
Copyright 2003 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January
6 – 9, 2003, Big Island, Hawaii.

Increasing Understanding of the Modern Testing Perspective in Software Product
Development Projects

Maaret Pyhäjärvi

Conformiq Software Ltd.
Stella Terra | Lars Sonckin kaari 16,FIN-

02600 Espoo, FINLAND
Maaret.Pyhajarvi@conformiq.com

Kristian Rautiainen and Juha Itkonen
Helsinki University of Technology

Software Business and Engineering Institute
POB 9600, FIN-02015 HUT, FINLAND

firstname.lastname@hut.fi

Abstract

Testing can be difficult to integrate into software
development. Approaches to software testing in relation
to implementing software are based on the V-model of
testing. The software process behind the V-model is the
traditional waterfall model, and as such the traditional
testing approaches cannot take iterative, incremental and
agile approaches to developing software into account
well enough.

In this paper, we describe the use of a general iterative
and incremental framework defined for controlling
product development—4CC—from a modern testing
perspective. The framework provides a common language
in which the implementation details and pacing as well as
testing details and pacing in software product
development projects can be communicated. Viewing
testing through a general iterative and incremental
framework adds to understanding how the testing process
should be defined and improved in relation to the
software development process. Additionally, best
practices for testing are identified.

1. Introduction

The importance of quality assurance (QA) and
software testing is recognized in SME’s as well as in
larger organizations. These activities are an integral part
of the software development and releasing a product to
the market, and should be included in the software
development project from the beginning. However, QA
and testing can be difficult to integrate into the software
development. They are easily left to just occur at the end
of the development project, especially if the resources are
scarce, and the pressure is on time-to-market and all effort
is focused on implementation.

The essential difference in QA and testing, as
understood by testing professionals, is the attitude. When
assuring quality, you are building in quality and assuring

that the required level of quality is achieved. QA goes
more easily hand in hand with development as the
approach in both is constructive. In testing, the mindset
used is destructive as the goal of testing is to find errors.
It has been argued [15] that the attitude towards seeing
defects is essential for success in finding the defects and it
is the core of modern testing approaches. Traditionally,
testing is defined in a narrow sense as “execution of a
program in the intent of finding errors” [15]. The modern
definition of testing, more easily adopted by people
viewing themselves as test professionals, defines testing
as “ the process of planning, preparation and measuring
aimed at establishing the characteristics of an information
system and demonstrating the difference between actual
and required status” [18]. In the wider context testing and
QA activities are converging, QA taking more of a
process improvement perspective and testing being part of
QA. Both QA and testing are seen as activities starting
right from the beginning of the project. In this paper, the
focus is on understanding the testing perspective, since in
practice—especially in small organizations—testing as a
means of finding defects would be the part to start QA
related activities from.

In larger organizations, QA and testing are often
responsibilities that are organizationally separate from the
actual development. Testing is organized as a sub-project
within the development project. In a small company
testing needs to be more integrated to the development
process as there is not a separate testing group due to
limited resources. Testing activities are conducted by the
same people doing all other tasks, with mere change of
role. This is not, however, the same as the developers
testing their own code; some level of independence in
testing is also aimed for in a small company.

If development and testing within development are
separated responsibilities, the project manager would
choose a development model applicable for the situation
at hand. The project manager quite often understands that
testing is important and should be included in the project,

Copyright 2003 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January
6 – 9, 2003, Big Island, Hawaii.

but as the responsibility of testing details is given to a test
or quality manager, the lack of testing detail in software
process models is emphasized. The test manager bases his
testing approach on the V-model as it is the state-of-the-
art in testing. The V-model in its turn is based on the
waterfall model and thus is difficult to use in
communicating both the iterative and incremental nature
of a project as well as the need of rework as defects are
found in an environment where an incremental software
development lifecycle is used.

In the ongoing SEMS (Software Engineering
Management System) research project we are studying
software engineering in small companies in the software
product business. The need to understand and improve the
testing process has become evident in the interviews and
case work conducted with our pilot companies. When
taking the iterative and incremental approach to software
development and the V-model of testing, we noticed
significant difficulties in understanding the details of the
testing perspective in the overall picture without testing-
specific expertise. The problems in the use of the V-
model have been recognized in the testing community as
well [9].

In this article, we discuss the changes needed so that
the modern testing perspective could better be understood
by all roles involved in a software product development
project. We do this using the 4CC framework [20], which
provides a structure through which the roles involved can
more easily communicate.

2. Using the V-model – Why is it Not
Enough?

In software process research, many different software
process models have been suggested. Starting with the
code-and-fix model, adding structure by splitting the
process to sequential tasks to form the waterfall model
[22], noticing the need and cost of change within a
development project, resulting in models such as the
spiral model [4] and different other iterative and
incremental models, e.g. [5;8]. Latest ones in the field are
so called agile process models [3;7;23], basing their
agility on short increments and intense customer
collaboration. Software development models
acknowledge testing as an integral activity, but cannot
give testers much detail on how to structure their work.

Looking specifically at testing in the perspective of a
test manager, testing needs a model that is focused on
driving the testing-specific efforts. In situations where it
is not applicable to have a subproject for testing and a
separate test manager for the subproject, the project
manager needs to consider testing in more detail in
relation to implementation details. The project manager
needs to understand expectations and dependencies

between implementation and testing to successfully
control the whole project.

In the field of software testing, the V-model is the
state-of-the-art taught on practically every course on
testing. The V-model—presented in Figure 1—splits the
testing process onto levels on which testing is carried out
incrementally in conjunction with system implementation.
The V-model starts from the smallest pieces possible for
testing and moves on to larger pieces, reflecting the
different viewpoints of testing in different levels of detail.

Notice that the flow of abstraction in testing is reverse
to the flow in implementation where the custom is to start
from high abstractions and move towards more and more
concrete details. The reason for starting the testing from
individual modules (and not, for instance, from user
requirements) is the organization of labor. It is much
easier to find and fix defects in small units than in large
entities, and the testing of large entities can be carried out
more systematically i f it is known that their sub-units
have already been tested. Planning testing should,
however, flow in the same order as implementation. The
V-model implicitly shows how the testing phase can—
and should—be taken into account much before there is
some source code to actually be tested.

Requirements

Specification

Design

Coding

Acceptance

System

Integration

Unit

Specifications -> Planning -> Testing

B
U

IL
D T

E
S

T

Figure 1 V-model of Testing

The V-model is an extension of the simple waterfall
model, where each process phase concerned with
implementation has an associated verification and
validation phase called test level. From a testing point of
view, testing on each level should be planned and
controlled to avoid overlapping. Traditionally the
individual test plans for the test levels are seen as the
links between these activities, coordinated with a master
test plan.

The V-model is intuitive and easy to explain, even to
people who have never heard of a software development
process model. This may be the case when persons with
specific domain expertise in the use of the system are
needed in testing. The V-model essentially brings forth

Copyright 2003 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January
6 – 9, 2003, Big Island, Hawaii.

two important points: testing a smaller part before putting
it into a larger system is a good approach and testing
efforts can start with planning as soon as the higher level
requirements have been identified. The V-model provides
a common terminology for testing in the form of test
levels.

The V-model as a basis for testing actitivities has been
strongly criticized in [14]. The V-model, just as any
testing model created as an extension to software
development models, ignores the fact that software is
developed in a series of handoffs, where each handoff
changes the behavior of the previous handoff. The models
tend to rely on the existence, accuracy, completeness, and
timeliness of development documentation. They assert
that a test is designed from a single document, without
being modified by later or earlier documents, or assert
that tests derived from a single document are all executed
together. For example, finishing all module testing prior
to moving to integration testing may be implied in the V-
model steps, but that is not a good approach.

The V-model as such looks like a tidy process, but
communicates change poorly. This is due to the built-in
waterfall model assumption. A less experienced test
manager may assume that the implementation-related
documentation to base testing on is more finalized than it
is in practice at time of starting test planning. It may be
insufficiently communicated which parts, e.g.
requirements, are more finalized than others. This leads to
focusing the already scarce testing resources based on
outdated information to unproductive work. If
implementation documentation has not matured prior to
defining test cases to base test execution on, it may not be
a good approach to write detailed test cases. Due to
changes later on during the project, the test cases could
need considerable rework. It has been suggested that the
V-model’s early test planning approach would help
programmers to avoid defects by using detailed test cases
testers have written based on first versions of
documentation [9]. However, reviews and inspections are
likely to be more efficient in order to help correct defects
early than relying on pre-writing tests that will never be
run [9]. Furthermore, testing is supposed to find defects,
and finding a defect may put one back to the requirements
definition phase. Defects also need to be verified and
corrected, and the software tested for regression, still not
re-executing all test cases, which might take too long a
time.

Testing activities in the V-model take a document-
driven approach not always feasible in practice. For small,
co-located teams with little change in team composition
the need for documentation is smaller than for large and
distributed teams or teams with high staff turnaround. In
all cases, the documentation produced should serve an
actual need and the need should show in keeping the
documentation up-to-date. Especially in agile software

process model context, the detailed implementation
documentation plays a smaller role but testing still has its
place and can take place with the lesser amount of
documents.

The V-model tends to emphasize verification (are we
building the product right?). However—especially for
product business—emphasis on validation (are we
building the right product?) in testing has grown [9;24]
and testing needs to assess both perspectives.

A manager experienced in organizing testing does not
organize testing efforts the way that the V-model may
suggest if interpreted strictly. However, it has been our
experience that the expertise to avoid the pitfalls may take
time to form. Using the V-model as a basis for defining a
testing process may create an inflexible process to a place
where agile or incremental approaches would be more
appropriate. Testing literature and courses mostly rely on
the V-model and even imply that the waterfall method
would be the most current lifecycle model [12]. However,
incremental development is an increasingly popular mode
of development [13] and needs to be addressed also in a
testing context [6;21]. Basing testing on the expectations
set by the V-model in such a context is difficult. Still, the
V-model forms the essential basis for any testing
activities taking place. Therefore the test manager needs
experience on different process models and their
implications to testing in order to be able to apply the V-
model wisely, usually skipping all details except emphasis
on early test planning and the need of test levels. The V-
model as development model fits situations in which
changes must be managed, for example perhaps with
situations in which a fixed cost project is undertaken and
any change requests from the customer will carry a price
tag.

Understanding how tests should be grown and how
constant regression testing is organized between builds is
a challenge in practice. Communicating all this requires a
more dynamic approach.

3. Using the 4CC from a Testing Perspective

In efforts to understand software product development
and how to control it, a framework for managing software
product development was introduced, called 4CC (Four
Cycles of Control) [20]. With the limitations in the V-
model as described above, we suggest that the modern
testing perspective can better be communicated through
the 4CC framework, which emphasizes pacing that sets
the basis for all testing activities, and provides a structure
through which the roles involved can more easily
communicate. The test levels are continuous flows of
activities that need to be structured through setting up a
rhythm.

In ongoing research, we are focusing on small software
product companies, and working on understanding the

Copyright 2003 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January
6 – 9, 2003, Big Island, Hawaii.

connections of the company’s business model (for more
information on business models see [19]) to its software
product development process. In that context 4CC has
been introduced and it is continuously developed in co-
operation with Finnish software companies to better
understand its operational aspects. 4CC is a high-level
iterative and incremental framework, and as such can be
applied in many contexts, but our efforts to bring detail to
it have been focused on the small product company
perspective. The key idea in our research is that different
software companies produce different kinds of products
for different customer groups, and the approach for
creating software should fit the company's business
model, and take into account the influences of product
perspective and team size. By understanding the
possibilities and constraints set on the product
development process by the business model, software
process improvement can be focused on the essentials
from the business perspective and thus improve product
quality and profitability.

Testing is one perspective emphasized in our research
of small product businesses, as it is viewed as an
important area with many challenges in practice by both
the researchers and the pilot companies involved in the
research. Bringing together development and testing
perspectives in product development in a small company
context poses challenges, as the traditional approaches of
separate test groups presented in testing literature are not
applicable as such. We need more thorough understanding
of the reasons why the suggestions have been given in
order to scope them to a small company context.

We view testing in the broader perspective of
maximizing customer satisfaction and providing feedback
for process refinement, in addition to just detecting and
getting defects corrected in the software. The testing
process needs to be examined together with the overall
project and product management processes of the firm.
Testing activities include planning, management,
implementation and support needed from a tester’s
perspective. Information flow and pacing are important
for testing activities. Testing by executing a program
needs the program to be implemented to some extent. Test
case design relies on having information on the features to
be implemented.

Strategic
Release
Management

Release
Project
Management

Increment
Mgmt

Mini-milestones

Figure 2 The 4CC Framework

As discussed above in section 2, the details of testing
provided in software process models do not help testers to
understand their role in relation to the process. A tester’s
role is to find and report defects and verify that the
reported defects have been resolved, either by a
programmer fixing them or by management deciding that
they will not be fixed for some reason. The 4CC
framework helps in understanding testing in relation to
other software development activities. It sets four
timeframes on which one needs to address certain issues
in development. The timeframes—depicted as cycles—
are presented in Figure 2. The leftmost cycle, named
Strategic Release Management, deals with the release
project portfolio and is the interface between business
management and product development deciding on all
ongoing major activities requiring attention from product
development. Release Project Management deals with
issues on the level of individual projects aiming for a
product release. Increment Management deals with
managing individual increments producing a part of a
release project’s deliverables. Mini-milestones deal with
structuring and pacing the daily work for different roles
participating in the product realization process. Different
cycles provide different levels of abstraction to facilitate
control and flexibility.

The 4CC model adds an important perspective for
testing compared to the V-model. The V-model focuses
on a single project and as such, naturally leaves out
essential co-operation between projects. Projects
following each other in time could, especially in product
business, benefit a lot from the results and lessons learned
from previous projects. Projects ongoing simultaneously
could be managed together for more efficient use of
testing resources. It is important to see testing related
activities in projects as a portfolio from which all ongoing
projects can benefit from through reuse and experiences.

In the testing community, a so called multiple V-model
has been applied by consultants in an iterative and
incremental context, showing that for testing the number
of deliverables to base testing on increases. Using the
multiple V-model one draws a V for each iteration and
shows time as the horizontal axis. The added detail
depicts writing the documents that testing is based on in
smaller pieces, but resulting in a presentation that is
difficult to communicate and understand and shares the
limitations of the V-model.

On the project level, the test lifecycle depicted by a test
level is too simplistic to provide support for actual work
that is based on small handoffs. The test levels in the V-
model depicts in iterative and incremental context a
testing effort that start in the beginning of the project with
planning and proceed to execution as soon as a part has
been implemented. The need for managing all testing
levels separately depends on the process used. In extreme
programming, two testing levels are applied: unit testing

Copyright 2003 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January
6 – 9, 2003, Big Island, Hawaii.

and acceptance testing, with the first combining goals of
the two lower levels and latter combining goals of the two
higher levels. In systems with challenging integration the
integration level may be managed separately.

Figure 3 describes how testing work is split in iterative
and incremental development to various testing levels.
The figure depicts relationships between modules A-E
and how these are collected together for higher testing
levels. Test execution starts as soon as the first modules
are implemented. New handoffs which correspond to
mini-milestone cycles of the 4CC model trigger new
testing activities. Modules A and B are unit tested prior to
integrating them together. In integration testing, the focus
is on verifying that the added module works together with
the current version of the whole system. In system testing,
the whole system is verified to planned extent, with focus
on the whole system, not just the latest addition.

There are few points that need to be stressed in Figure
3. Implementation and testing of modules D and E are
depicted to be separate but partly overlapping. In
integration testing, these are presented to be integrated to
the latest available baseline that was completed at the
time of starting the module. In system testing, the
modules D and E are not brought to the system separately,
but as a group. A typical situation would be that the two
modules are created by separate developers individually.
Acceptance testing level is typically the final level of
tests, but it essentially is also an ongoing activity. The
different levels need to be managed as a whole to avoid
unnecessary rework—each level focuses on testing
different aspects as described with the V-model.
Typically, the different levels in testing would apply
different test environments. Rework due to regression
testing takes place on the test levels. Change in the tested
modules results in need of retesting through the whole
pipe effectively.

The test levels just as the V-model defining the levels
have their roots in the project business. In project business
the acceptance test level is emphasized as it is the
customer’s perspective in verifying that the software
developed fulfills the customer’s needs. The essence of
acceptance testing is that it is the final testing prior to
accepting the software and it should be characterized by
relatively small number of defects. The focus on
acceptance test level is on fulfilling the customer needs
and found defects should be related to that. Essentially at
the end of acceptance test, the test is the final check
before moving the system into production. In product
business the role of acceptance test level is two-fold. First
of all, it stresses the user perspective, both usability and
applicability, throughout the development. Secondly, it is
the final checks that are made for releases.

A B C D

A

B

A

B

C

A

B

C

D

A

B

A

B

C

Time

A

B

C

D

ACCEPTANCE TESTING

SYSTEM TESTING

INTEGRATION TESTING

UNIT TESTING

A

B

A

B

C

A

B

C

D

E

A

B

C

E

E

E

Figure 3 Test Levels in Iterative and Incremental
Development

Understanding the modern testing perspective of test
levels depicted in Figure 3 results in noting that the
system to be tested grows all the time. Very soon in the
development, it becomes impossible to re-execute all
defined tests on one build, but the tests need to be split on
various builds over time. As the pile in the figure grows,
managing the testing effort focuses on creation of test
suites—collections of test cases—and prioritizing them,
as controlling individual tests would result in detail that
may distract the overall view on control.

Testing is essentially about feedback to
implementation. Testing needs to be managed based on
small handoffs, building a larger whole. Testing should be
reactive to handoffs. Thus many testing details are best
communicated on the mini-milestone level as the daily
reaction options. These reactions need to be synchronized
to the organization’s pacing as well as the developers’
pacing. Managing testing in a project needs to build the
proper relationship between control and flexibity. How
this rhythm has been included in the Microsoft’s synch-
and-stabilize model is discussed in the following section
by describing synch-and-stabilize in 4CC.

4. Modern Testing Best-Practices and Synch-
and-Stabilize Testing

Understanding the pacing of development is essential
for successful testing. To better understand the modern
testing perspective and its implications in managing
testing in projects, we have identified the best practices in

Copyright 2003 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January
6 – 9, 2003, Big Island, Hawaii.

modern testing to characterize how testing could be
included in the product development lifecycle within the
4CC framework. As a tangible example of the ability to
add testing detail in 4CC we have dissected Microsoft’s
testing approach in the Synch-and-Stabilize process as
defined in [5]. A growing trend in the field of testing is a
so-called context-driven school of testing, asserting that
there are only good practices in context, but no best
practices [9]. However, the practices presented here are
starting points to tailor the approach for test management
in a specific context instead of directly applying
assertations in the V-model.

The modern testing perspective can be characterized
by its best practices. We have identified five main best
practice areas, each with several details, from recent
testing literature [10] and mirrored these to the
operational test management approaches in case
companies[9;11;12;16-18]. The best practices selected are
based on the case work conducted at pilot companies.
They represent common ways of integrating testing into a
software project. Basing testing on product and business
risk is a main driver behind test efforts. Testing should be
based on product and business risks, as exhaustive testing
is not feasible as the number of combinations to verify in
a non-trivial program is very high. Testing needs to take
into account the changing risks as technology and market
matures, and needs agility planned in the testing process
so that adjusting is possible. The most important risks for
the product from the user’s perspective should be
addressed first. This should be visible both in prioritizing
test cases and executing them so that high-priority tests
will be run first, as well as in prioritizing different
hardware and software platform combinations testing will
be conducted on, as all combinations are not possible to
test.

Destructive attitude drives the testing effort as the
main goal of testing is to find defects as early as possible
to facilitate timely release with aimed quality level. In
order to include the destructive attitude, there is a need for
independence in testing, as one tends to be unable to see
one’s own mistakes. As defects are fixed, new rounds of
previously executed tests need to be executed to find
defects that have been caused by defect fixes, which
happens easily as the complexity of the code makes it
difficult to anticipate all dependencies.

Early involvement of all test levels is important. Each
developed feature needs to be tested on all levels from
unit to acceptance and the different levels exist
concurrently and continuously throughout the project.
Reviews and inspections are a part of testing as they help
in noticing the defects early. Testing needs to have an
emphasis on validation in addition to verification as
creation of defect-free software that no one will use is not
worth the effort—the software needs to be validated that
the features it provides are the ones that the users are

willing to use. Testing does not necessarily need to be
document-driven, the need for documents as a basis for
testing depends on the context.

Pacing test activities is important in order to be able to
understand and control testing activities on very short
cycles. Testing activities are highly dependent on other
project activities and thus the need for agility is high.
Testing efforts need to be split over time and on different
builds, as execution of all test cases on a certain build is
not applicable [2]. The number of test cases is likely to be
large and all test cases take significant time to execute.
Found defects need to be fixed concurrently with test
execution proceeding and corrections released to re-
testing. The risk of many corrections integrated into a
build after having waited for test round on a previous
build to finish increases the risk of noticing side effects of
defect corrections late. The test environment should exist
separately from the developers environment and should
change only in the agreed pace. Daily rhythm through
knowing the rules of the game as dependencies and
deadlines facilitates efficient testing.

Traceability and maintainability includes ways of
connecting testing to requirements as well as
considerations on the ability to maintain and grow the
tests. Test cases should be grouped into test suites of
different priorities, different functionalities and different
uses (e.g. smoke test, regression test) to facilitate control.
A traceability matrix between the test cases and
requirements should be kept up-to-date in order to know
if tests need to be updated, as well as what tests need to be
updated, to the changing requirements. A light-weight
approach to defining test cases is needed. Test case
definition should focus on requirements that have matured
to the level that they will actually be implemented. The
number of test cases needs to be minimized and focus of
tests addressed. Quality of testing determines the quality
of evaluation on product quality and needs to be assessed
continuously. Test reporting should be done on a regular
basis but carry only the necessary overhead. The number
of test environments is increasing. Testing important user
environments is spread over the course of the project and
should be focused on selected environments based on
environment risk-based priorities. It is important to be
able to connect the testing performed, the time the testing
was performed and the environments testing was
performed on, if e.g. the customer base changes and thus
the priorities of environment change.

Looking at Synch-and-Stabilize as defined and detailed
in [5], an emphasis on testing in the product development
process is evident. Redefinition of Microsoft’s
development process resulting in definition of synch-and-
stabilize started with a “zero-defects memo” , pointing out
the costs of defects to Microsoft’s customers. In synch-
and-stabilize, testing exists as a separate function with
dedicated testers, integrated into the everyday product

Copyright 2003 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January
6 – 9, 2003, Big Island, Hawaii.

implementation, paced by daily builds. The aim is to find
defects as early as possible.

The goal of early test involvement included in the V-
model is realized well as testing is integrated to software
implementation from the beginning and participates as its
own function in planning and scheduling the work.
Different levels of testing are also applied, all taking place
concurrently and continuously, feature by feature. Unit
testing is not formalized and is seen as the testing
conducted by the programmer. However, developer
testing responsibilities include testing their own features
running automated tests created by the testers frequently,
usually on a daily basis. Programmers are paired with so
called “buddy testers” , and these testers do integration
testing with the help of the programmer on the feature on
a private release before the feature is released to system
testing. Buddy testers form a testing organization for the
project, coordinated by test leads and test managers that
are responsible for system testing iteratively and
incrementally. System testing examines the product from
six perspectives, namely user perspective, international
perspective, hardware compatibility, software
compatibility, specification compliance and product
stability. Acceptance testing at Microsoft includes
usability testing to verify each feature, and beta releases
that are employed to better understand dependencies of
different customer hardware and software platforms and
defects manifesting only in some of these platform
combinations. Testing on different levels is not document-
driven as the V-model might suggest. The product is
outlined in a product vision, its features are written down
in a functional specification as the project goes on and
technical details are documented in the code using
comments and a common style of coding.

Development

Stabilization

Planning

D
ev

el
op

m
e

nt

Release Project
Management

Increment
Management Mini-milestones

Buff
er

Stabilization

Strategic Release
Management

Figure 4 The 4CC Framework with Synch-and-
stabilize Details

All test levels are concurrent and continuous activities,
and can be better understood by looking at the project on
several levels through the 4CC framework presented in
Figure 4. On the Strategic Release Management cycle,
Microsoft has twice a year highest level scheduling of
rolling out new products and setting their budget. Once a
year Microsoft updates its three-year product plans and
their interdependencies. They use monthly project status

reports to highest level management and related projects.
Program reviews are conducted quarterly for each project.

The Release Project Management cycle is structured to
three themes or phases. The project begins with planning,
is continued by 3-4 development subcycles and finished
with a stabilization phase. On the Increment Management
cycle each of the project phases have different kinds of
tasks. Planning focuses on setting a project vision, a
skeletal functional specification that sets areas and
subareas for features and thus facilitate early
identification of test suites, and a master schedule,
including testing activities estimated by people
conducting the actual work later on. Next 3-4 increments
each build and test a selected prioritized set of
functionalities of the product. The final increment’s theme
is stabilization, which includes testing the product as a
whole, and finding and fixing defects. The stabilization
phase goes hand in hand with beta testing, if one is
employed. Increments at Microsoft employ so called
buffer time for unexpected delays. The Increment
Management cycle is also structured to three phases. The
development phase is concerned with the teams
developing the deliverables for the increment. At the end,
the increment is stabilized to required quality and buffer
time is reserved as a contingency for unanticipated
problems.

On a mini-milestone level, a tester chooses his task
based on the dependent activities in implementation.
When preparing for new testing, testers do general
reviews on previous project’s postmortem reports and
reports from other testing groups, talk with product
support personnel and customers, review media
evaluations, devise special tools or code routines to help
them test, study competitor products for new features,
develop testing strategy by identifying high-risk areas,
and review each other’s plans and scripts for
completeness. Developers find more of their own defects
than testers do, and only developers can prevent errors
from happening in the first place. Code that is assumed
difficult and code that is produced by new people is
reviewed by senior developers. If new functionality has
been coded and is to be integrated to the public release,
the tester focuses on testing the private release of the
“buddy developer” . After code has been integrated in the
public release, testers execute tests and track defects
found in the test release and characterize them by feature
area and severity. If coding is ongoing, the tester may
focus on defining tests for the functionality as well as
automating tests. Online user documentation is tested just
as the program itself. If the coding activity is defect-
fixing, the tester focuses on verifying fixes as they
become available in daily builds. On a weekly basis, a
subset of tests is executed on a debug build with
testability features helping defect location. System tests
go on continuously on daily builds. Pacing of testers

Copyright 2003 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January
6 – 9, 2003, Big Island, Hawaii.

activities is dependent on the programmer’s activities. On
the other hand, rules apply to the other direction as well.
For some products, a rule on having 10 critical open bugs
means interrupting development of new features until the
critical bugs have been resolved to a level below the
agreed limit.

The number of testers Microsoft uses is significantly
more than what is traditionally the tester-developer ratio.
Especially it is more than what is possible in the small
company context. At Microsoft, this has been a
compromise in being able to change direction based on
market inputs as needed. The number of testers could be
reduced if more upfront planning was introduced—more
time on architectural planning and detailed design work—
or if developers would be made to review their own code
more. Reducing the number of testers would reduce the
amount of flexibility in evolving features or components
incrementally. Testers are deemed relatively inexpensive
compared to the cost of recalling and replacing products
because of major defects.

5. Managerial Implications

A classic problem in testing is the difficulty of
communicating with the project manager when you are
taking the role of a test manager [1]. Expectations differ
in used process model, produced documentation and
readiness level of the documentation at a point in time.
This is, at least to some extent, due to the different models
applied by the two perspectives. Another reason
suggested has been the project manager’s lack of
knowledge in testing details [10].

In this paper, we have described the use of a general
iterative and incremental framework defined for
controlling product development—4CC—from a modern
testing perspective. The framework provides a common
language in which the implementation details and pacing
as well as the testing details and pacing can be presented.
Based on our experience with our pilot companies,
viewing both implementation and testing activities in the
4CC framework helps in understanding dependencies
between activities and the scope of time the activity is
related to.

Our research focus is small companies and within that
context, we have identified best practices for testing. The
best practices are summarized in Table 1. The best
practices have been selected from testing literature based
on our case experience on what kind of approaches are
possible in the small product company context. However,
the same best practices can be seen in Microsoft’s Synch-
and-Stabilize development model and its testing details.
Essential in synch-and-stabilize is the pacing set for
development, facilitating communication and co-
operation between implementation and testing.
Microsoft’s approach employs a 1:1 tester-developer

ratio, which is not feasible for a small company.
However, the software a small company is developing is
probably not the size of Microsoft’s products either and
the size and complexity are issues to consider for different
instantiations of the best practices.

Table 1 Modern Testing Best Practices

Best Practice Area Details
Basing testing on
product and business
risk

Gaining understanding of
changing product and business
risks
Prioritizing test cases
Prioritizing test environments
Testing in order of priority

Destructive attitude Goal of finding defects
Need of independence

Early involvement
of all test levels

Reviews and inspections as a
means of finding defects early
Emphasis of both verification and
validation
All test levels take place
concurrently and continuously
Need of document-driven testing
needs to be assessed

Pacing test activities Dependence on other activities
Rework due to defect corrections
Splitting test cases to builds over
time
Identifying daily tester tasks
Controlled test environment with
releases to testing

Traceability and
maintainability

Grouping tests into test suites
Use of a traceability matrix
Light-weight just-in-time
approach to writing test cases
Test reporting on defined internal
releases
Scheduling test suites to different
environments

The framework described has been created keeping the

product development context in mind. However, the three
lower cycles describe pacing of a project and could be
applied in understanding pacing of projects in project
business as well. Lately, the 4CC model has been applied
to structure testing in companies other than small as well
as other than those in product business. The 4CC
framework helps in structuring the complex testing effort
on several levels of abstraction, reminding of the
connection between these levels. It sets a common
vocabulary in the pacing of the development efforts and
helps in communicating different kinds of handoffs and
their rhythm. Especially in definition and communication
of a test strategy 4CC has been effective. Understanding

Copyright 2003 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January
6 – 9, 2003, Big Island, Hawaii.

the forms in which the test strategy presents itself on
different levels has helped in defining it.

4CC is a framework for controlling work. It helps in
describing logistics in a project for testing as well as other
development-related work. The Test Management
Approach (TMap) model [18] describes testing in four
dimensions: lifecycle, organization, techniques and
infrastructure. It has a weakness in its lifecycle as the
lifecycle assumes waterfall-like approach. Our
experiences point out that the added detail in the pacing in
4CC that is critical for success enables communicating the
modern testing perspective better. The other cornerstones,
namely organization, techniques and infrastructure,
include important testing specific details that are placed
on the lifecycle.

Pacing testing in relation to implementation is
important. Even though it may seem that there is a lot of
change to manage, a word of warning on an approach we
have seen in practice. In some cases there has been a daily
build cycle but testers use biweekly builds to be able to
execute all tests on one build. However, the
implementation proceeds meanwhile and even though the
full round of tests have been executed, the latest build has
changed significantly and would need to be tested for
regression. This is one manifestation of interpreting the
V-model’s levels strictly.

The V-model supports individual projects. With 4CC
we depict that it is important to also manage a portfolio of
projects. The software product lifecycle outlasts
boundaries of projects and when planning for testing, it is
important to consider if there would be synergies between
the separate testing activities in projects.

6. Discussion and Further Research

We have presented the use of a framework for
managing software product development in small
companies to increase understanding of the modern
testing perspective in software product development
projects. The framework and its details are still tentative
and our ongoing research both adds detail to it and
collects empirical data in using the described details in
piloting companies. Test process definition and
improvement research work continues and the best
practices identified are further tested in companies. To
better support testing, 4CC needs to be instantiated to
detail in our case companies. The goals of the testing
model needed include [14]:
- Force a testing reaction to every code handoff in the

project.
- Require the test planner to take explicit, accountable

action in response to dropped handoffs, new
handoffs, and changes to the contents of handoffs.

- Explicitly encourage the use of sources of
information other than project documentation during
test design.

- Allow the test effort to be degraded by poor or late
project documentation, but prevent it from being
blocked entirely.

- Allow individual tests to be designed using
information combined from various sources.

- Allow tests to be redesigned as new sources of
information appear.

- Include feedback loops so that test design takes into
account what’s learned by running tests.

- Allow testers to consider the possible savings of
deferring test execution.

- Allow tests of a component to be executed before
the component is fully assembled

These are also important things for managers to
consider when tailoring the best practices in Table 1 to a
project-specific or company-specific instantiation.

Test improvement models such as TPI (Test Process
Improvement) are attempting to phase test improvement.
These models have their roots in CMM and base their
testing approach in the V-model, which we argue is not
sufficient. Viewing testing through a general iterative and
incremental framework adds to understanding how the
testing process should be defined and improved in relation
to the software process. We are basing the test process on
iterative and incremental as well as agile software
development processes but also the waterfall model
would be applicable as a special case of a project with
only one increment. We have conducted a benchmark of
15 Finnish software development organizations’ testing
with the TPI model and within this benchmark, reflected
the results to the 4CC. The results of this benchmarking
are currently under processing.

To help with business-focused process improvement
and practice selection, we are working on evaluating
software development processes from the perspective of
business fit and a business-dependent path for software
process improvement from the basics. We are also
collecting a set of tools to support the instantiation of the
framework in companies.

The details in 4CC are focused on small product
companies. However, the overall idea of pacing within
any project (3 lower cycles) applies just as well. The
applicability has been tried in practice at Conformiq
Software Ltd.

References

[1] Bach, J., "James Bach on Explaining Testing to Them.
Helping Non-testers Understand and Support Your Work,"
Software Testing & QUality Engineering, vol. 3, no. 6,
2001.

Copyright 2003 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January
6 – 9, 2003, Big Island, Hawaii.

[2] Bays, M., Software Release Methodology, Prentice-Hall
PTR, 1999.

[3] Beck, K., Extreme Programming Explained, Addison-
Wesley, 2000.

[4] Boehm, B., "A Spiral Model of Software Development and
Enhancement," IEEE Computer, vol. 21, no. 5, 1988, pp.
61-72.

[5] Cusumano, M. A. and Selby, R. W., Microsoft Secrets:
How the World's Most Powerful Software Company
Creates Technology, Shapes Markets, and Manages
People, Simon & Schuster Inc, 1998.

[6] Cusumano, M. A. and Yoffie, D. B., "Software
Development on Internet Time," IEEE Computer, vol. 32,
no. 10, 1999, pp. 60-69.

[7] Highsmith, I. J., Adaptive Software Development: A
Collaborative Approach to Managing Complex Systems,
Dorset House Publishing, 2000.

[8] Jacobson, I., Booch, G., and Rumbaugh, J., The Unified
Software Development Process, Addison Wesley Longman,
Inc., 1999.

[9] Kaner, C., Bach, J., and Pettichord, B., Lesson Learned in
Software Testing - A Context-driven Approach, Wiley
Computer Publishing, 2002.

[10] Kaner, C., Falk, J., and Nguyen, H. Q., Testing Computer
Software, 2 ed., John Wiley & Sons Inc., 1999.

[11] Kit, E., Software Testing in the Real World, Addison-
Wesley, 1995.

[12] Koomen, T. and Pol, M., Test Process Improvement: A
Practical Step-by-step Guide to Structured Testing, ACM
Press, 1999.

[13] Marco, I. and MacCormack, A., "Developing Products on
Internet Time," Harvard Business Review, vol. 75, no. 5,
1997.

[14] Marick, Brian, "New Models for Test Development,"
Proceedings of Quality Week 1999, 1999)

[15] Myers, G., The Art of Software Testing, John Wiley &
Sons, New York, 1979.

[16] Patton.R., Software Testing, Sams Publishing, 2001.

[17] Perry, W., Effective Methods for Software Testing, Wiley,
1995.

[18] Pol, M., Teunissen, R., and van Veenendaal, E., Software
Testing - A guide to the TMAP Approach, Addison-Wesley,
2002.

[19] Rajala, R., Rossi, M., Tuunainen, V., and Korri, S.,
Software Business Models: A Framework for Analysing
Software Industry, Tekes, Technology Review 108/2001,
2001.

[20] Rautiainen, K., Lassenius, C., and Sulonen, R., "4CC: A
Framework for Managing Software Product Development,"
Engineering Management Journal, vol. 14, no. 2, 2002, pp.
27-32.

[21] Redmill, F., Software projects: Evolutionary Vs. Big-Bang
Delivery, John Wiley & Sons, New York, 1997.

[22] Royce, W. W., "Managing the Development of Large
Software Systems," Proceedings of Wescon, 1970, pp. 1-9.

[23] Schwaber, K. and Beedle, M., Agile Software Development
with Scrum, Prentice Hall, 2002.

[24] Weinberg, G. M., The Psychology of Computer
Programming, Van Nostrand Reinhold, New York, 1971.

