., by an unclear business strategy. In a
turbulent business environment the target may be moving
so fast that it is elusive. Lack of direction may also
concern, for instance, process improvement on any
organizational level. Measurement and goal setting plays
an important role in overcoming such a lack of direction.
If you can use measures to indicate the present status of
the process and give target values for the measures for a
preferred status, you have better chances to control your
actions towards reaching the goal state.

Lack of competence: Even if you know where you are
and where you want to go, you might not know how to
get there. This is a problem of lack of competence. For
example, the company may be moving into previously
unknown markets, or the technology used in a product
may be so new that the competence has not yet been
acquired. At that point it is very hard to estimate how long
it takes to reach a sufficient level of competence, which
influences the time to reach the target.

Lack of motivation: In processes performed by
humans, direction and competence are not enough. If
people are not properly motivated to reaching a given
target, any effort may be futile. Even if we know where
we want to go and have the necessary competence to get
there, lack of motivation will slow down or even halt our
progress. Lack of motivation can be caused by many
things, which we will not go deeper into in this paper.
E.g. Wiegers talks about culture builders and killers in his
work [22].

Lack of opportunity: Even if the direction is clear,
people have the necessary competence and are well
motivated, lack of opportunity to achieve a given target
can occur. The target may be unrealistic or there may
simply be too many ongoing projects, too many targets to
try to reach, which causes distraction. This may result
from, e.g., an inability to prioritize work or unrealistic
expectations about the existing resources and the effort
needed. DeMarco and Lister have discussed the subject of
productive projects and teams in their classic work [11].

By thinking in terms of the components in Figure 1,
one should be able to create a control system to better
manage the product development efforts of the company
and improve the ability to control those efforts. A product
development strategy should provide the overall direction
of the organization, project portfolio management should
ensure that the project load is not unreasonable,
competence management should handle the skill building
aspects, and good processes and project management
practices are partly responsible for creating a pleasant
working environment for increased motivation. The next
sections briefly describe each of these components.

Strategy: By strategy we mean the product
development strategy of the company, which should be
derived from the overall corporate strategy. The business
environment of the company must be considered, for
instance the speed of change of technology or the
markets. An important issue is to understand that there are
different types of product development projects that need
to be staffed and managed in different ways. For example,
making a breakthrough product is different from making
derivative products to already existing product lines. If
product maintenance is considered as part of product
development, it is also managed differently. The product
development strategy can be summarized as one or
multiple roadmaps (product, service, marketing, etc.),
where for instance the product roadmap should show the
different types of projects and a rough resource allocation.
This is then used as an input to project portfolio
management and competence management. E.g. Cooper
talks about these issues in [7] and [8]. Also, these issues
have been touched in [18]. For examples of project
classifications, see [19] and [21].

Portfolio management: By portfolio management we
mean the management of the whole set of projects of the
product development organization. The input to portfolio
management is the product roadmap, especially the
project type classification and the rough resource
allocation. To be successful in portfolio management, one
must also know the existing resources and competences in
the organization. Another input is, of course, the feedback
from ongoing projects. The purpose of portfolio
management is to specify in more detail the projects
needed to fulfil the strategic goals of the organization,
thus linking projects to strategy and operationalizing the

Copyright 2002 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January
7 – 10, 2002, Big Island, Hawaii.

product roadmap. An important task is to prioritize
projects and select the order and mix of projects to be
executed. The output of portfolio management is an
aggregate project plan or a project roadmap. The plan has
to be updated at regular intervals to reflect the current
situation. For example, many projects can be interrelated
and if one project is lagging in its schedule, other projects
can be influenced. This may lead to replanning and
reprioritizing the order and mix of projects. For more
reading, see for example [8], [12] or [18].

Competence management: The purpose of competence
management is to keep track of the competences -
existing and needed - in the organization and plan for
training and recruiting to fulfil those needs. Competence
management is tightly connected to the product
development strategy and portfolio management. Also,
competence needs can arise in ongoing projects. One
approach for obtaining a list of professional competences
can be found in [20].

Multi-project management: The purpose of multi-
project management is to balance and allocate resources
between projects at a regular and short-term basis. Having
people work on multiple projects and moving them
around between projects is not easy, though, and can
cause more harm than gain [4]. Multi-project management
is, naturally, closely linked to project portfolio
management, and could even be considered part thereof.

Process management: With process management we
mean here managing the product development process.
The process model works as a map for the development
projects providing the stages, milestones, roles, etc. It
provides a common vocabulary and the “rules of the
game”, i.e., how things are supposed to be done in the
organization. The process model should also be a tool,
providing, e.g., templates and checklists for the projects.
It is important to realize that one process model cannot
accommodate the needs of all different project types.
Therefore some thought has to be put into choosing
appropriate process models. Some examples of issues
affecting the choice of process model are the speed of
change in technology or the markets, the size and length
of the projects, the size and complexity of the product
being developed, and the initial uncertainty of the project,
i.e. how well we know the requirements up front. One
part of process management is collecting data and
feedback from projects for process improvement
purposes.

Project management: Project management is about
executing the individual projects in a systematic way,
using the guidelines provided from the process models.

One of the main lessons from our previous research
project, where we worked with organizations to create a
control system for product development is that in order to
improve controllability you have to look at the whole.
Concentrating only at one part, for instance project

management, you can still end up with too many projects
and the project load will then at some point bring matters
out of control. Another problem we encountered was that
if we did not understand the whole, we could end up with
a procedure that was sound in theory, appreciated in
practice, but failed because of some other practices
already in place.

3. The SEMS research project

In the ongoing SEMS (Software Engineering
Management System) research project we are studying
software engineering in small companies in the software
product business. The project started in the autumn of
2000 and is planned to go on to the end of 2003. Our
main focus is on the software development process and in
finding links between the business model(s) the company
has chosen and the software processes and software
engineering practices needed to support the business
model(s). One of the goals is to find a light but high-
impact way of systematically performing the software
engineering practices that are required in developing
high-quality software products. By light we mean that
introducing process or system thinking into the company
should require as little resources as possible and minimize
disruption. Another goal is to determine which the most
important practices are and package the lessons learned
into a software engineering management system for small
companies in the software product business.

McCormick’s opinion summarizes the ideas brilliantly:
“What’s needed is not a single software methodology, but
a rich toolkit of process patterns and ‘methodology
components’ (deliverables, techniques, process flows, and
so forth) along with guidelines for how to plug them
together to customize a methodology for any given
project.” ([17], p. 110).

We currently cooperate with four companies in a mass-
market type of business, meaning that customer tailoring
is not a significant part of the business. The products are
not shrink-wrapped and in three of the cases some
tailoring has to be made when the product is installed.
One of these companies also has an ASP solution for end
users. Two of the companies are in a fiercely competed,
extremely fast-pace business environment, where being
first really counts. Being in the software product business,
the companies make different types of product releases.
The way of working is iterative and incremental. The
release cycles are short, ranging from one month to a
week, if counting the bug fix releases.

As a first step in the project, we have developed a
tentative framework for managing software development
in such companies, based upon our earlier work in new
product development management. This framework is the
subject of the next chapter.

Copyright 2002 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January
7 – 10, 2002, Big Island, Hawaii.

4. Towards a framework for managing
software product development in small
companies

There are two main issues that have to be addressed in
order to get from the control system presented in Chapter
2 to a framework for managing software product
development in small companies. First, focusing on
software product development, and second, focusing on
small companies. Focusing on software product
development introduces, among other things, the concepts
of software engineering processes and practices. The
small company perspective brings constraints, especially
concerning resources.

Most of the software engineering processes or software
development processes in literature concern building large
and complex systems, and therefore can create excessive
overhead for a small company. The CMM (see [5]), for
instance, provides a way to build organizational capability
for performing software engineering. It even provides you
with a recommended path of improvements to follow. But
the CMM was written to address the process for large,
complex software efforts, something a small company
with 3-10 developers probably would not undertake. In
[3] Brodman and Johnson showed how small businesses
and small organizations viewed the CMM. Especially
some points are interesting to us: the need for the CMM
to be more flexible and scalable in order to accommodate
different types of projects, and that the attitude of the
personnel can be a big contributing factor to not applying
the CMM or any other new process approach for that
matter. The CMM does not dictate which development
process model one should use, it only tells you to use the
one that suits you best and tailor it for different needs. So
there actually is flexibility in the CMM, it only gives
criteria for mature processes, specifically a process must
be: defined, documented, trained, practiced, supported,
maintained, controlled, verified, validated, measured, and
improvable [5]. CMM also recommends that maturity and
effectiveness of processes should be interpreted in the
context of the business environment of the company and
the specific circumstances of the projects. A closer
explanation of this, however, is left to other sources.
Since one of our research goals is to find a link between
the business models companies use and the software
processes that support them, we took the business
perspective as a starting point in moving towards a
framework for managing software product development.
Bays has summarized software release methodologies in
his work [1]. He points out some important issues to
consider in release management. These, combined with
some other issues picked from best practice lists, such as
the Airlie Council’s list (cited from [24]) form a basis for
the tentative framework described in this chapter.

Bringing a software product release management point
of view into the discussion divides our framework into
two levels: long-term or strategic release management and
release management in individual release projects.
Projects are executed in an iterative and incremental
manner for increased flexibility, using mini-milestones to
gain more controllability. Figure 2 depicts these four
cycles of control. In relation to Figure 1, the strategic
release management cycle covers the top three boxes as
well as partly multi-project management, whereas the
other three cycles present one way of implementing the
rest of the general control framework. The radius of a
cycle symbolizes the time perspective taken. The larger
the radius, the longer the time perspective.

The four control cycles, strategic release management,
release project management, iteration management, and
mini-milestones are described in the following sections.

4.1. Strategic release management

The outermost control cycle, strategic release
management is the interface between business
management and product development. The main purpose
of strategic release management is to plan the release
cycles and the content, role and timing of each individual
release project. This means that the overall strategic
ambitions and goals of the company have to be
considered, together with the availability and
competences of the people that do the actual work.
Product line decisions may also be of concern here,
especially when a company grows and diversifies its
product offering. An important task is to elicit, specify
and prioritize requirements from different stakeholders,
for instance marketing, customer services and users.
Requirements engineering also forms the main interface
to the individual release projects.

One of the biggest problems in requirements
engineering is that the customer does not really know
what he wants, or at least cannot express it coherently. In
mass-market products the problem can be that the end
customer is not heard directly, and the requirement
engineers must rely on, e.g., market research data. In fast-
pace markets some requirements change during the
project. Cusumano and Selby report in [9] that at
Microsoft a vision statement and outline specification are
used to give enough structure to the development effort,
but at the same time accommodate change and flexibility
during the development process. The specification will
then evolve during the development project. Also,
features are prioritized so that the most important features
can be implemented first. The development is then done
in several incremental cycles, between which the
requirements can be reprioritized and new requirements
can be added if necessary.

Copyright 2002 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January
7 – 10, 2002, Big Island, Hawaii.

Strategic
Release
Management

Release
Project
Management

Iteration
Management Mini-milestones

Sales &
Marketing

CEO

Professional
Services

Product
Development

Customer
Services

Figure 2. The control cycles of the framework
In eXtreme Programming (XP) software development

is seen as “an evolving dialog between the possible and
the desirable”. A practice called “the Planning Game”
brings together the two players: Development and
Business. Requirements are collected on story cards,
where Business writes the story and Development
estimates how long the story will take to implement. The
stories can be split into more stories if necessary. Then
the stories are sorted and Business chooses the scope and
date of the next release.[2] The point here is that there
should always be an effort estimation attached to the
requirements or features, otherwise you cannot consider
the resource implications to the release projects.

The important thing to remember in requirements
engineering is that the requirements should depict what
the system is supposed to do for the user, not the structure
of the system. The point is to fulfil a business need, which
the requirements should reflect. That way design
decisions and decisions to add or drop features are easier
to make during development.

Figure 2 gives an example of some of the possible
stakeholders or stakeholder representatives that might be
involved in strategic release management. The variety of
stakeholders and their different areas of expertise propose
a challenge: the requirements or the features to match the
requirements that are discussed should be presented in a
way that everyone understands. The Unified Software
Development Process (USDP) suggests use cases for
capturing the requirements and communicating them to
the customer and the designers [14]. This approach is
probably too detailed for this level of discussion. The
vision statement used at Microsoft is a better way to
communicate the purpose of the product. That way the

abstraction level is more suitable for discussing future
releases and products. USDP also suggests business or
domain models to be used, which can add width to the
information on top of the vision statement. In a very small
company a single person most likely acts in multiple roles
and strategic release management is done by as few as 3-4
people. Even when the company grows the group should
be kept fairly small for the meetings to be effective.

4.2. Release project management

The next control cycle, release project management, is
concerned with individual release projects developing the
actual product versions. In a small company there should
not be many concurrent projects, simply because there are
not enough developers. This does not mean that there
would not be many different types of projects in the
company. The same developers can be, e.g., working on
improving the product platform, developing new features
to an existing product, installing the product at the
customer’s site, maintaining the product (fixing defects),
or developing an entirely new product. The implication of
different types of projects is that they should be managed
and controlled differently.

Two main project types are functionality driven and
schedule driven. A new operating system is an example of
a product that requires a functionality-driven project.
Certain functionalities have to be in place for a system to
be able to work as an operating system. This means that
the schedule is allowed to slip so that the development
team can build the required functionality. Microsoft
Office is an example of a product (or product family) that
is developed in schedule-driven projects. The release

Copyright 2002 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January
7 – 10, 2002, Big Island, Hawaii.

deadline is set in advance and the product is released on
schedule. It is impossible to say beforehand what the final
configuration of features in the product is, because the
features are decided upon as the project progresses.
Features are dropped if they cannot be finished in time for
the release. For this to work, the features have to be
prioritized.

What this means in relation to Figure 2 is that the
release project management has to consider the length,
content and number of iteration cycles in a project. The
task is to plan and specify the release project according to
the priorities specified in strategic release management. In
this paper the details of project planning are left out. In
one of the companies we have studied, experience has
shown that a maximum controllable iteration cycle length
for a new product or larger new features to an existing
product is three months. In the beginning the company
tried longer cycles, but it always led to the projects going
out of control. If there is only one iteration cycle, the
process followed resembles the traditional waterfall
model. When a product matures and there is experience
from multiple product generations, the changes to the
product, e.g., adding new features can probably be done
with less effort and in shorter cycles, given that there are
no changes in the personnel developing the product. This
should be a consideration in iteration planning. As a rule
of thumb, the length of a release project should lie
between three and twelve months.

USDP suggest an architecture-first approach in
planning and performing the iterations. The purpose is to
find and develop a baseline architecture that will facilitate
implementing features now and in the future.
MacCormack’s findings support that investments in
architectural design are associated with better performing
projects, with good performance indicated by product
quality as perceived by the user [16]. Another
consideration is perceived risk. The greater the perceived
risk impact, the earlier the feature should be implemented.
This way there is enough time to react to the possibly
realized risk and gain better control of the project.

We have observed that when projects begin, planning
quality assurance is often poorly done. Quality does not
just appear into the product – we have to think about it
right from the start. We have seen organizations that have
left testing “to the last weekend” before the release, and
the consequences have been less than impressive. A
difficult decision in testing is how much and exactly what
to test with limited resources. Prioritizing test cases and
parts of the system is the key. Also, understanding what
“good enough” quality means in each case is important.
The testing process should be planned in parallel with the
development project, so that testing is considered at every
stage.

4.3. Iteration management

In each iteration a set of use cases or features are
identified, specified in detail, designed, implemented and
tested. This way there should be a working product at the
end of each iteration, which can be delivered to users to
get early feedback on further development. At the end of
each iteration strategic release management is revisited to
check the market situation and possible new or changed
requirements, so that the next development cycle can
focus on the relevant features. This approach has been
found good for developing high-quality products in an
environment with high uncertainty and rapidly changing
requirements [16], which is the environment of the
companies we have worked with.

An example of this approach is Microsoft, where large
projects are divided into multiple incremental cycles at
the end of which a shipment of the product is made to
stabilize the product (Figure 3). That way Microsoft can
fall back on the previous shipment if the next cycle fails.
The individual engineers synchronize their work by doing
daily builds, which are also tested daily. The process has
been accordingly named Synchronize-and-Stabilize.[10]

Product vision

Functional specification

Development
subcycle

Development
subcycle

Development
subcycle

Buffer time Buffer time Buffer time

Alpha release Beta release
Feature
complete

Beta release

UI freeze

Code complete
• Final test
• Final debug
• Stabilize

Final release
Figure 3. The Synchronize-and-Stabilize process

(redrawn from [10])
XP approaches incremental development by doing the

development in short iterations, lasting 1-3 weeks.
Highsmith talks about time-boxing projects as a
mechanism for managers to force periodic convergence of
a system [13]. All this implies that a certain amount of
freedom can be given to the developers during the
iteration cycle, as long as the system is stabilized at the
end, thus adding controllability by showing the exact
status of the system at that point in time.

Copyright 2002 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January
7 – 10, 2002, Big Island, Hawaii.

An incremental development process makes regression
testing especially important, as does a daily build practice.
Inspections or peer reviews could be seen as a part of the
testing process, since one main point is trying to detect,
identify and track the defects as early as possible. This
can give an indication of defect levels in the final product
and eliminating defects early is less costly [24]. Tracking
defects is almost as important as finding them in the first
place. Without tracking, the same defect might be “found”
over and over again, and a simple defect count would be
misleading. Tracking should also facilitate learning about
the testing process for improvement purposes.

4.4. Mini-milestones

In order to have a better indication of the status of
development and thus better control the development
effort, mini-milestones are used, for example in the form
of daily builds, as in the case of Microsoft. At Microsoft
the daily build - daily test cycle makes early detection of
defects possible. If something breaks the system, the
defect must have been introduced the same day, which
makes finding the defect easier.

In XP the idea of “test first” is introduced. The idea is
to write a unit test for every production method that could
possibly break. The tests should be written before the
code is written, serving at the same time as a specification
or explanation for the methods and features. The unit tests
are then supposed to be running at 100 % all the time. If
something breaks the system, a test is written that will
detect the defect before it is fixed. Automated testing
gives confidence to refactoring, since the tests should pick
up any defect introduced to the system. Another
interesting practice in XP is pair programming, where two
persons sit at the same computer. One person writes the
code and the other person watches, in principal doing
inspection online. This should result in better quality code
[23].

Source code control or configuration management
becomes crucial when we use practices like Microsoft’s
daily build - daily test. Also, the more often we make
releases, the better we have to be able to manage the
source code. One would think this all seems very
straightforward and clear, but we have observed that in
practice source code control is not properly done, at least
in many small companies. The main reason seems to be
that although everyone uses tools like CVS, the practices
have not been agreed upon, which leads to almost as
many different practices as there are developers. We
noticed one instance of this in a company that was
confident about their source code control. When they
started doing more rigorous defect tracking, they suddenly
noticed that the already fixed defects repeatedly popped
back into the system. This happened because some of the
developers did not check in their code or update to

someone else’s revised code in time. This could have
been avoided if common rules for the source code control
had been established.

To avoid leaving all system testing “to the last
weekend” also requires that a version of the system can be
moved to a testing environment at will. When defects are
found they must be identified with the exact version of the
system that is under test. Especially in the case of
common ownership of code, writing proper change notes
to the source code control system is important. It can save
time in forming an understanding of how the changes
might have influenced other parts of the system.

4.5. Summary and lessons learned

The tentative framework for managing software
product development in small companies combines
business and process management for developing high-
quality software products that fulfil market requirements.
Strategic release management is the interface between
business management and product development taking a
long-term view to release management. This means
processing the available market information and making
decisions about the content, role and timing of each
individual release project.

The products are developed in release projects in an
iterative and incremental fashion. The basic idea of an
iterative and incremental development process is to
deliver early to get user feedback on the system. At the
same time technical feedback on system performance or
other non-functional aspects can be made available. The
feedback is used in planning the subsequent development
cycle(s). Frequent integration of the system, or mini-
milestones, such as daily or weekly builds, is used to get a
better indication of system status during development.
This way project management finds early warning signs
and can take proper controlling actions.

Change management concerns the entire development
effort, starting from requirements and going down to the
test cases and source code. Depending on what details the
changes concern, the practices differ. If requirements
change, they may influence anything from the architecture
of the system to just a part of a module. Other changes,
like code changes, seem to be of less impact and
importance, but they should also be documented in a
commonly agreed way.

One might assume that managing change gets easier
the smaller the development team is. That is partly true,
since the team is very often co-located, which improves
communication between the members of the team. But
there will always be a need to write down the changes,
because leaving the details to memory only is very risky.

The organization should establish commonly agreed
upon rules and guidelines to align the efforts of
individuals and teams. Each rule should have a tolerance

Copyright 2002 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January
7 – 10, 2002, Big Island, Hawaii.

level attached to it, so as to show how strictly it must be
followed and how much freedom each person has in
applying that rule. For example, coding conventions may
be very strict to facilitate easy maintenance of the
software, whereas more freedom can be given on, e.g.,
choosing the code-writing tool.

One of the main lessons we have learned so far is that
establishing a common language is one of the most
valuable and tangible results of applying “process
thinking” in an organization. We thought that in a small
company people communicate and interact with each
other more frequently thus almost automatically creating
a common language, but we were proven wrong. For
example, when we started developing the product
roadmapping process for strategic release management,
we observed that different people were using different
terms for the product parts, even within the product
development team. Creating a conceptual model of the
product that all people could agree upon and understand,
facilitated more meaningful discussions and decision-
making concerning the product and its future releases.
The same has applied to, e.g., quality assurance.

5. Discussion and further work

In this paper we have presented work in progress in
our research project where we are developing a
framework for managing software product development
in small companies. The framework is still tentative, and
some issues that we know are important have been left out
so far. As an example, measurement is not discussed at
all. On that front we have been working for a longer time
on a tool set for the creation, management and use of a
measurement system. We plan to continue and integrate
our earlier work on measurement into this framework.

We also plan on adding more detail to the framework
as we deepen our understanding of the challenges of
managing software product development, as well as find
workable solutions. The details will be prioritized and
most likely sorted in some kind of hierarchy for different
situations and needs.

Alistair Cockburn has developed the Crystal family of
methodologies [6], where he uses three dimensions for
methodology selection: the number of people involved in
the project, the criticality of errors, and where the priority
of the project lies (e.g. productivity, legal liability, etc.).
The more people are involved in a project, the more
formal the communication to coordinate efforts has to be.
If a system is life-critical, verification and validation
practices must be extensive and rigid, and so on.

These are views we are looking to incorporate into our
framework in the future. One early temptation has been to
create a list of best practices from different sources. The
list would then be used as a source to pick practices when
needed. Unfortunately, practices are often interrelated and

picking one may require picking a bunch of others for
consistency. That is why the idea of families of practices
or methodologies for different situations is appealing.

An interesting question for further work is the
scalability of the framework. Cockburn’s ideas of
methodology families are appealing and we want to look
into what it might mean in terms of our framework. This
might also solve the issue of prioritizing and sorting the
details.

Currently we are working on developing and
implementing a product roadmapping process for strategic
release management into two of the companies we work
with. We are also looking closely on testing and defect
tracking.

References

[1] Bays, M.E., Software Release Methodology, Prentice Hall,
Upper Saddle River, 1999.

[2] Beck, K., eXtreme Programming eXplained, Addison-
Wesley, Boston, 2000.

[3] Brodman, J.G. and D.L. Johnson, “What Small
Businesses and Small Organizations Say About the
CMM”, In Proceedings of ICSE-16, 1994.

[4] Brooks, F.P. Jr., The Mythical Man-Month: Essays on
Software Engineering, 20th anniv. ed., Addison-Wesley,
Reading, 1995.

[5] Carnegie Mellon University / Software Engineering
Institute, The Capability Maturity Model: Guidelines for
Improving the Software Process, II. Series, Addison-
Wesley, 1995.

[6] Cockburn, A., “Designing a light methodology”,
Presentation 1998, http://members.aol.com/humansandt/
crystal/tutorial/methodology2.ppt, Cited 17.3.2001.

[7] Cooper, R.G., Winning at New Products, 2nd ed, Addison-
Wesley, Reading, 1993.

[8] Cooper, R.G., S.J. Edgett and E.J. Kleinschmidt, Portfolio
Management for New Products, Addison-Wesley,
Reading, 1998.

[9] Cusumano, M.A. and R.W. Selby, Microsoft Secrets, The
Free Press, New York, 1995.

[10] Cusumano, M.A. and D.B. Yoffie, “Software
Development on Internet Time”, IEEE Computer, Vol.
32, No. 10, 1999, pp. 60-69.

[11] DeMarco, T. and T. Lister, Peopleware: Productive
Projects and Teams, 2nd ed, Dorset House Publishing,
New York, 1999.

Copyright 2002 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January
7 – 10, 2002, Big Island, Hawaii.

[12] Englund, R.L. and R.J. Graham, “From Experience:
Linking Projects to Strategy”, Journal of Product
Innovation Management, Vol. 13, No. 1, 1999, pp. 52-64.

[13] Highsmith, J.A. III, Adaptive Software Development: A
Collaborative Approach to Managing Complex Systems,
Dorset House Publishing, New York, 2000.

[14] Jacobson, I., G. Booch and J. Rumbaugh, The Unified
Software Development Process, Addison-Wesley,
Reading, 1999.

[15] Kerssens-van Drongelen, I.C. and A. Cook, “Design
Principles for the Development of Measurement Systems
for Research and Development Processes”, R&D
Management, Vol. 27, No. 4, 1997, pp. 345-357.

[16] MacCormack, A., R. Verganti and M. Iansiti,
“Developing Products on ‘Internet Time’: The Anatomy
of a Flexible Development Process”, IEEE Engineering
Management Review, Vol. 29, No. 2, 2001, pp. 90-104.

[17] McCormick, M., “Programming Extremism”,
Communications of the ACM, Vol. 44, No. 6, 2001, pp.
109-111.

[18] Rautiainen, K., M. Nissinen and C. Lassenius, “Improving
Multi-Project Management in Two Product Development
Organizations”, In Proceedings of HICSS-33, 2000.

[19] Shenhar, A.J., “From Theory to Practice: Toward a
Typology of Project-Management Styles”, IEEE
Transactions on Engineering Management, Vol. 45, No.
1, 1998, pp. 33-48.

[20] Spenser, L.M., S.M. Spenser, Competence at Work:
Models for Superior Performance, John Wiley & Sons,
New York, 1993.

[21] Wheelwright, S.C. and K.B. Clark, Revolutionizing
Product Development, The Free Press, New York, 1992.

[22] Wiegers, K.E., Creating a Software Engineering Culture,
Dorset House Publishing, New York, 1996.

[23] Williams, L., R.R. Kessler, W. Cunningham and R.
Jeffries, “Strengthening the Case for Pair Programming”,
IEEE Software, Vol. 17, No. 4, 2000, pp. 19-25.

[24] Yourdon, E., Death March: The Complete Software
Developer’s Guide to Surviving “Mission Impossible”
Projects, Prentice Hall, Upper Saddle River, 1999.

