
Foreword

Software is becoming more pervasive and traditionally non-software products
are increasingly turning into software-intensive products. Furthermore, the of-
fering of many companies is moving towards service-oriented business instead
of software or software-intensive products. At the same time, the amount of
variability required is constantly increasing in order to improve customer sat-
isfaction, cover larger and more heterogeneous markets, and so on. As more
and more products and services must support variability, e�cient variability
management may become essential for surviving in competitive markets

Variability management is facing new challenges on its own and at least three
trends can be identi�ed. Firstly, binding of variability, i.e., the selection of the
right variant is delayed later in the product's life cycle. Variability can also be
re-bound, i.e., the product is recon�gured, and this can take place at runtime.
Secondly, variability also concerns the quality attributes or non-functional prop-
erties of products. Product variants may even be di�erentiated solely in terms
of their quality attributes. Thirdly, all variation possibilities cannot be assumed
to be known beforehand, as, for example, new software or service components
are developed by third parties and need to be incorporated into the product.
Furthermore, products also need to adapt to the context of use. These trends
are not separable but take place concurrently, which makes the preparation for
them even more challenging.

In order to face the future challenges of variability management, clear con-
ceptual foundation, rigorous modelling methods and languages, and di�erent
kinds of tools are needed to describe and manage the variability and to imple-
ment e�ective means for deriving products and services. The goal of this work-
shop is to explore and explicate the current status and ongoing work within the
�eld of variability management by bringing together researchers and practition-
ers from di�erent disciplines and application domains, and on this basis support
fruitful transfer of knowledge.

The workshop received eleven submission of, which nine were accepted to
the workshop. Five of the papers were accepted as full papers and four as short
papers. The topics of the contributions focus on a set of common themes, such
as modelling methods and tools and future directions in software variability
management. Together the contributions form a basis for fruitful discussions on
the emerging body of knowledge. We expect the workshop to make a relevant
contribution in this respect by bringing together researchers with di�erent back-
grounds and linking the research e�orts with industrial experiences and needs
from di�erent domains.

April, 2007

Tomi Männistö, Eila Niemelä and Mikko Raatikainen

Organizers

Workshop Chairs

Tomi Männistö, Helsinki University of Technology (TKK), Software Business
and Engineering institute (SoberIT), Finland

Eila Niemelä, VTT Technical Research Centre of Finland, Finland

Mikko Raatikainen (local arrangement), Helsinki University of Technology (TKK),
Software Business and Engineering institute (SoberIT), Finland

Program Committee

Jan Bosch, Nokia, Finland
Krzysztof Czarnecki, University of Waterloo, Canada
Alexander Felfernig, University of Klagenfurt, Austria
Albert Haag, SAP, Germany
Peter Knauber, Mannheim University of Applied Sciences, Germany
Kai Koskimies, Tampere University of Technology, Finland
Rene Krikhaar, ICT NoviQ, Netherlands
Thorsten Krebs, University of Hamburg, Germany
Charles Krueger, BigLever Software, USA.
Johan Lilius, Åbo Akademi University, Finland
John MacGregor, Robert Bosch GmbH, Germany
Mari Matinlassi, VTT, Finland
llkka Niemelä, Helsinki University of Technology, Finland
Klaus Pohl, Lero, Ireland, University of Duisburg-Essen, Germany
Christian Prehofer, Nokia, Finland
Pierre-Yves Schobbens, University of Namur, Belgium
Juha-Pekka Tolvanen, MetaCase, Finland
Rob van Ommering, Philips Research, Netherlands

Contents

Full Papers
Towards the Comparative Evaluation of Feature Diagram Languages
Patrick Heymans, Pierre-Yves Schobbens, Jean-Christophe Trigaux, Raimundas Matulevičius,
Andreas Classen, Yves Bontemps . 1

Ontology-Based Software Reliability Evaluation and Software Reliability Ontology
Jiehan Zhou, Eila Niemelä, Antti Evesti . 17

An Analysis of Variability Modeling and Management Tools for Product Line Devel-
opment
Rafael Capilla, Alejandro Sánchez, Juan C. Dueñas . 32

Tool-Supported Multi-Level Language Evolution
Markus Pizka, Elmar Jürgens . 48

Kumbang Modeler: A Prototype Tool for Modeling Variability
Hanna Koivu, Mikko Raatikainen, Marko Nieminen, Tomi Männistö 68

Short Papers
Variability Management and Compositional SPL Development
Jilles van Gurp . 81

Variations in Model-Based Composition of Domains
Anca Daniela Ionita, Jacky Estublier, German Vega . 87

Towards Integration of Modelling and Reusing Software Cases
Katharina Wolter, Lothar Hotz, Thorsten Krebs . 93

Goal and Variability Modeling for Service-oriented System: Integrating i* with Deci-
sion Models
Paul Grünbacher, Deepak Dhungana, Norbert Seyff, Michael Quintus, Roger Clotet, Xavier
Franch, Lidia López, Jordi Marco . 99

Towards the Comparative Evaluation of Feature
Diagram Languages

Patrick Heymans, Pierre-Yves Schobbens, Jean-Christophe Trigaux?,
Raimundas Matulevičius, Andreas Classen and Yves Bontemps

PReCISE research centre, Computer Science Faculty, University of Namur
21, rue Grandgagnage – B-5000, Namur (Belgium)

{phe,pys,jtr,rma,aclassen,ybo}@info.fundp.ac.be

Abstract. This paper proposes a path to defragmenting research on feature dia-
gram languages: (1) a global quality framework to serve as a language quality im-
provement roadmap; (2) a set of formally defined criteria to assess the semantics-
related qualities of feature diagram languages; (3) a systematic method to for-
malise these languages and make them ready for comparison and efficient tool
automation. The novelty of this paper resides in the latter point and the integra-
tion. The results obtained so far are summed up and future works are identified.

1 Introduction

During the last fifteen years or so, more than ten different Feature Diagram (FD) lan-
guages were proposed starting from the seminal work of Kang et al. on FODA back
in 1990 [1]. An example of a FODA FD appears in Fig. 1. We assume the reader is
familiar with the notation.

Monitor
Temperatures

Coolant

 Oil

Monitor Engine
system

Monitor Fuel
Consumption

Monitor Engine
Performance

Engine

Transmission

Monitor exhaust
levels and

temperature

Monitor RPM

Based on
type of
driving

Gallon/mileL/Km

Measures

Based on
drive

Based on
distance

Methods

Based on drive requires Monitor RPM

Fig. 1. FODA example (inspired from [2])

? Work supported by Walloon Region and FSE under FIRST Europe Objective 3 Project
PLENTY EPH3310300R0462 / 215315

Page 1

Since Kang et al.’s proposal, several extensions to FODA were devised [3–9] (see
also Table 1). When looking at these FD languages, one immediately sees aesthetic dif-
ferences (see, e.g., Fig.2). Although concrete syntax is an important issue in its own
right [10], this work focusses on what is really behind the pictures: semantics. We
noticed that proponents of FD languages often claimed for added value of their lan-
guage in terms of precision, unambiguity or expressiveness. Nevertheless, our previous
work [11–15] demonstrated that the terminology and evaluation criteria that they used
to justify these claims were often vague, and sometimes even misleading. We also tried
to give a precise meaning to the constructs of those languages.

OFT,OFD,GPFT RFD VBFD EFD PFT

1..1

s s

Fig. 2. Concrete syntaxes for xor-decomposition

Although we note that recent research has devoted more attention to the semantic
foundations of these languages [16–22], we still lack concrete means to discriminate
between these proposals.

This paper suggests a method to evaluate and compare FD languages focused on
the study of their semantics. This method relies on formally defined criteria and ter-
minology, based on the highest standards in formal language definition [23]. It is also
situated with respect to SEQUAL [24, 25], a comprehensive framework for assessing
and improving the quality of modelling languages.

In Section 2, we briefly present SEQUAL. Section 3 recalls good language defi-
nition principles from [23]. On these grounds, Section 4 continues with the definition
of the criteria that our method aims to investigate: expressiveness, embeddability (also
called naturalness), succinctness and (computational) complexity. The method is de-
scribed in Section 5 and constitutes the main contribution of this paper. Section 6 sum-
marises the results obtained so far [13–15]. The paper finishes by discussing the current
limitations of the method and the remaining research challenges (Section 7), before it
concludes (Section 8). This paper is short version of a technical report [26]1.

2 Quality of Models and Languages

Assessing and improving the quality of modelling is a complex and multidimensional
task. A comprehensive view of the concerns involved is given in the SEQUAL (semiotic

1 Available at http://www.info.fundp.ac.be/∼phe/docs/papers/TechRep Eval FP
of FDL 06.pdf

Page 2

quality) framework, developed over the last decade by Krogstie et al. [25]. SEQUAL
is based on a distinction between semiotic levels: syntactic, semantic and pragmatic.
It adheres to a constructivistic world-view that recognises model creation as part of a
dialog between participants whose knowledge changes as the process takes place.

SEQUAL is amenable to specific criteria and guidelines by tailoring. Its main ad-
vantages are that (1) it helps situate one’s investigations within a comprehensive quality
space, (2) it acts as a checklist of qualities to be pursued and (3) it recommends general
guidelines on how to proceed.

Our investigation is targeted semantic and pragmatic qualities of FDs which we
have found to be somehow neglected in the current state of the art. So doing, we will
see that we inevitably interfere with the other qualities, mainly syntactic quality.

The problem we encounter is that representative objects of study – models – do
not always exist, or at least are not easily available. And this is indeed the case for
FDs which (1) are an emerging modelling paradigm, and (2) have the purpose of repre-
senting highly strategic company information. Since representative models2 are almost
nowhere to find, we concentrate on improving the quality of FD languages.

Domain appropriateness

Language externalizability
appropriateness
Participant language knowledge
appropriateness

Organisational
appropriateness

Comprehensibility
appropriateness

Technical actor interpretation
appropriateness

Goals of
modelling

G

Modelling
domain

D

Participant
knowledge

K

Language
extension

L

Social actor
interpretation

I

Technical actor
interpretation

T

Model
externalisation

M

Fig. 3. SEQUAL : Language Quality [24, 25]

SEQUAL has been adapted to evaluate language appropriateness [24] (see Fig. 3).
Six quality areas were proposed. Domain appropriateness means that language L must
be powerful enough to express anything in the domain D, and that, on the other hand it
should not be possible to express things that are not in D. Participant language knowl-
edge appropriateness measures how the statements of L used by the participants match
the explicit knowledge K of the participants. Knowledge externalisability appropriate-

2 Except illustrative examples used in research papers.

Page 3

ness means that there are no statements in K that cannot be expressed in L. Comprehen-
sibility appropriateness means that language users understand all possible statements of
L. Technical actor interpretation appropriateness defines the degree to which the lan-
guage lends itself to automatic reasoning and supports analysability and executability.
Finally, organisational appropriateness relates L to standards and other needs within
the organisational context of modelling.

Not being able to assess model qualities directly, our investigations were re-targeted
at three main language qualities: domain appropriateness, comprehensibility appropri-
ateness and technical actor interpretation appropriateness. The matching of the inves-
tigated criteria wrt these qualities is further discussed in Section 7. In the next section,
we will first introduce the basic notions behind these criteria (Section 3), and then the
criteria themselves (Section 4).

3 Formal definition of visual languages

In [23], Harel and Rumpe recognise that: “Much confusion surrounds the proper defi-
nition of complex modelling languages [. . .]. At the root of the problem is insufficient
regard for the crucial distinction between syntax and true semantics and a failure to
adhere to the nature and the purpose of each.” [23] Although they are far less complex
than, e.g., the UML3, we demonstrated in previous papers [11–14] that FDs were also
“victims” of similar “mistreatments”.

Harel and Rumpe make it clear that the unambiguous definition of any modelling
language must consist of three equally necessary elements: a syntactic domain (L), a
semantic domain (S) and a semantic function (M) (see Fig. 4). All three should be
defined through explicit, rigid and unambiguous rules, hence the use of mathematics.

Syntactic domain (L) Semantic domain (S)

All the diagrams

one can write in L
All the possible meanings

of L

diagrams

Semantic function
(M: L ! S)myDiagram

yourDiagram

herDiagram

M(yourDiagram)

M(myDiagram)

M(herDiagram)

= M(hisDiagram)
hisDiagram

Fig. 4. The 3 constituents of a formal language

During our survey, we could observe that many FD languages were never formally
defined. Maybe, some answers to why this is so are given in [23] where the authors point

3 In [23], one of Harel and Rumpe’s main motivations is to suggest how to improve the UML.

Page 4

out of set of frequent misconceptions about formal semantics, e.g., “Semantics is the
metamodel”, “Semantics is dealing with behaviour”, “Semantics is being executable”,
“Semantics means looking mathematical”, etc. This folklore is demystified [23]. For
now, we turn to the definitions of L, S andM.

3.1 Syntax

Concrete syntax is the physical representation of the data (on screen, or on paper) in
terms of lines, arrows, closed curves, boxes and composition mechanisms involving
connectivity, partitioning and “insideness” [23].

Although discouraged by best pratice, most of the (informal) definitions of the se-
mantics of FDs we found in the literature were based on concrete syntax, usually dis-
cussed on FD examples. Most of the time, a substantial part of the semantics was im-
plicit, leaving it to the diagrams to “speak for themselves”.

The abstract syntax (L) is a representation of data that is independent of its physical
representation and of the machine-internal structures and encodings. It thus makes the
syntactic rules simpler and more portable. The set of all data that comply with a given
abstract syntax is called the syntactic domain.

In [13, 14], we provided an abstract syntax (and semantics) for several FD languages
at once through a generic mathematical structure we called FFD (see Fig. 5 and Table
1). LFFD has 4 parameters reflecting the 4 abstract syntax variation points we observed
among languages: the graph type (GT = TREE or DAG4), the node types (NT , i.e. what
decomposition operators can be used: and, xor, or,. . .), the additional graphical con-
straint types used (GCT , usually requires/⇒ and mutex/|), and the texual constraint
language (TCL, usually Composition Rules (CR) [1]).

3.2 Semantics

The semantic domain (S) “[. . .] specifies the very concepts that exist in the universe
of discourse. As such, it serves as an abstraction of reality, capturing decisions about
the kinds of things the language should express”. S is a mathematical domain built to
have the same structure as the real-world objects the language is used to account for,
up to some level of fidelity. The semantic domain that we have proposed for FODA-
inspired languages is named PL (Product Lines) [13, 14]. It is recalled in Definition 1.
It assumes that FDs are graphs whose nodes (N) represent features and where P, a
subset of N, is the set of features that the user considers relevant. We call P the set of
primitive features/nodes5:

Definition 1 (Configuration, Product, Product Line). (1) A configuration is a set of
nodes, i.e., any element of PN. (2) A product is a configuration that contains only
primitive features, i.e., any element of PP. (3) A product line is a set of products, i.e.,
any element of PL = PPP.

4 Directed Acyclic Graph.
5 Hence, primitive nodes and leaf nodes are different concepts, although the former usually

includes the latter, but can include intermediate nodes as well; this is up to the modeller.

Page 5

Other formalisations [16–22] chose semantic domains different from PL, for exam-
ple using lists instead of sets [22] or keeping the full shape of the FD [19]. How to
compare PL with other semantic domains will be discussed in Section 5.

The semantic functionM : L → S eventually assigns a meaning in S to each syn-
tactically correct diagram d, notedM[[d]]. Again, a mathematical definition is recom-
mended. In [13, 14], we defined a generic semantic function (MFFD) giving a semantics
to several FD languages at once (see Fig. 5).

LOFT

LOFD

LPFT

...

Generic syntactic domain

LFFD(GT,NT,GCT,TCL)

All the diagrams one can write

in a language of the FD family

(L
OFT

, L
OFD

, ... , L
PFT
! LFFD)

All the diagrams one

can write in L
OFT

All the diagrams one

can write in L
OFD

All the diagrams one

can write in L
PFT

Common semantic domain

PL

All the possible meanings

of FDs

Common semantic

function MFFD

Fig. 5. Semantics for a family of FD languages

SinceM is a function, there is at most one semantics for each diagram. Ambiguity
in this context is therefore not possible. The term “ambiguity” was not always properly
used in the surveyed literature. For example, FODA FDs have been criticised for be-
ing ambiguous [8]. However, having reconstructed a proper formal semantics from the
original plain English definition [1], we could check that this was not the case [11].

Finally, the semantic function should be total, that is, it should not be possible to
have a diagram in L which is not given a meaning in S byM. The converse question
(is every element in S expressible by a diagram in L?) is called the expressiveness of a
language and is another term used confusingly in the literature. It is clarified, together
with other comparison criteria, in the next section.

4 Comparison criteria

When a language receives a formal semantics, it can then be evaluated according to
various objective criteria. We first address (computational) complexity. In a formal lan-
guage, we can precisely define decision problems, i.e., tasks to be automated. A math-
ematical definition of the tasks is necessary to prove the correctness of algorithms. It

Page 6

also allows to study complexity, thereby assessing their scalability. Results give an in-
dication about the worst case, and how to handle it. Heuristics taking into account the
most usual cases can be added to the backbone algorithm, to obtain practical efficiency.

In [13], we studied the complexity of a selection of FD-related decision problems:
(1) satisfiability: given a diagram d, is M[[d]] = ∅ true? (2) equivalence: given two
diagrams d1 and d2, is M[[d1]] = M[[d2]] true? (3) model-checking (called product-
checking for FDs): given a product c and a diagram d, is c ∈ M[[d]] true? (4) inter-
section: compute a new diagram d3 such thatM[[d3]] = M[[d1]]

⋂
M[[d2]]. (5) union:

compute a new diagram d3 such thatM[[d3]] =M[[d1]]
⋃
M[[d2]]. (6) reduced product:

compute a new diagram d3 such thatM[[d3]] = {c1 ∪ c2|c1 ∈ M[[d1]], c2 ∈ M[[d2]]}.
When languages, in addition to having a formal semantics, also share a common

semantic domain (S), we can compare them with additional criteria. We use three com-
mon criteria:

– expressiveness: what can the language express?
– embeddability (or macro-eliminability): when translating a diagram to another lan-

guage, can we keep its structure?
– succinctness: how big are the expressions of a same semantic object?

Formal semantics opens the way for a fully formal definition and objective assess-
ment of these criteria. For example, Def. 2 naturally formalizes expressiveness as the
part of a languages’s semantic domain that its syntax can express. Fig. 6 illustrates it.

Definition 2 (Expressiveness).
The expressiveness of a language L is the set E(L) = {M[[d]]|d ∈ L}, also noted

M[[L]]. A language L1 is more expressive than a language L2 if E(L1) ⊃ E(L2). A
language L with semantic domain S is expressively complete if E(L) = S.

Since languages compete for expressiveness, it often happens that they reach the
same maximal expressiveness (like LW in Fig. 6). This is for instance the case for
programming languages, that are almost all Turing-complete and can thus express the
same computable functions. Consequently, we need finer criteria than expressiveness to
compare these languages.

In [13], we recalled equally formal definitions of embeddability and succinctness,
which are widely accepted criteria in the formal methods community. We cannot repro-
duce them here for lack of space, so we just present them informally and motivate them.
The results obtained by applying them to FDs are detailed in Section 6.

Embeddability is of practical relevance because it questions the existence of a trans-
formation from one language to the other which preserves the whole shape of the dia-
grams and generates only a linear increase in size. This way, traceability between the
two diagrams is greatly facilitated and tool interoperability is made more transparent.
Furthermore, limiting the size of diagrams helps avoiding tractability issues for reason-
ing algorithms taking the diagrams as an input. Most importantly, embeddability can
also exist between a language and a subset of itself. A language that is non-trivially
self-embeddable [13] is called harmfully redundant. This means that it is unnecessar-
ily complex: all diagrams can be expressed in the simpler sublanguage without loss of
structure and with only a linear increase in size.

Page 7

In case linear translations are not possible, the blow-up in the size of the diagram
must be measured by succinctness. If L1 is more succinct than L2, this usually entails
that L1’s diagrams are likely to be more readable. Also, if one needs to translate from
L1 to L2

6, succinctness will be an indicator of the difficulty to maintain traceability
between the orginal and the generated diagram. Traceability of linear translations is
usually easier but is likely to become more difficult as the size of the generated diagrams
grows bigger. However, this should not be concluded too hastily since succinctness
does not provide information on the structure of the generated diagrams7. In this sense,
succinctness is a coarser-grained criteria than embeddability.

...

Syntactic domains Semantic domain

Semantic functions

E(LW)=S

E(LY)

E(LZ)

E(LX)

LW

LY
LX

LZ

My!Ly"

Mz!Lz"

Mx!Lx"

Mw!Lw"

Fig. 6. Comparing expressiveness

5 A Comparison Method for FD languages

In order to compare FD languages X1,. . . ,Xn according to the criteria exposed in the
previous section, we need formally defined languages. That is, for language Xi, we
need LXi , SXi and MXi . To compare expressiveness, embeddability and succinctness,
we also need to have SX1 = SX2 = . . .= SXn . Unfortunately, this ideal situation almost
never occurs in practice. Instead, we have to cope with:

– languages that have no formal semantics (this is the most frequent case [13, 14]),
– languages with a formal semantics defined in a different way from [23],
– or languages with a formal semantics compliant with [23] but different semantic

domains.

6 E.g., because a tool for achieving some desired functionality is only available in L2.
7 However, looking at the transformation’s definition will provide the information.

Page 8

Hence, the overall comparison process should be carried out in two steps: (1) make
the languages suitable for comparison, (2) make the comparisons. We now detail the
first step.

Let X1 be the language we want to compare with the others (X2, ..., Xn) which, we
assume, are fully and clearly formalised according to [23] and have identical semantic
domains. We distinguish three cases:

5.1 Case 1: X1 has no formal semantics

There are two alternatives:

– The first alternative is to define the syntax and semantics for each FD language
individually following [23]. That is, we define X1 independently from X2, ..., Xn.
This is what we did in [11] where we formalised FODA FDs (OFT) [1]. FORM
FDs (OFD) [3] are treated the same way in [26].

– The second alternative is to make scale economies and define several languages at
once. In [14], we observed that most of the FD languages largely share the same
goals, the same constructs and, as we understood from the informal definitions, the
same (FODA-inspired) semantics. For this reason, we proposed to define not one
FD language but a family of related FD languages (see Fig. 5). We defined a para-
metric abstract syntax, called FFD, in which parameters correspond to variations in
LX1 , ...,LXn . This definition follows, but slightly adapts, the principles of Section 3.
The semantic domain (PL) and semantic function are common to all FD variants,
maximizing semantic reusability. With this method, we are confined to handle lan-
guages whose only significant variations are in abstract syntax. For languages with
very different semantic choices, e.g. [19], it is much harder to describe (and justify)
the introduction of variation points in the semantics. Then, we should rather follow
either the first alternative in Case 1 if the language is informal, or Cases 2 or 3
otherwise.

5.2 Case 2: X1 has formal semantics but LX1 , SX1 andMX1 need to be clarified

Another frequent case is when X1 actually has a formal semantics, but irrespective of
[23]. That is, we cannot see explicit and self-contained mathematical definitions ofLX1 ,
SX1 andMX1 . Typically,LX1 is clear and self-contained, but SX1 andMX1 are not. Most
of the time, the semantics of X1 is given by describing a transformation of X1’s diagrams
to another language, say W, which is formal. W does not even need to be a FD language,
and usually it is not. Therefore, the semantic domain might be very different from the
one intuitively thought of for FDs. The main motivation for formalising this way is
usually because W is supported by tools. The problem is that these kinds of “indirect”,
or tool-based, semantics complicate the assessment of the language8.

Several proposals of this kind for FDs can be found in recent work [17–22]. We
thus need to reformulate the semantics of those languages. In [15], we treated the FD
language proposed by van Deursen and Klint [22] (renamed vDFD) before comparing

8 Even more if W’s semantics also does not follow [23].

Page 9

it to FFD. The main difference w.r.t. Case 1 is that here formalisation decisions are
usually much more straightforward since they have already been made. However, they
might be hard to dig out if they are coded in some tool. Also, formalisations are not
necessarily error-free, and errors can thus be discovered when re-formalising [15].

5.3 Case 3: X1 has formal semantics with clear LX1 , SX1 and MX1 but
SX1 , SX2 , ...,SXn

The third and last case is when we have a clear and self-contained mathematical defini-
tion of L, S andM for all languages (either from the origin, or having previously gone
through Case 1 or 2) but the semantic domains of the languages differ. We thus need
to define a relation between the semantic domains. We met this problem, for instance,
when comparing vDFD with FFD [15]. On the one hand, we had SFFD = PL = PPP
(sets of sets of nodes), and on the other, SvDFD = OON (lists of lists of nodes). The lat-
ter introduces an order relation on features, and one on products. Comparing languages
with different semantic domains is actually possible, but it requires preliminary work
which is now explained.

Syntactic domains

Semantic domains

Semantic functions

L
1

L
2

S1

S2
T

A

M1

M2

d
2

M2 !d2
"=

A(M1!d1
")=

M2!T(d
1
) "

M1!d1
"d

1

Fig. 7. Abstracting a semantic domain

We need to define an abstraction function (A in Fig. 7) whose purpose is to re-
move extra information from the richer domains and keep the “core” of the semantic
domain, where we will perform the comparisons. We used such a function to remove
the ordering of features and products from SvDFD [15]. However, the question of the rel-
evance of this discarded information remains and should be studied carefully. A fairly
general case is illustrated in Fig. 7, where domain S1 contains more information than
S2; we then take S2 as the common domain. A removes extra information from ele-
ments of S1 and maps them in S2. It then makes sense to look for quasi-translations
T : L1 → L2 between their syntactic domains. They are translations for the abstracted

Page 10

semantics A ◦ M1, and can thus be used to compare languages for expressiveness,
embeddability or succinctness. Hence, if we apply T to a diagram d1 in the syntactic
domain L1 we will obtain a diagram d2 in the syntactic domain L2 with the same ab-
stracted semantics. Semantically, if we apply the semantic functionM1 to d1 and then
the abstraction functionA, we will map on the same element of S2 as if we apply T to
d1 and thenM2:A(M1[[d1]]) =M2[[T (d1)]].

When applied to more than two languages, this method will create many semantic
domains related by abstraction functions. The abstraction functions can be composed
and will describe a category of the semantic domains. At the syntactic level, the transla-
tions can also be composed to yield expressiveness and succinctness results. Similarly,
the composition of embeddings yields an embedding.

6 Language Evaluation Results

We summarise the results obtained by applying our general comparative semantics
method. For the languages defined generically with FFD (see Table 1), the details and
proofs can be found in [13]. The treatment of vDFD [22] is found in [15].

Survey short name GT NT GCT TCL
OFT [1] TREE and ∪ xor ∪ {opt1} ∅ CR
OFD [3] DAG and ∪ xor ∪ {opt1} ∅ CR

RFD [4]=VBFD [9] DAG and ∪ xor ∪ or ∪ {opt1} {⇒, |} CR
EFD [7, 8] DAG card ∪ {opt1} {⇒, |} CR
GPFT [5] TREE and ∪ xor ∪ or ∪ {opt1} ∅ CR
PFT [6] TREE and ∪ xor ∪ or ∪ {opt1} {⇒, |} ∅

VFD [13] DAG card ∅ ∅

Table 1. FD languages defined through FFD

6.1 Complexity

For FDs, solving all the standard problems of Section 4 turns out to be practically useful:

– Equivalence of two FD is needed whenever we want to compare two versions of
a product line (for instance, after a refactoring). When they are not equivalent, the
algorithm can produce a product showing their difference. For FD languages based
on DAGs, and that allow non-primitive features, such as OFD, EFD, VFD, this
problem is Π1-complete [13] (just above NP-complete).

– Satisfiability is a fundamental property. It must be checked for the product line but
also for the intermediate FDs produced during a staged configuration [20]. For FD
languages based on DAGs, this problem is NP-complete.

Page 11

– Model-checking verifies whether a given product (made of primitive features) is in
the product line of a FD. It is not as trivial as expected, because the selection per-
formed for non-primitive nodes must be reconstructed. This gives an NP-complete
problem. When recording this selection, the problem becomes linear again.

– Union is useful when parallel teams try to detect feature interference in FDs. Their
work can be recorded in separate FDs, the union of which will represent the vali-
dated products. For FD languages based on DAGs, this problem is solved in linear
time, but the resulting FD should probably be simplified for readability. Intersection
and reduced product are similar.

The complexity results show the role of non-primitive features. On one hand, it is
useful to record them to accelerate the checking of products. However, they should not
become part of the semantics since this would restrict the expressiveness and strongly
reduce the possible transformations of diagrams.

6.2 Expressiveness

The distinction between languages that only admit trees and the ones that allow shar-
ing of features by more than one parent (DAGs or vDFD) turns out to be important.
While tree-shaped languages are usually incomplete, OFD [3] are already expressively
complete without the constraints, and thus a fortiori RFD [4], EFD [7, 8] and VFD [13].
vDFD are “almost” trees in that only terminal features (i.e. the leaves) can have multiple
parents (justifications), but this is sufficient to obtain expressive completeness.

In contrast, tree-shaped diagrams turned out to be expressively incomplete; in par-
ticular, OFT [1] cannot express disjunction. This justifies a posteriori the proposal [9]
(VBFD) to add the or operator to OFT. But even so, we do not attain expressive com-
pleteness: this language is still unable to express card3[2..2], the choice of two features
among three9. This justifies similarly the proposal [7] (EFD) to use the card operators.
Both [9] and [7] also propose to allow DAGs: this extension alone, as we have seen,
ensures expressive completeness. But we will see below better justifications in terms of
embeddability rather than succinctness.

When designing a FD language, is thus essential to have more than trees to reach ex-
pressive completeness. Trees, however, are easier to understand and manipulate because
they have a compositional semantics. vDFD [22] manage to have both advantages.

6.3 Embeddability

An optional node n can be translated into a xor2-node, say n?, with two sons: the original
node n, and the TRUE node v which is an and0-node (i.e., with no son). As we see in
Fig.8, all incoming edges from parents of n are redirected to the new top node (n?),
and all outgoing edges to sons start from the node n. This supports our view [13] that
optionality is better treated as a decomposition operator (opt1).

We constructed an embedding from OFD without constraints (called COFD in [13])
to VFD, presented in Table 2. To save space, we use the textual form for the graphs. For

9 Operator arity is denoted by an underscript.

Page 12

n

n?

n V

Fig. 8. Graphical embedding of redundant optional node (in OFD concrete syntax)

instance, a node bearing a xorm operator is translated to a node bearing a cardm[1 . . . 1]
operator. In the next section, we will consider how those embeddings increase the size
of the graph. Here we see that the VFD resulting from the embedding of a COFD di-
agram has the same size. This result indicates that card-nodes proposed by [7] can
embed all the other constructs. We proposed thus to use them systematically inside
tools. We slightly differ from [7] that also uses optional edges: these can be modelled
by card1[0..1]-nodes and would be harmfully redundant. We proposed VFD to elimi-
nate this slight drawback. Please note that this latter suggestion only concerns abstract
syntax. In the concrete syntax, it is probably a good idea to keep optional nodes as this
would decrease the size and visual complexity of the diagrams.

Instead of . . . write . . .
opt1(f) card1[0 . . . 1](f)

xorm(f1, . . . , fm) cardm[1 . . . 1](f1, . . . , fm)
ands(f1, . . . , fs) cards[s . . . s](f1, . . . , fs)

Table 2. Embedding COFD into VFD

6.4 Succinctness

When translations are not linear, it is still interesting to compute the increase in size of
the graph, as measured by succinctness. RFD and OFD are of similar succinctness, but
when translating VFD or EFD to OFD we translate a cardk-node to a OFD graph of size
O(k2) [13]. A VFD of size O(k) could contain k cardk-nodes, giving a cubic translation
at the end: COFD ≤ O(VFD3). This result indicates again that card-nodes are a useful
addition, but for different reasons than presented in [7].

7 Discussion

The main limitation of our work is explicit in its scope: we address only formal seman-
tics-related properties. In order not to over-interpret our conclusions, one should keep
comprehensive view of model quality in mind. With respect to SEQUAL (Section 2),
in order to be accurate and effective, we deliberately chose to address only part of the

Page 13

required qualities: Domain appropriateness is addressed by looking at language expres-
siveness. Comprehensibility appropriateness is addressed by looking at embeddability
and succinctness. Technical actor interpretation appropriateness is addressed by look-
ing at complexity and also embeddability and succinctness. Furthermore, our criteria
cover only part of each of the three qualities. Future research should therefore devote
similar attention to other qualities and criteria.

In contrast, a more holistic (quality-wise) attempt to compare FD languages is re-
ported in [27]. It is specific though in the sense that it concerns the usage of FDs in
a particular company, for a given kind of project. This leads us to point out that the
notion of a “good” modelling language is only relative to the context of use of the lan-
guage. The priorities to be put on the expected qualities and criteria are very likely to
be different from one company, or projet, to another. This could lead us to relativise
in some contexts the importance of formality. Still, we think that for FDs formality is
very likely to deliver more than it will cost since (1) languages are relatively simple,
(2) formality can be made largely transparent to the users (hidden behind a graphical
concrete syntax), (3) the automation possibilities are many [13, 14, 28], and (4) correct
FDs are mission-critical company assets that should suffer no ambiguity.

SEQUAL also helps identify another limitation: for now, we have only looked at
language quality adopting a theoretical approach. A complementary work is to investi-
gate models empirically. In Section 2, we emphasised the difficulty of such an endeav-
our because of the limited availability of “real” FDs. Nevertheless, we do not consider
it impossible and can certainly learn a lot by observing how practitioners create and use
FDs. Although we have focussed on studying theoretical properties of FD languages,
we need to recognise that no formal semantics, nor criteria, can ever guarantee by itself
that the languages help capture the right information (neither too little, nor too much)
about the domain being modelled. Only empirical research can help us give a convinc-
ing answer to this other aspect of domain appropriateness.

A threat to validity is that all our reasoning (comparisons, demonstrations of theo-
rems) was done by humans only, no tools. Human errors, miss- or over-interpretations
are thus possible. Also, our formalisations were made only by considering the published
documents, and without contacting the authors for clarifications, nor testing their tools.
However, making L, S andM explicit, we open the way for constructive discussion.

Finally, our method is yet to be applied to some relevant FD language proposals [16–
21]. This is a prioritary topic of future work.

8 Conclusion

The bad news confirmed by this paper is that current research on variability modelling
is fragmented. Existing research in the field is characterised by a growing number of
proposals and a lack of accurate comparisons between them. In particular, the formal
underpinnings of feature diagrams need more careful attention.

The nocuous consequences of this situation are: (1) the difficulty for practitioners to
choose appropriate feature modelling techniques, (2) an increased risk of ambiguity in
models, (3) underdeveloped, suboptimal or unsafe (i.e., not proved correct) tool support
for reasoning on feature diagrams.

Page 14

The good news that this paper delivers is that there are remedies to this situation.
The ones that we propose are: (1) a global quality framework (e.g. Krogstie et al.’s
SEQUAL) to serve as a roadmap for improving the quality of feature modelling tech-
niques; (2) a set of formally defined criteria to assess the semantics-related qualities of
feature diagram languages; (3) a systematic method to formalise these languages and
make them ready for comparison and efficient tool automation; and (4) a first set of
results obtained from the application of this systematic method on a substantial part of
the feature modelling languages encountered in the literature.

Although the road ahead is still quite long, we are confident that the community
can take profit of our proposal. It could be used for example as part of an arsenal to
elaborate a standard feature modelling language. This standard would not suffer from
ambiguity, and its formal properties (among others) would be well known, allowing
to devise proved correct efficient reference algorithms. A similar approach could also
be transposed to cognate areas where existing modelling techniques face similar chal-
lenges. In particular, we think of goal modelling techniques.

References

1. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University (1990)

2. Cohen, S., Tekinerdogan, B., Czarnecki, K.: A case study on requirement specification:
Driver Monitor. In: Workshop on Techniques for Exploiting Commonality Through Variabil-
ity Management at the Second International Conference on Software Product Lines (SPLC2).
(2002)

3. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-oriented reuse
method with domain-specific reference architectures. Annals in Software Engineering 5
(1998) 143–168

4. Griss, M., Favaro, J., d’Alessandro, M.: Integrating Feature Modeling with the RSEB. In:
Proceedings of the 5th International Conference on Software Reuse (ICSR’98), Vancouver,
BC, Canada (1998) 76–85

5. Eisenecker, U.W., Czarnecki, K.: Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley (2000)

6. Eriksson, M., Börstler, J., Borg, K.: The PLUSS Approach - Domain Modeling with Fea-
tures, Use Cases and Use Case Realizations. In: Proceedings of the 9th International Con-
ference on Software Product Lines (SPLC 2005). (2005) 33–44

7. Riebisch, M., Böllert, K., Streitferdt, D., Philippow, I.: Extending Feature Diagrams with
UML Multiplicities. In: Proceedings of the Sixth Conference on Integrated Design and
Process Technology (IDPT 2002), Pasadena, CA (2002)

8. Riebisch, M.: Towards a More Precise Definition of Feature Models. Position Paper. In:
M. Riebisch, J. O. Coplien, D, Streitferdt (Eds.): Modelling Variability for Object-Oriented
Product Lines (2003)

9. van Gurp, J., Bosch, J., Svahnberg, M.: On the Notion of Variability in Software Product
Lines. In: Proceedings of the Working IEEE/IFIP Conference on Software Architecture
(WICSA’01). (2001)

10. Moody, D.L.: What Makes a Good Diagram? Improving the Cognitive Effectiveness of
Diagrams in IS Development. In: Proceedings of the 15th international conference in Infor-
mation Systems Development (ISD 2006). (2006)

Page 15

11. Bontemps, Y., Heymans, P., Schobbens, P.Y., Trigaux, J.C.: Semantics of FODA Feature
Diagrams. In Männistö, T., Bosch, J., eds.: Proceedings of Workshop on Software Variability
Management for Product Derivation: Towards Tool Support, Boston (2004) 48–58

12. Bontemps, Y., Heymans, P., Schobbens, P.Y., Trigaux, J.C.: Generic Semantics of Feature
Diagrams Variants. In: Proceedings of the 8th International Conference on Feature Interac-
tions in Telecommunications and Software Systems(ICFI), IOS Press (2005) 58–77

13. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of feature
diagrams. Computer Networks (2007) special issue on feature interactions in emerging ap-
plication domains 51 (2007) 456–479

14. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Feature Diagrams: A Survey
and A Formal Semantics. In: Proceedings of the 14th IEEE International Requirements
Engineering Conference (RE’06), Minneapolis, Minnesota, USA (2006) 139–148

15. Trigaux, J.C., Heymans, P., Schobbens, P.Y., Classen, A.: Comparative semantics of Feature
Diagrams : FFD vs vDFD. In: Proceedings of Workshop on Comparative Evaluation in
Requirements Engineering (CERE’06), Minneapolis, Minnesota, USA (2006)

16. Asikainen, T., Mannisto, T., Soininen, T.: A Unified Conceptual Foundation for Feature
Modelling. In: Proceedings of the 10th International Software Product Line Conference.
(2006) 31–40

17. Batory, D.S.: Feature Models, Grammars, and Propositional Formulas. In: Proceedings of
the 9th International Conference on Software Product Lines (SPLC 2005). (2005) 7–20

18. Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Automated Reasoning on Feature Models.
LNCS, Advanced Information Systems Engineering: Proceedings of the 17th International
Conference, CAiSE 2005 3520 (2005) 491–503

19. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing Cardinality-based Feature Models
and their Specialization. Software Process: Improvement and Practice 10 (2005) 7–29

20. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration Using Feature Models.
Software Process Improvement and Practice, special issue on Software Variability: Process
and Management 10 (2005) 143 – 169

21. Sun, J., Zhang, H., Li, Y.F., Wang, H.: Formal Semantics and Verification for Feature Model-
ing. In: Proceedings of the 10th IEEE International Conference on Engineering of Complex
Computer Systems, ICECCS 2005. (2005) 303–312

22. van Deursen, A., Klint, P.: Domain-Specific Language Design Requires Feature Descrip-
tions. Journal of Computing and Information Technology 10 (2002) 1–17

23. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of “Semantics”? IEEE
Computer 37 (2004) 64–72

24. Krogstie, J.: Using a semiotic framework to evaluate UML for the development of models of
high quality. Unified Modeling Language: System Analysis, Design and Develoment Issues,
IDEA Group Publishing (2001) 89–106

25. Krogstie, J., Sindre, G., Jørgensen, H.: Process Models Representing Knowledge for Action:
a Revised Quality Framework. Eur. J. Inf. Syst. 15 (2006) 91–102

26. Heymans, P., Schobbens, P.Y., Trigaux, J.C., Matulevičius, R., Bontemps, Y., Classen, A.:
Evaluating Formal Properties of Feature Diagrams. Technical report, University of Namur
(2006)

27. Djebbi, O., Salinesi, C.: Criteria for Comparing Requirements Variability Modeling Nota-
tions for Product Lines. Workshop on Comparative Evaluation in Requirements Engineering
(CERE’06) 0 (2006) 20–35

28. Benavides, D., Ruiz-Cortés, A., Trinidad, P., Segura., S.: A Survey on the Automated Anal-
yses of Feture Models. In: Jornadas de Ingenierı́a del Software y Bases de Datos (JISBD).
(2006)

Page 16

Ontology­Based Software Reliability Modelling

Jiehan Zhou, Eila Niemelä, Antti Evesti

VTT Technical Research Centre of Finland
Kaitoväylä 1, 90571 Oulu, Finland

Email:{firstname.surname}@vtt.fi

Abstract. Reliability has become a major concern for software­intensive
systems. This paper proposes a novel ontology­based method for software
reliability modelling, including a software reliability ontology and an ontology­
based software reliability modelling system. The software reliability ontology is
analysed and developed for software reliability engineering with respect to
domains of reliability measurement processes, methods, models, organization,
and tools. The ontology­based software reliability modelling system validates
the ontology­based method with presentations of the system infrastructure, the
system implementation techniques, and the system application cases.

1. Introduction

Modern society is permeated by software­intensive systems, such as consumer
electronics, buildings, automobiles, and aircraft. The size and complexity of software­
intensive systems have grown dramatically during the past decade, and the trend is
certain to continue with the emergence of service­oriented architectures and Web
services [1, 2]. Meanwhile, software reliability has become a major concern for
software­intensive systems.

‘Software reliability’ refers to the probability of failure­free operation of a
computer program in a specified environment over a specified period of time [3­5]. In
the interest of increasing software reliability, a number of studies have been carried
out on reliability modelling [6­8], reliability estimation, and prediction tools
development [9, 10]. At the same time, several books [4, 5, 11] have been published
for the purposes of reliability education and training. For the sake of brevity, when
speaking of ‘reliability’ below, we are referring to software reliability.

In what follows, we will explore a novel ontology­based method for reliability
modelling, including a reliability ontology and an ontology­based reliability
modelling system. To the best of our knowledge, there are only few reports available
on the topic. The remainder of the paper is organized as follows: Section 2 outlines a
set of key concepts related to ontology­based reliability modelling. Section 3 defines
the objectives of building a reliability ontology. In Section 4, different ontology
engineering methods are compared and a guideline is presented for reliability
ontology modelling. Section 5 examines reliability domains and develops the
reliability ontology. The reliability modelling system is presented in Section 6, along
with the system infrastructure, system implementation techniques, and some system

Page 17

application cases. Section 7 draws the conclusions from our discussion and anticipates
directions for future research.

2. Concepts

Ontology is a shared knowledge standard or knowledge model explicitly defining
primitive concepts, relations, rules, and their instances. Ontology can be used for
capturing, structuring, and enlarging explicit and tacit knowledge across people,
organizations, and computer and software systems [12].

Reliability ontology consists of concepts and their relationships related to the topic
of reliability engineering and aimed at facilitating the work of reliability experts in
managing and developing reliability knowledge.

Ontology­based reliability design is an ontology­based method that provides
reliability experts with the reliability ontology and associated management tools for
facilitating software reliability definition and measurement.

3. Objectives of the reliability ontology development

The intended uses of the reliability ontology include the following application
contexts:
§ Management and development of reliability knowledge. By making use of the

reliability ontology, the software customer can understand reliability
terminologies explicitly, assess the reliability of the provided software or
service, and fluently communicate with reliability experts. The reliability
experts can adopt, adjust, and choose reliability models based on the reliability
ontology.
§ Support for computer­aided reliability estimation and prediction. Once the

reliability ontology is built into software programs (so­called ontology­based
programs), these programs can be enhanced by customizing reliability
measurement procedures and by providing a common reliability development
and management framework.
§ Support for reliability knowledge management in software engineering.

Component and service reliability becomes a critical factor influencing
component­based and service­oriented software development. The reliability
ontology promises to provide software community with a common
communication platform for addressing reliability knowledge, and to facilitate
reliability­based service discoveries and compositions.

Page 18

4. Ontology engineering and reliability ontology modelling

4.1 Ontology engineering methodologies

 The ontology engineering methods are summarised in Table 1. An ontology
engineering method is a series of interrelated activities and techniques used for
creating ontology. Thus, the traditional ontology development methods given in Table
1 are presented in terms of involved activities, created ontologies, and unique features.
A more detailed comparison between the different ontology engineering
methodologies is presented in [13].

Table 1. Summary of traditional ontology development methods

Method Process Ontologies created Notes
Cyc [14] Manual coding, computer coding,

computer managing
Cyc Unanimous

knowledge
capture

Uschold
and King
[15]

Purpose identification, ontology
building, evaluation, and
documentation

Enterprise
ontology

Relevant to
business
enterprise

Gruninger
and Fox
[16]

Scenario identification, informal
competency question formulation,
terminology specification, formal
competency question formulation,
axiom specification, and
completeness theorem
specification

TOVE ontologies
including
enterprise design,
project,
scheduling, and
service ontology

High degree of
formality

KACTUS
[17]

Application specification,
preliminary design, refinement,
and structuring

Fault and service
recovery planning
ontology

Conditioned by
application
development

Methontolo
gy [5,
18][8]

Roots in IEEE1074­1995 Chemicals,
reference, KM
ontology, etc.

Most mature, the
method proposed
by FIPA

SENSUS­
based [19]

Identify seed terms, link the seed
terms to SENSUS, add paths to
the root, add new domain terms,
and add complete sub­trees

Military air
campaign planning

Easy generation
of skeleton
ontologies from
huge ontologies

On­To­
Knowledge
[20, 21]

Feasibility study, kick­off,
refinement, evaluation, and
maintenance

Skills
management,
virtual enterprise,
OntoWeb, etc.

Created
ontologies highly
dependent on the
application,
ontology learning

Page 19

4.2 Reliability ontology modelling

Based on the summary of ontology engineering methods and a typical ontology
engineering process given in [8], we can propose a guideline for creating the
reliability ontology:

Step 1. Determine the domain of the reliability ontology. The reliability ontology
covers reliability process, method, model, specification, tool, and organization
domains.

Step 2. Consider reusing existing reliability ontologies. Unfortunately, no
reliability ontologies exist as of yet. Information on reliability is distributed though
books and research publications.

Step 3. Enumerate important reliability concepts. It is useful to start with classical
works on reliability engineering, creating a list of all the concepts that reliability
experts would prefer to use.

Step 4. Define the reliability concept hierarchy. A top­down development process
may be used in this step. First we define the most general reliability concepts
(process, method, and specification) and the subsequent specialisation of these
concepts (reliability definition and operational profile development).

Step 5. Define the reliability properties. In general, there are two types of
reliability properties: internal properties and external properties. The internal
properties indicate properties belonging to the concept itself, such as the name of a
process. The external properties indicate relationships between concepts, such as the
method of a process.

Step 6. Create reliability instances. We define an individual reliability instance in
terms of a concept and its properties.

5. Reliability ontology design

5.1. Reliability ontology domains

We describe reliability engineering as a series of interrelated processes by which
reliability knowledge is reorganized with the support of methods, tools, models,
organization, and the specifications of input and output (Fig. 1).

Page 20

to
ol

m
od

el
m

et
ho

d

or
ga

ni
za

tio
n

Fig. 1. Reliability ontology domains
The reliability process refers to reliability engineering processes, consisting of five

activities: a) definition of necessary reliability, b) development of operational profiles,
c) preparation for test, d) execution of test, and e) application of failure data to guide
decision­making.

The reliability organization is in charge of executing the processes. Reliability
measurement is usually carried out in an operation organization. The commonly
involved roles are the end­user for executing the software, the manager for resource
allocation, the system engineers for tailoring reliability procedures, and the quality
assurance engineers for running tools and collecting failure data.

The reliability method identifies a way for the organization to undertake reliability
processes in terms of cost­efficiency and purpose­specification.

The reliability models are chosen and used in any given applications depending on
the purpose of the application. A software reliability model usually has the form of a
random process that describes the behaviour of failures over time.

Reliability tools are computer programs or simulations used in software reliability
measurement.

Reliability specification of input and output refers to the input and output data for
the reliability process. This data can take the form of tables, files, and graphics.

5.2. Concepts hierarchy

A reliability concepts hierarchy is a hierarchical concept classification. Fig. 2
describes these concepts in detail.

Page 21

Fig. 2. Reliability concept hierarchy

Reliability process concepts
Defining reliability means quantitative reliability definition of a software system,

which in turn makes it possible for reliability experts to balance customer needs for
reliability, delivery date, and cost. The reliability definition mainly consists of the
sub­processes of reliability severity definition, failure intensity objective setting, and
reliability strategies engineering.

The operational profile development mainly consists of the sub­processes of
identifying the initiator of operations, listing the operations, determining the operation
occurrence, and determining the occurrence probabilities.

In preparing for test, the operational profile information is applied to planning
efficient testing, including preparation of test cases and test procedures.

In executing the test, the test cases and test procedures are used in such a way that
the desired goal of the efficient test can be achieved. The execution of tests involves
three main activities: allocating test time, invoking the tests, and identifying failures
that occur.

In failure data interpretation, the predicted reliability is compared with the set
reliability objectives for guiding system­reliability decision making, e.g., accepting or
rejecting an acquired component or a software system.

Reliability method concepts
A method describes how to conduct a process efficiently and effectively. The

reliability method mainly consists of the methods used in the reliability processes.

Page 22

The following lists the methods that are presented in [5], including operational profile
development methods and failure interpretation methods.

Operational profile development methods include tabular representation and
graphical representation. Tabular representation generally works better for systems
whose operations have few (often only one) attributes. Graphical representation is
generally better suited for software the operations of which have multiple attributes.

Failure interpretation methods. There are two approaches for interpreting software
system reliability: failure intensity trend and reliability chart demonstration. The
failure intensity trend method estimates the failure intensity over all severity classes
and across all operational modes against time. The reliability chart method is used in
certification tests in which each failure is plotted and labelled with its severity class.

Specification concepts
Specifications are the input or output of the reliability measurement processes,

such as operational profiles, test cases, and reliability metrics.
An operational profile is an operation scenario that describes typical uses of the

system, consisting of an operation list, the operation occurrence, and the operation
occurrence probability. The operation list is a tabular or graphical representation of
the operations each initiator produces. The operation occurrence refers to the
occurrence rates of the operation. The operation occurrence is commonly measured
with respect to time. The operation occurrence probability is the ratio of the operation
compared to the total occurrence rates.

A test case is the partial specification of a run through the naming of its direct input
variables and the values of these variables during the preparations for the test process.

Reliability metrics are measurable, quantitative software attributes, consisting
mainly of the following items:
§ A failure is the departure of program behaviour from user requirements

during execution. A failure confidence interval represents a range of values
within which a parameter is expected to lie with a certain statistical degree of
probability.

§ A failure severity class is a set of failures that affect users to the same degree
or level. The severity is often related to the criticality of the operation that
fails [5, 11].

§ A failure objective is set for the software system.
§ Failure strategies include fault prevention, fault removal, and fault tolerance.

Fault prevention uses requirements, design, and coding technologies and
processes to reduce the number of faults. Fault removal uses code inspection
and development testing to remove faults in the code once it is written. Fault
tolerance reduces the number of failures that occur, by detecting and
countering deviations in program execution that may lead to failures [5].

§ The failure data refers to the metric of representing failure occurrence,
including the time­based class and the failure­based class. The failure­based
class represents failure occurrence by indicating the frequency of the failures
experienced within a time interval. The time­based class represents failure
occurrence by determining the time interval between failures.

Model concepts

Page 23

A reliability model usually has the form of a failure process that describes the
behaviour of failures with time, also called failure random process. The possibilities
for different mathematical forms to describe the failure process are almost limitless
[5]. The following lists two classes of reliability models used in software architecture
reliability evaluation.

The state­based models use a control flow graph to represent the architecture of the
system. It is assumed that the transfer of control between components has a Markov
property, which means that, given what is known of the component in control at any
given time, the future behaviour of the system is conditionally independent of its past
behaviour [22]. State­based models consist of the states, or externally visible modes
of operation, that must be maintained, and the state transitions labelled with system
inputs and transition probabilities. State­based models can be used even if the source
code of the component is not available. State­based model instances include: the
Littlewood model [23], the Cheung model [24], the Laprie method [25], the Kubat
method [26], the Gokhale et al. method [27], and the Ledoux method [28].

The path­based models are based on the same common steps as the state­based
models [22]. In addition, the path­based models enable one to specify, with the help
of the simulation, component reliability estimations [29]. Path­based model instances
include: the Shooman model [30], the Krishnamurthy and Mathur model [31], and the
Yacoub et al. model [32].

Tool concepts
This section presents some reliability evaluation tool instances, such as SMERFS

[4], CASRE[9], SoRel [33], and AgenaRisk [34].
SMERFS (Statistical Modelling and Estimation of Reliability Functions for

Systems) [4] allows the end user to enter data, to edit and/or transform the data if
necessary, to plot the data, to select an appropriate model to fit the data, to determine
the fit of the model using both statistical and graphical techniques, to make various
reliability predictions based upon the fitted model, and to try different models if the
initial model proves inadequate.

CASRE (Computer Aided Software Reliability Estimation) [9, 35] is an extension
of SMERFS. Users are guided through the selection of a set of failure data and the
execution of a model with the assistance of selectively enabling pull­down menu
options.

SoRel [33] is a tool for software (and hardware) reliability analysis and prediction
that provides qualitative and quantitative elements concerning, for instance, a) the
evolution of the reliability in response to the debugging effort; b) the estimation of the
number of failures for the subsequent time periods to allow test effort planning and
the assignment of the numerical importance by the test and/or maintenance team; and
c) the prediction of reliability such as the mean time to failure, the failure rate, and
the failure intensity.

AgenaRisk [34] is a risk assessment and risk analysis tool. It arms users with the
latest algorithms that allow quantification of uncertainty and offer models for
prediction, estimation, and diagnosis, all made accessible via a sophisticated graphical
user interface.

Additional software reliability modelling tools and programs are surveyed in [36]
and listed on the Web [37].

Page 24

5.3. Properties definition

We categorize the reliability property into internal property and external property.
The internal property describes the internal structure and attributes of concepts, and
the external property describes the relationships between concepts. For an internal
property, we must determine which concept it describes; for instance,
specificationName is one of the internal properties of the concept Specification. For
an external property, we must determine the class(es) of which the values of the
property will be members, and the class(es) that will have the property as a member;
for instance, hasMethod is an internal property between concepts of Method and
Process. The initial reliability properties are defined in Fig. 3.

Fig. 3. Reliability properties definition
System properties

systemName: a system has a name.
hasSystemReliability: a system has a reliability objective.
hasOperationProfile: a system has an operational profile.
hasReliabilityObjective: a system has a failure intensity objective or reliability
objective.
hasSpecification: a system has at least one specification.

Process properties
processName: a process has a name.
hasSubprocess: a process could have two or more sub­processes.
isBefore/isAfter/isSimutaneous: a process can occur before/after/simultaneously
with at least one other process.
hasMethod: a process could have a method.
hasTool: a process could have a supporting tool.
hasModel: a process could have a model.
hasInput: a process could have an input specification.
hasOutput: a process could have an output specification.

Tool Properties

Page 25

toolName: a tool must have a name.
hasFunctionalDescription: a tool must have a functional description.
hasProvider: a tool must have a provider.

Model properties
modelName: a model must have a name.
hasFailureData: a model must have failure data for input.
hasRandomProcess: a model must have a random process.

Specification properties
specificationName: a specification must have a name.
versionStatus: a specification has a version status.

Method Properties
methodName: a method must have a name.

6. Ontology­based reliability modelling system

6.1. System infrastructure

Suppose a company is planning to introduce a new software product of HomeSecurity
for monitoring home environment information automatically. The system consists of a
set of home automation service components (e.g. a video capture service, a light
switch service, and an alarming service). Those components must satisfy quality
requirements to some degree. For example, the alarm service needs a high reliability
in the HomeSecurity system. In order to facilitate product reliability measurement, we
have designed an ontology­based reliability modelling system, which has the primary
functions of managing the software reliability ontology and designing software
system reliability (Fig. 4).

 Fig. 4. Ontology­based reliability modelling system

Page 26

The system level consists of an ontology modelling framework and an application
development environment. The ontology modelling framework is used for reliability
ontology modelling by allowing reliability experts to create reliability ontology and
load reliability ontology files. The application development environment is an
application development platform used for building, deploying, and managing
application software across the lifecycle.

The middleware level consists of APIs (Application Programming Interfaces)
responsible for handling reliability ontology, including build, access, display, and
update reliability ontology.

The application level includes reliability ontology management and reliability
modelling. The reliability ontology management application is responsible for reading,
writing, and visualizing reliability ontology documents written in Web ontology
languages (e.g., RDF [38], and OWL [39]). The reliability ontology management
further enables reliability experts to make semantic knowledge queries about
reliability. The reliability modelling application supports software system reliability
measurement processes, including definition of reliability, development of operation
profiles, preparation for and execution of reliability test, and interpretation of failure
data.

6.2. System implementation

In the implementation of the ontology­based reliability modelling system, we have
explored and adopted the following technonologies: Eclipse for the application
development environment, OWL for the reliability ontology modelling, and Jena for
the reliability ontology file management.
§ Eclipse for the ontology­based system development environment [40]. Eclipse is

an open source development platform comprised of extensible frameworks and
tools for building, deploying, and managing software across the lifecycle. Eclipse
possesses a powerful modelling framework and code generation facility (Eclipse
Modelling Framework, or EMF). The EMF provides the foundation for
interoperability with other EMF­based tools and applications.

§ OWL (Web Ontology Language) [41] for the reliability ontology modelling.
OWL enables greater machine interpretability of Web content than XML, RDF,
or RDF Schema. OWL further provides additional vocabulary along with formal
semantics, and adds qualifiers for describing properties and classes, such as
disjointness, cardinality, and symmetry. The reliability OWL documents refer to
files written with the OWL language.

§ Jena API [42] for accessing reliability ontology OWL documents. Jena
framework provides rich OWL APIs for reading and writing reliability ontology
OWL documents. These can be used to save and read the reliability ontology in
the form of files.

Page 27

6.3. Application cases

To demonstrate the usefulness of the ontology­based reliability modelling system,
including reliability ontology document management, reliability ontology query and
reliability modelling, we would like to briefly mention some application cases
supported by the system.
§ Reliability ontology document management. In this case, the ontology­based

design environment enables reliability experts to load reliability ontologies from
and to OWL files and graphically create, modify, and store the reliability
ontology. At the moment, we adopt Protégé [43] to fulfill reliability ontology
management (See Figure 5 (a)).

§ Reliability ontology query. In this case, the ontology­based modelling system
enables experts to make semantic reliability knowledge queries through a friendly
user interface, for example, Q1 (internal reliability property query): What tool
instances does the class of ‘reliability tool’ have? Q2 (external reliability
properties query): What is the output for the process of ‘operational profile
development’ when choosing the ‘tabular representation’ method? (See Figure 5
(a))

§ Reliability modelling. In this case, the system enables reliability experts to
conduct system reliability measurements, to define software system reliability
objectives, to develop system operational profiles, to prepare and execute system
reliability tests, and to interpret system reliability. Figure 5 (b) presents the user
interface of the Quality Profiler. The Quality Profiler utilizes the reliability
ontology and allows the end user to specify quality requirements for a given
software component. The detail about the Quality Profiler module is given in
[44].

a. Reliability ontology management and ontology­based reliability knowledge query
Reliability knowledge editing Reliability knowledge query

Page 28

b. Ontology­based reliability­aware software modelling
Fig.5. Reliability ontology­based applications

7. Conclusions and future work

Growing attention has been given to the quality driven software design, increasing
software complexity and emerging service­oriented architectures. At present, only
few studies exist on ontology­based software reliability design. In the foregoing we
have explored and proposed a novel ontology­based method for designing software
reliability. The ontology­based method aims to provide reliability experts with a
reliability ontology and related computer­aided tools for facilitating reliability
engineering. First, the concepts related to reliability were specified. Next, studies
associated with ontology engineering were discussed, including the objectives of
creating a reliability ontology, ontology engineering methods, and guidelines for
creating a reliability ontology. Further, by identifying the knowledge scopes of
reliability­aware software design, the reliability ontology was designed primarily with
respect to reliability concepts and properties. The experiences gained in developing
the ontology­based reliability design tool were also presented. Future work will focus
on elaborating the ontology­based method in the following aspects:
§ Continuing the development of reliability ontology, along with the mining

and refining of the reliability concepts and properties.

Page 29

§ Applying the method to software architecture design. This work will extend
the existing reliability ontology by developing and merging a software
architecture ontology and developing associated applications supporting
reliability­aware software architecture design.

§ Elaborating the implementation of the ontology­based reliability modelling
system for specified technical features.

References

1. Kreger, H.: Web Service Conceptual Architecture (WSCA 1.0). www­
3.ibm.com/software/solutions/webservices/pdf/WSCA.pdf, 2001.
2. WSA/W3C.: Web Services Architecture. http://www.w3.org/TR/ws­arch/#whatis, 2004.
3. Standard Glossary of Software Engineering Terminology. ANSI/IEEE 1991.
4. Lyu, M. R.: Handbook of software reliability engineering. McGraw­Hill, 1995.
5. Musa, J.: Software reliability engineering, more reliable software faster development and
testing: McGraw­Hill, 1998.
6. Wallace, D. R.: Practical software reliability modeling. 26th Annual NASA, Software
Engineering Workshop, 2001.
7. Wang, W.L., Chen, M.H.: Heterogeneous software reliability modeling. 13th International
Symposium on Software Reliability Engineering, 2002.
8. Noy, N. F., McGuinness, D. L.: Ontology Development 101: A Guide to Creating Your
First Ontology. http://ksl.stanford.edu/people/dlm/papers/ontology101/ontology101­noy­
mcguinness.html, 2006.
9. Lyu, M. R., Nikora, A.: CASRE: a computer­aided software reliability estimation tool.
Fifth International Workshop on Computer­Aided Software Engineering, 1992.
10. Ramani, S., Gokhale, S. S., Trivedi, K. S.: SREPT: software reliability estimation and
prediction tool. Performance Evaluation, vol. 39, pp. 37 ­ 60, 2000.
11. Musa, J. D., Iannino, A., Okumoto, K.: software reliability: measurement, prediction,
application: McGraw­Hill Book Company, 1987.
12. Zhou, J.: Knowledge Dichotomy and Semantic Knowledge Management. In the
proceedings of the 1st IFIP WG 12.5 working conference on Industrial Applications of
Semantic Web, Jyvaskyla, Finland, 2005.
13. Zhou, J., Niemela, E.: State of the Art on Metamodel­Driven Multimedia over Mobile
Ubiquitous Computing Environments. 4th IASTED International Conference on
Communications, Internet and Information Technology CIIT2005, Cambridge, USA, 2005.
14. Lenat, D. B., Guha, R.V.: Building large knowledge­based systems: representation and
inference in the Cyc project. Boston, Massachusetts: Addison­Wesley, 1990.
15. Uschold, M., King, M.: Towards a methodology for building ontologies. IJCAI'95
Workshop on Basic Ontological Issues in Knowledge Sharing, Montreal, Canada, 1995.
16. Gruninger, M., Fox, M. S.: Methodology for the design and evaluation of Ontologies.
IJCAI'95 Workshop on Basic Ontological Issues in Knowledge Sharing, Montreal, Canada,
1995.
17. Bernaras, A., Laresgoiti, I., Corera, J.: Building and reusing ontologies for electrical
network applications. European Conference on Artificial Interlligence (ECAI'96), Budapest,
Hungary, 1996.
18. Computer Society. IEEE standard for developing software life cycle processes. IEEE std
1074. New York, 1995.

Page 30

http://www.w3.org/TR/ws-arch/#whatis
http://ksl.stanford.edu/people/dlm/papers/ontology101/ontology101-noy-

19. Swartout, B., Patil, R., Knight, K., Russ, T.: Toward distributed use of large­scale
ontologies. AAAI'97 Spring Symposium on Ontological Engineering, Standford University,
California, 1997.
20. Staab, S., Schnurr, H. P., Studer, R., Sure, Y.: Knowledge processes and ontologies.
IEEE Intelligent Systems, vol. 16, pp. 26­34, 2001.
21. Roshandel, R., Medvidovic, N.: Toward Architecture­based Reliability Estimation. The
International Conference on Dependable Systems and Networks, Florence, Italy, 2004.
22. Popstojanova, K. G., Trivedi, K. S.: Architecture­based approach to reliability assessment
of software systems. Performance Evaluation, vol. 45, pp. 179­204, 2001.
23. Littlewood, B.: Software reliability model for modular program structure. IEEE Trans.
Reliability, vol. 28, pp. 241­246, 1979.
24. Cheung, R. C.: A user­oriented software reliability model. IEEE Trans. Software Eng., vol.
6, pp. 118­125, 1980.
25. Laprie, J. C.: Dependability evaluation of software systems in operation. IEEE Trans.
Software Eng., vol. 10, pp. 701­714, 1984.
26. Kubat, P.: Assessing reliability of modular software. Operation Research Letters, vol. 8,
pp. 35­41, 1989.
27. Gokhale, S., Wong, W. E., Trivedi, K., Horgan, J. R.: An analytical approach to
architecture based software reliability prediction. Third International Computer Performance
and Dependability Symposium (IPDS'98), 1998.
28. Ledoux, J.: Availability modeling of modular software. IEEE Trans. Reliability, vol. 48,
pp. 159­168, 1999.
29. Immonen, A.: A method for predicting reliability and availability at the architectural level.
in Research Issues in Software Product­Lines ­ Engineering and Managemen, T. Kakola and J.
C. Duenas, Eds. Berlin Heidelberg: Springer Verlag, 2006, pp. 373­422.
30. Shooman, M.: Structural models for software reliability prediction. Second International
Conference on Software Engineering, 1976.
31. Krishnamurthy, S. Mathur, A. P.: On the estimation of reliability of a software system
using reliabilities of its components. Eighth International Symposium on Software Reliability
Engineering (ISSRE?7), 1997.
32. Yacoub, S., Cukic, B., Ammar, H.: Scenario­based reliability analysis of component­based
software. 10th International Symposium on Software Reliability Engineering (ISSRE'99), 1999.
33. Kanoun, K., Kaaniche, M., Laprie, J.­C., Metge, S.: SoRel: A tool for reliability growth
analysis and prediction from statistical failure data. The Twenty­Third International
Symposium on Fault­Tolerant Computing, 1993.
34. AgenaRisk. http://www.agenarisk.com/, 2006.
35. AT&T SRE Toolkit. http://www.cse.cuhk.edu.hk/~lyu/book/reliability/sretools.html, 2006.
36. Stark, G. E.:A Survey of Software Reliability Measurement Tools. The International
Symposium on Software Reliability Engineering, 1991.
37. Reliability Modeling Programs.http://www.enre.umd.edu/tools/rmp.htm
38. RDF/W3C.: Resource Description Framework (RDF). http://www.w3.org/RDF/, 2005.
39. W3C­OWL.: OWL Web Ontology Language Overview. 2005.
40. Eclipse. http://www.eclipse.org/, 2006.
41. OWL Web Ontology Language Overview. http://www.w3.org/TR/2004/REC­owl­
features­20040210/#s1.2, 2005.
42. Jena A Semantic Web Framework for Java. http://jena.sourceforge.net/index.html, 2005.
43. Protégé. http://protege.stanford.edu/.
44. Evesti, A.: Quality oriented software architecture development. Department of Electrical
and Information Engineering. Oulu: University of Oulu, 2007, pp. 57.

Page 31

http://www.agenarisk.com/
http://www.cse.cuhk.edu.hk/~lyu/book/reliability/sretools.html
http://www.w3.org/RDF/
http://www.eclipse.org/
http://www.w3.org/TR/2004/REC-owl-
http://jena.sourceforge.net/index.html
http://protege.stanford.edu/.

An Analysis of Variability Modeling and Management
Tools for Product Line Development

Rafael Capilla1, Alejandro Sánchez1, Juan C. Dueñas2*

1 Department of Computer Science, Universidad Rey Juan Carlos
c/ Tulipán s/n, 28933, Madrid, Spain

rafael.capilla@urjc.es, valdezate@gmail.com
2 Department of Engineering of Telematic Systems, ETSI Telecomunicación

Ciudad Universitaria s/n, 28040, Madrid, Spain
jcduenas@dit.upm.es

Abstract. Software variability is considered a key technique for modelling the
variable parts of a software system. The importance for representing this vari-
ability is well recognized in product lines architectures. The advantage for pro-
ducing multiple products under strong time to market conditions is reached
through the definition of appropriate variation points as configurable options of
the system. In industry, the development of large software systems requires an
enormous effort for modelling and configuring multiple products. To face this
problem, variability modelling tools have been proposed and used for repre-
senting and managing the variations of a system. In this work we analyze the
current state of practice of some of these tools to identify their capabilities and
limits and we provide suggestions for future second-generation tools.

1. Introduction

Software architectures have been widely used for almost 25 years for representing
the main parts of a software system [2]. The success of software architectures comes
from their ability for representing the common and variable parts of a set of related
systems. The aim of software variability is to exploit the variable parts of a set of
systems and to configure new products from the same family. Software variability has
been widely used during the last years in product line architectures [6] for building
multitude of products as a way to meet the market condition when multiple products
have to be delivered in short time. Variation points are used to represent this variabil-
ity as well as to discriminate and to configure different products. One of the main
advantages is that variation points are used to delay the design decisions made at the
beginning to the latest moment in the product lifecycle. Different alternatives for
representing and configuring these variation points are possible, but modeling and
managing hundreds of variation points constitutes a current problem, because de-
pendencies between these have to be handled. The remainder of this paper is as fol-

* The work performed by Juan C. Dueñas has been partially done in the ITEA-SERIOUS project, under

grant FIT340000-2005-136 of Ministerio de Industria, Turismo y Comercio de España.

Page 32

mailto:rafael.capilla@urjc.es
mailto:valdezate@gmail.com
mailto:jcduenas@dit.upm.es

lows. Section 2 describes the main concepts of software variability. Section 3 outlines
variability representation and visualization techniques. Section 4 describes the main
characteristics of a representative list of variability modeling tools. Section 5 men-
tions the impact of variability modeling tools in product lines. Section 6 discusses the
limits of current tools and the features that might be implemented for future tools.

2. Software Variability Concepts

In order to analyze and understand the features implemented in the tools examined
in this work, in this section we provide an overview of the main concepts belonging
to software variability.

2.1 Origins

At the beginning of the ‘90s, the Feature-Oriented Domain Analysis (FODA)
method [16] was proposed for modeling the variations of software systems. FODA
defines mandatory, alternative and optional features and composition rules for guid-
ing the rationale in which the visible and external properties of systems are repre-
sented. Some approaches improve FODA capabilities. The Feature-Oriented Reuse
Method (FORM) [17] extends FODA with domain features (i.e.: features specific to a
particular domain) and performs a classification of different types of features. FORM
is a systematic method that captures the commonalities and differences of application
in a domain in terms of features and produces different feasible configurations of
reusable architectures. Indeed, these feature trees are used as a “decision model” in
the engineering process to obtain different product configurations. In [8] the authors
propose to include quantitative values to FODA trees for specifying QoS parameters
in distributed systems. The definition of quantitative values and ranges values among
are quite useful for featuring certain applications (e.g. telecommunication systems).
Today, the success of software product lines in the industry has raised the popularity
of feature trees like FODA for describing the variability of the product family. A
FODA tree describes at a high level (i.e.: conceptual level) the variations and alterna-
tives that occur in a particular software product or in the entire product family as
specified in the requirements. This high level description must be translated to the
design and implementation levels in the form of variation points and variants.

2.2 Variation Points and Variants

The concrete specification of a feature tree is usually achieved by means of variation
points (VP). We understand by variation points an area of a software system affected
by variability. Each variation point is commonly defined in terms of variants that
represent the alternatives for each variation point. At the end, each variant may define
a set of allowed values that are selected at a given time. Variability in space defined
the allowed configurations for a set of products. Furthermore, the extensibility of a

Page 33

variation point can be open or closed. In closed variation points all variants are de-
fined at pre-deployment time and the selection of the choices is only possible between
the built-in variants. Open variation points allow the inclusion of new variants to an
existing variation points at runtime. Note than adding a variant to an existing varia-
tion point is quite different from adding a new variation point, but this concept seems
really hard to implement. Therefore, the evolution of the variation points has impact
in the evolution of the products.

2.2 Binding Time and Implementation Mechanisms

The selection of a particular feature implies the selection of its corresponding
variation point, variants, and values. The realization of the variability, that is, the
moment in which the variability happens, is often called the binding time (i.e.: vari-
ability in time). This binding time may take place at different moments, like design
time, compilation, programming, run-time, etc. In [11], the authors identify different
binding times for which variability may occur. Complementary to the definition of
each particular binding time, the variation points defined at the design level must be
implemented at the code level. Some of the alternatives to realize the variability are
the following.

• Compiler directives and installation procedures: The variation points are

realized when the software is compiled and this is achieved through directives,
(e.g.: #ifdef). These directives can be used during the installation of software
packages (e.g.: operating systems) to install or configure a particular product.

• Flow control sentences: Flow control sentences (e.g.: if..then) can be used
at programming and run-time for selecting concrete options in the product.

• Parameterization: Variation points and variants are specified using function
parameters that are instantiated at a given moment.

• Boolean formula: The result of a variation point is computed by means of a
specific formula, usually based on logical connectors, and checked afterwards
to select a particular alternative or a different variation point. Variability is
implemented at programming time and realized at run-time.

• Configuration: Configuration files are loaded at the beginning of the execu-
tion of the system and used to select between different options. This configu-
ration file is usually written in the same language of the software product.

• Generator files: Under a generative approach, makefiles can be used to de-
ploy automatically a software package or particular product configuration,
which is usually built on the top of different base software packages.

• Database: This mechanism is sometimes used (e.g.: context-aware systems)
and the variations are realized depending of the values stored in databases. An
initial set-up of the values must be done prior to the execution of the system,
so they can be checked afterwards to decide between different alternatives.

Other additional techniques are possible to enable variability in general (e.g.: ag-

gregation, inheritance, overloading, macros), such as described in [23]. In many cases

Page 34

and due to the complexity of software systems, several variability implementation
mechanisms might be combined to obtain the desired configuration. In [29], the au-
thors present a taxonomy of variability realization techniques in which different ways
to implement the variation points are described. The authors describe the motivation
of each realization technique and they relate it with a concrete stage of the lifecycle as
well as the proposed solution for each case.

2.3 Dependency Model and Traceability

An important characteristic that affects both the modeling and the implementation
of the variability is the existence of dependencies that can be established between
features. A dependency may be originated because some feature needs the existence
of another or because the modification of a particular feature impacts on other fea-
tures. System constraints can be modeled as dependencies which limits the number of
allowed products. During the modeling process, new dependencies add a degree of
complexity to the features model with a direct impact on the definition and selection
of the variation points. Feature models can use logical connectors like AND, OR and
XOR to model the relationships between features, and variation points can be defined
using these logical connectors. More complex dependencies can be modeled in a
different way. Jaring and Bosch [15] discuss a taxonomy of variability realization
techniques as a major concern when modeling and configuring products in a product
line context. The authors identify four main types of variability dependencies, each of
them consisting of four subtypes. Lee and Kang [20] suggest a classification of de-
pendency types for feature modeling in product lines and they analyze feature de-
pendencies that can be useful in the design of reusable components. Because feature
modeling mainly focuses on structural dependencies, the authors propose to extend
classic feature models by adding operational dependencies. An operational depend-
ency is a relationship between features during the execution of the system. For in-
stance, the usage dependency happens when a feature may depend on other features
for its correct functioning. In [21], the authors describe a feature dependency model
for managing static and dynamic dependencies for product line development. Three
static dependencies and seven dynamic ones are defined. A directed graph is used to
analyze domain requirements dependencies to produce the right product members in
the product line. An algorithm generates the maximum connective dependencies
graph but only direct dependencies are represented, no implicit ones. In general, vari-
ability modeling and management techniques are not enough powerful to support
traceability, making it necessary to use other mechanisms to relate, for example, fea-
ture models with products. As stated in [7], capturing and representing this traceabil-
ity is a challenging task. The authors propose a unified approach for successful vari-
ability management, in which trace links are defined to connect both the problem
space (the feature model) with the solution space (instantiated architecture and code).
Hence, several dimensions of variability can be defined to represent the variation
points, the dependencies and the traces under a product line context. For the represen-
tation of these traces, and providing basic dependency types are handled, matrixes are
a suitable option.

Page 35

2.4 Variability Management

Variability is the ability to change or customize a system [32], and variability man-
agement includes the processes for maintaining the variability model across the dif-
ferent stages of the lifecycle in order to produce the right product configurations.
Because features and variation points are not isolated, changes performed over a
variation point may affect other variation points as well as the final product. Manag-
ing the variation points, variants and dependencies of a software system constitutes a
big challenge for current variability modeling tools. Typical management activities
should include: maintain the variation points, variants and dependencies, constraint
checking, traceability between the model and products, configuration processes, and
documentation. In [32], the authors describe some activities concerning variability
management in a product line context, such as: variability identification, introduction
of the variability in the system, collecting the variants and binding the system to one
variant. The authors state the existence of feature interaction but the maintenance of
the dependencies between features should be described explicitly in the proposed
tasks. The technical report described in [22] discusses family based development
processes and how to express requirements in terms of features and features in terms
of variation points. Variability should be managed not only in the problem space, but
also in the solution space during the development phase because the product portfolio
has a direct impact on variability management activities.

3. Variability Representation and Visualization Techniques

The notation of variation point was introduced in RSEB (Reuse-Driven Software
Engineering Business) [13], but some other notations have been proposed and used.
In [23], the author analyses and compares five different leading modeling notations
for representing variability in software systems (i.e.: FODA, FORM, Generative
programming, Feature-RSEB and Jan Bosch’s notation). Some of the aforementioned
notations share FODA and FORM feature types and relationships while others pro-
pose extensions to the feature modeling. For instance, Jan Bosch’s model proposes
the introduction of “external features” which does not fit in the usual classification. A
feature tree is one of the most common presentation techniques used for describing
the variability of a system. In addition, UML uses some extensions to describe the
variability of systems, like: UML stereotypes, tagged values and constraints based on
the OCL (Object Constraint Language) [10]. In general, standard UML suffers the
lack of a more precise notation to express all the variability concepts needed, the
same as the original FODA feature trees which are not enough powerful to represent
complex relationships between the variation points. Practical usage, however, sug-
gests that FODA feature trees are well adapted for variability analysis, while the
usage of UML profiles for variability has a clear focus on architecture, as described in
[4].

Page 36

3.1 Visualization

Variability management and modeling tools usually provide a graphical descrip-
tion of the variation points and variants for each product. Therefore, visualization
and configuration facilities must be included, such as the following ones.

• Tree view: FODA trees are widely used for representing the variation points

and variants for a particular product. One of the problems with this approach
is the scalability when the number of alternatives grows.

• Graph view: Graphs are similar to trees but some kind of mechanism to ex-
pand the branches containing the alternatives is needed.

• Matrix view: Matrixes allow the visualization of a large number of items, but
using this approach we can loose the perspective of the hierarchy and depend-
encies of the variation points and variants.

In addition, combo and check boxes or radio buttons can be used for the selection

of the choices during product configuration. As the number of variation points and
variants becomes unmanageable, the visualization of all the alternatives becomes a
big problem. A way to solve this is to split the variability model into categories for
which the user may select or visualize a portion of the tree. Another solution is to
employ zooming tools to expand only those parts of the model in which the designer
is interested on. The visualization of hundreds of variations points becomes an impor-
tant problem in industrial product lines because it may hamper the scalability of visu-
alization facilities.

4. State of Practice of Variability Modeling Tools

Once we have described the main concepts of software variability modeling, in this
section we outline the main characteristics of some existing variability modeling and
management tools. The tools selected offer specific functionality for modeling vari-
ability. The assessment was performed, based on the information given by the tools’
authors or providers, who were asked to complete a review form. There was no cross-
comparison between tools since the main objective of the evaluation is not to identify
the best tool, but to identify the most relevant items that offer practical relevance to
the community. The scope of this analysis is mainly focused on variability modeling
and management tools rather than those using MDA-MDD [34], domain-specific
languages [30], and generative approaches.

4.1 GEARS

Gears is a commercial software product line development tool developed by
BigLever Inc [19] (http://www.biglever.com) and enables the modeling of optional
and varying features which is used to differentiate the products in the portfolio. The
Gears feature model uses rich typing (sets, enumerations, records, Boolean, integer,

Page 37

http://www.biglever.com/

float, character, string) distinguishes between “features” at the domain modeling level
and “variation points” at the implementation level (source code, requirements, test
cases, documentation). In Gears, set types allow the selection of optional subsets,
enumeration types allow selection of one and only one alternative, Boolean represent
singular options, and records represent mandatory lists of features. Gears variation
points are inserted to support implementation level variation. Components with Gears
variation points become reusable core assets that are automatically composed and
configured into product instances. Thus developers work in a very conventional way
on Gears core assets, with the exception of implementing the variation points to sup-
port the required feature model variations that are in the scope of their asset.

Dependencies in Gears are expressed as relational assertions. Simple binary rela-
tions can be used to express the conventional require and excludes dependencies.
Assertions can also contain 3 or more feature and relations such as “greater than”.
Variation points and feature models are fully user programmable to arbitrary levels of
sophistication and complexity. User-defined compound features have anonymous
types (i.e., with the advanced typing in Gears, explicit user defined types and reusable
types are not required).

The Gears approach defines product feature profiles for each product and selects
the desired choices in the feature model. A product configurator automatically pro-
duces the individual products in the portfolio by assembling the assets and customiz-
ing the variation points within those assets to produce a particular product according
to the feature profile. Gears modules can be mapped to any existing modularity capa-
bilities in software. Gears modules can be composed into subsystems, which can be
treated as standalone “product lines”. Product lines can be composed from modules
and other nested product lines. Aspect-oriented features are captured in Gears “mix-
ins”, which allow crosscutting features to be imported into one or more modules for
use in implementation variation points in those modules. The tool supports also the
definition of hierarchical product lines by nesting one product line into another.

Two views and editor styles are supported and can be switched dynamically: (1)
syntactically and semantically well-defined text view and (2) context-sensitive struc-
tural tree view. Gears uses file and text based composition and configuration. This
language-independent approach allows users to transition legacy variation as well as
implement new variations. Gears has been used for all of the above and supports
multiple binding times in one product line. For runtime binding, Gears typically in-
fluences the runtime behavior indirectly through statically instantiated configuration
files or database setting, though these could also be set dynamically by making fea-
ture selections at runtime.

Gears technology eases the software mass customization process because enables
organizations to quickly adopt a software mass customization for product line devel-
opment. Gears supports three different models for product line adoption. Proactive,
reactive and extractive approaches can be used depending of each particular organiza-
tion, but they are not necessarily mutually exclusive. Gears has been used in systems
with millions of LoC with no perceived limitation on scalability.

Page 38

4.2 V-Manage

V-Manage from European Software Institute (ESI) (http://www.esi.es), is a tool
for internal use that supports system family engineering in the context of MDA
(Model Driven Architecture) and consists of the following three modules [26].

• V-Define: Defines the variation model (i.e. decision model in V-Manage ter-

minology) as well as the relationships. The elements of the feature model are
HTML links.

• V-Resolve: Builds application models by setting the values of the decision
model and produces a suitable configuration of the decision model. It supports
the resolution of the model using the variation model.

• V-Implement: Supports the implementation of reusable components and links
the variation parameters attached to the decisions to some external compo-
nents or to other dependencies. V-Manage generates the result of a particular
configuration to HTML, PLC-code, a UML model or requirements document.

As described in [4], with V-Manage the user specifies a variation model and a

resolution model, and provides a mechanism to specify product line models to derive
concrete system models. The V-define interface is used as the front-end to specify the
variation model for a product line. The resulting model is an application model where
all the variations have been resolved. Dependency rules guide the user during the
configuration of the values for each variation element. Binding and refinement are
supported by V-implement for the production of reusable components.

4.3 COVAMOF

The COVAMOF (ConIPF Variability Modeling Framework,
http://www.covamof.com) approach is a variability modeling approach for represent-
ing variation points and variants on all abstractions layers, supports the modeling of
relations between dependencies, provides traceability, and a hierarchical organization
of variability. Five types of variation points supported in COVAMOF: optional, alter-
native, optional-variant, variant and value. The optional-variant variation point refers
to the selection (zero or more) from the one or more associated variants. The
COVAMOF Variability View (CVV) [25] represents the view of the variability for
the product family artifacts and unifies the variability on all layers of abstraction. The
CVV models the dependencies that occur in industrial product families to restrict the
binding of one or more variation points. Simple dependencies are expressed by a
Boolean expression, and CVV specifies a function valid to indicate whether a de-
pendency is violated or not. In addition to the Booleans, dependencies and constraints
can also contain integer values, with operators ADD, SUBSTRACT, etc. Boolean and
Numerical are used together in operators like the GREATER THAN, where numeri-
cal values are the input and Booleans are the output. Complex dependencies are de-
fined in COVAMOF as dynamically analyzable dependencies and the CVV contains
for each dynamically analyzable dependency the following properties [27]:

Page 39

http://www.esi.es/
http://www.covamof.com/

• Aspect: Each dependency is associated to an aspect that can be expressed by a
real value.

• Valid range: This dependency specifies a function to {true, false} indicating
whether a value is acceptable.

• Associations: The CVV distinguishes three types of associations for dynamic
dependencies, which are: predictable, directional and unknown.

COVAMOF provides a graphical representation and a XML representation, used

for communication between tools. The Mocca tool has been also developed to man-
age the COVAMOF Variability View, and allows for multiples views of CVV.
Mocca supports the management of the CVV from the variation point view and the
dependency view [26]. Mocca is implemented in Java as extension to the Eclipse 3.0
platform. Some recent improvements to COVAMOF, in particular to the derivation
process, are supported by COVAMOF-VS tool suite [28], which is a set of add-ins
for Microsoft Visual Studio.NET. The COVAMOF-VS provides two main graphical
views, that is the variation point view and the dependency view, as a way to maintain
an integrated variability model. Finally, specific plug-ins can be added for supporting
different variability implementation mechanisms.

4.4 VMWT

VMWT (Variability Modeling Web Tool) is a research prototype developed at the
University Rey Juan Carlos of Madrid. This first prototype
(http://triana.escet.urjc.es/VMWT/) is a web-based tool built with PHP and
Ajax and running over Apache 2.0. VMWT stores and manages variation points and
variants following a product line approach and enables to create product line projects
for which a set of reusable existing assets can be associated. Before configuring a
particular product, the variants that will be part of the variation points of the feature
model must be added. Each variant can be associated to a particular code component
and we can specify numeric values (quantitative values), ranges of values or a enu-
merated list can be specified. Once all the variants have been added, the variation
points will be added to the code components. VMWT supports dependency rules and
constraints for the variation points and variants already defined. The following Boo-
lean relationships are allowed: AND, OR, XOR and NONE. In addition, more com-
plex dependencies can be defined, such as requires and excludes. The tool allows
constraint and dependency checking and we it computes the number of allowed con-
figurations. This is quite useful when it is needed to estimate the cost of the products
to be engineered. Finally, a FODA tree is visualized for selecting the options for each
product and the selected configuration is then displayed to the user. The variation
points and variants selected are included in a file attached to each code component.
Documentation of the product line can be automatically generated as PDF documents.

Page 40

http://triana.escet.urjc.es/VMWT/

4.5 AHEAD

The AHEAD (Algebraic Hierarchical Equations for Application Development)
Tool Suite (AHEAD TS) (http://www.onekin.org) was developed to support the
development of product lines using compositional programming techniques [3].
AHEAD TS has been used in distinct domains (i) to produce applications where fea-
tures and variations are used in the production process [9] (ii) to produce a product
line of portlets. The production process in software product lines require the use of
features that have to be modeled as first-class entities. AHEAD distinguishes between
“product features” and “built-in features”. The former characterizes the product as
such. The latter refers to variations on the associated process. The production proc-
esses are specified in using Ant, a popular scripting language from the Java commu-
nity. AHEAD uses a step-wise refinement process based on the GenVoca methodol-
ogy for incrementally adding features to the products belonging to a system family.
The refinements supported by AHEAD are packaged in layers. The base layer con-
tains the base artifacts and the lower layers allow the refinements needed to enhance
the base artifacts with specific features. The AHEAD production process distin-
guishes between two different stages. The intra-layer production process specifies the
tasks for producing a set of artifacts within a layer or upper layers. The inter-layer
production process defined how layers should be intertwined to obtain the final prod-
uct. An extension to AHEAD is described in [31], and a tool called XAK was devel-
oped for composing base and refinement artifacts in XML format. ATS was refac-
tored into features to allow the integration with XAK The feature refactoring ap-
proach used in XAK decomposes legacy applications into a set of feature modules
which can be added to a product line. AHEAD doesn’t require manual intervention
during the derivation process.

6. Discussion and Comparison

Complementary to the tools described before, we can find other approaches for
feature and variability modeling. In [33], the authors present the Koala approach for
modeling variability in software product families. Koala specifies the variability in
the design by selecting the components and appropriate parameters. Another ap-
proach presented in [5] outlines the variability of a product family into two levels: the
specification level and the realization level. The variability model defines the varia-
tion points and where these are implemented in the asset base. Static and dynamic
variation points are allowed, whereas dependencies are modeled 1-to-1. In [12], the
authors mention the Product-Line UML based Software Engineering Environment
(PLUSEE), which is a tool for addressing multiple views of a software product line
and check the consistency among these views. Variability is defined using the UML
notation through different views (e.g.: case model, static model, collaboration model,
statechart model and feature model) and each view is related to a particular stage in
the software lifecycle. There are two versions of PLUSEE, one uses Rational Rose
and the other Rational Rose RT. PLUSEE is able to produce a consistent multiple-
view model and an executable model using Rose RT.

The FeaturePlugin mentioned in [1] is an Eclipse plug-in for feature modeling.

Page 41

http://www.onekin.org/

This tool follows the FODA approach and supports cardinality-based feature model-
ing, specialization of feature diagrams and configuration based on feature diagrams.
The FeaturePlugin tool organizes features in trees and has some extra characteristics:
ColorTypes, Depth and DisplayTypes which, for instance, are hidden in the V-
Manage tool. The tree organization of FeaturePlugin supports very easily the scalabil-
ity of the tool when new characteristics are added. The BVR model [24] (developed
under the European FAMILIES project) defines a meta-model for modeling the vari-
ability in system families. This meta-model has three main parts. The Base model is
any model in a given language. The Variation model which contains variation ele-
ments referred to the Base model element. The Resolution model resolves the vari-
ability for a system family model. The BVR approach uses a prototype tool called
Object-Oriented Feature Modeler (OOFM) made as an Eclipse plugin for supporting
the feature modeling process. The ASADAL (A System Analysis and Design Aid
Tool) described in [18] supports the entire lifecycle of software development process
of a software product line and based on the FORM method [17]. ASADAL is a more
complete approach compared to variability management tools like COVAMOF but
variability management is a key feature of ASADAL. Two feature analysis editors for
feature modeling and feature binding are implemented in ASADAL, and product-
specific design can be instantiated through feature selection. ASADAL is able to
generate executable code from an architecture model.

Table 1 describes a comparative analysis of the representative tools introduced in
Section 4, for modeling and managing variability. As evaluation items, we have cho-
sen the specific concepts about variability modeling and management most widely
accepted (which were defined in Section 2). The characteristics described in the table
were obtained analyzing the information available for each tool. We couldn’t perform
a real evaluation of some of the tools because GEARS is a commercial tool and no
demo is yet available whereas V-Manage is for internal use. The VMWT was tested
in our university and we obtained some of the characteristics from the remainder tools
by interviewing the authors.

Table. 1. Comparative analysis of variability modeling tools

 GEARS V-Manage COVAMOF VMWT AHEAD

VP / Feature

dependencies

Binary relations AND, OR,
NONE

Boolean
Numerical

AND, OR, XOR,
NONE

AND, OR,
XOR, NONE

Complex

dependencies

Relational assertions.
Assertions can contain
3 or more feature and
relations such as >,
>=, <, <=, ==, subset,
superset, AND, OR,
NOT, +, -, *, /

Require
Excludes

---- Dynamic
dependencies
{aspect,
valid range,
associations}

Requires
Excludes

Require
Excludes

Feature / VP

types

Set types allow selec-
tion of optional sub-
sets.
Enumeration types
allow selection of one

Mandatory
Alternative
Optional
Enabled
Disabled

Alternative
Optional
Optional-variant
Variant
Value

Mandatory
Alternative
Optional

Mandatory
Alternative
Optional

Page 42

and only one alterna-
tive.
Boolean types repre-
sent singular options
Records are manda-
tory lists of features

Traceability Yes Yes Yes No Yes

Feature-VP

allowed values

Integers Floats
Characters Strings
Booleans Atoms
Ranges are con-
strained by assertions

XML like data
values

Ranges
of values

Numerical
Enumeration
Boolean
String
Ranges
of values

VP

visualization

Feature tree
Text view

Feature tree
Feature list
Flowchart
to be planned

Feature tree Feature tree Feature tree

Extensibility

Opened /

Closed VP

Open for dynamic
loading & component
swapping
Closed

Closed Open & Closed
(e.g: Open in
SOA projects)

Closed Closed

Variability

Management

facilities

5 4
(working
on visual model-
ing)

5 4 4

Variability

implementation

mechanism

Composition
Configuration

Parameterization
Configuration
Generation
Macros
Architectural
design patterns
Dynamic
link libraries
Dynamic
class loading

Configuration
Generation
Macros
Dynamic
link libraries
Parameteriza-
tion

Parameterization
Configuration

Inheritance
Overloading

Integration

of VP with

software

components

5 4
(working on plug-
ins architecture
and eclipse inte-
gration)

5 (VP are
specified in or
even extracted
from the source
code)

3 5

Scalability for

visualizing VP

5 5 5
(Plug-in for
additional
views. visual-
izes the VPs in
Visio)

3 4

Scalability 5 5 5 4 5

Feature

dependency /

constraint

checking

Yes Yes Yes

Yes Yes
(SAT solver)

Automatic VP

generation

Yes Yes Yes Yes Yes

Binding Time Pre-compilation
Compilation
Linking
Installation
Startup

Pre-Compilation

Pre-compilation
Compilation
Linking
Installation
Startup

Programming
Runtime

Pre-
Compilation

Page 43

Runtime Runtime

Statistical

analysis and

Reporting

Yes Yes Yes Variability and
Project
PDF documents

No

Product

derivation

Yes Yes Yes Partially Yes

Estimation

of the number

of products

Yes
(Combinatory report-
ing of estimated in-
stances)

Yes No Yes Yes
(SAT solver)

Phases of the

lifecycle

covered

Analysis
Design
Implementation

Requirements
Design
Implementation

Analysis
Design
Implementation

Design
Implementation

Design
Implementation

Tool approach Modeling
Management

Modeling

Modeling
Management

Configuration
Modeling
Management

Configuration
Modeling

Development

approach

Specialization
Compositional

Compositional
Derivation

Compositional
Generative

Specialization
Compositional

Specialization
Compositional
Generative

Platform /

Technology

Java
Standalone version
with Eclipse and Vis-
ual Studio

Java
Ant
XML
Eclipse

MS Visual
Studio.NET
XML

PHP
AJAX
JavaScript

Java-Ant
XML

5. Impact on Product Line Development

Today, we have many examples of successful products lines (e.g.: Celsius Tech
Cummins, Salion, Market Maker, Thales Naval, HP, etc) in which multiple products
are designed and built under strong time to market conditions. The Nokia product line
an example of successful product line which comprises multiple mobile phones or-
ganized around different families (e.g.: Nokia series 30, 60). A few examples of using
the tools in real cases have been documented and the numbers of savings in terms of
cost and effort have been reported. Some of the aforementioned tools have been
tested both in academia and in industry. For instance, COVAMOF was used on the
Intrada product family from Dacolian B.V., a small independent SME in The Nether-
lands for intelligent traffic systems [28]. Engenio is a firm dedicated to high-
performance disk storage systems with approximately 200 developers distributed
across four locations. Around 80% of the code is common to the 82 products of the
firm. The increasing demand for Engenio’s RAID storage server products led to the
adoption of a product line approach and Gears was selected for this. Several success-
ful results were obtained (see [14]). For instance, Engenio has experienced a 50%
increase in development capacity. All these stories prove that software product lines
constitute a successful approach for building software system families, and tools are
strongly needed for managing the amount of variability required.

Page 44

6. Current Limits and Second-generation Tools

The aforementioned tools constitute an important help for product line engineer-
ing. The lack of a unified approach for software variability leads to a certain number
of tools with the same goal and similar characteristics, but with differences between
them. There are some limitations of current tools as well as some issues that can be
enhanced. For instance, the visualization of hundreds of variation points with their
associated variants, in particular in industrial product lines, is a limitation of some of
the existing tools, and new visualization facilities are welcome. As an example, we
tested VMWT in two medium-size web projects and we observed that the tool needs
better visualization capabilities when the number of variation points and variants
scale up. Another issue, in particular for complex systems, is the need to handle com-
plex dependencies. Some of the existing tools need to support more complex depend-
encies for describing all the relationships and constraints for any type of software
system. Also, the extensibility of the variability model for supporting runtime vari-
ability (e.g.: adding variation points during the execution of the system) is a complex
problem associated to the evolution of the system that could be alleviated by the us-
age of plug-ins mechanisms in runtime. The integration of variability modeling tools
with traditional software engineering tools seems quite interesting for software prod-
uct line engineering. In particular, unless there is a serious effort by the variability
tools providers to integrate these tools with software configuration management tools
and integrate the variability management activities in the practical development proc-
esses, the success of these tools will be in danger. The integration of variability tools
with the configuration management community is an interesting issue to explore for
configuration management purposes. Also, variability management tools could learn
about the knowledge management community to incorporate more additional fea-
tures. These and other capabilities seem to be interesting to be added and we believe a
second-generation variability tools is a goal to pursuit. In this paper we have studied
some representative tools for modeling and managing software variability in order to
discover the needs for second-generation tools. Most of the tools analyzed share
many common characteristics and most of them focus on specialization and composi-
tional approaches. The estimation of the number of allowed products or right configu-
rations is an interesting issue for the defining production plans and for cost estima-
tion. The majority of the tools cover design and implementation phases of the soft-
ware lifecycle. Finally, integrated derivation processes from feature models to prod-
ucts are welcome to reduce the effort of configuration processes.

Acknowledgements

We thank to Charlie Krueger for his useful information about GEARS, which has
been balanced between commercial and academic reasons; also Jason X. Mansell
(ESI) who gave us many responses about V-manage. Many thanks to Marco Sinnema
for providing useful information of COVAMOF-VS, and Salva Trujillo and Oscar
Díaz who provide us the details of AHEAD TS in alive discussions

Page 45

References

1. Antkiewicz, M. and Czarnecki K. FeaturePlugin: Feature Modeling Plug-in for Eclipse,
OOPSLA’04 Eclipse Technology eXchange (ETX) Workshop, 2004

2. Bass, L., Clements P. and Kazman, R. Software Architecture in Practice, Addison-Wesley,
2nd edition, (2003).

3. Batory, D., Sarvela, J.N. and Rauschmayer, A. Scaling Step-Wise Refinement. IEEE TSE
30(6) 355-371, (2004).

4. Bayer, J, Gerard, S., Haugen, Ø, Mansell, J., Møller-Pedersen, B., Oldevik, J., Tessier, P.,
Thibault, J.P. and Widen, T. Consolidated Product Line Variability Modeling, In Software
Product Lines Research Issues in Engineering and Management, Springer-Verlag, Timo
Käköla and Juan Carlos Dueñas (Eds), pp. (2006).

5. Becker, M. Mapping Variability’s onto Product Family Assets. Procs of the International
Colloquium of the Sonderforschungberich 501, University of Kaisersalutern, Germany,
(2003).

6. Bosch, J. Design and Use of Software Architectures, Addison-Wesley (2000).
7. Berg, K., Bishop, J. and Muthig, D. Tracing Software Product Line Variability – From Prob-

lem to Solution Space. Procs of the Annual Conference of the South African Institute of
Computer Scientists and Information Technologists (SAICSIT), pp. 111-120 (2005).

8. Capilla, R. and Dueñas, J.C. Modelling Variability with Features in Distributed Architec-
tures, Procs of Product Family Engineering (PFE), Springer-Verlag LNCS pp. 319-329,
(2001).

9. Díaz, O., Trujillo, S. and Anfurrutia, F.I. Supporting Production Strategies as Refinements of
the Production Process. Procs of 9th Software Product Line Conference (SPLC), Springer-
Verlag LNCS 3714 pp.210-221, (2005).

10. Dobrica, L. and Niemelä, E. Using UML Notation Extensions to Model Variability in
Product-line Architectures. International Workshop on Software Variability Management
(SVM), ICSE’03, Portland, Oregon, USA pp. 8-13 (2003).

11. Fritsch, C., Lehn, A. and Strohm, T. Evaluating Variability Implementation Mechanisms.
Procs of International Workshop on Product Line Engineering (PLEES’02), Technical Re-
port at Fraunhofer IESE (No. 056.02/E) 59-64 (2002).

12. Gomaa, H. and Shin, M.E. Variability in Multiple-View Models of Software Product Lines.
International Workshop on Software Variability Management (SVM), ICSE’03, Portland,
Oregon, USA pp. 63-68 (2003).

13. Griss M. L., Favaro J., d’Alessandro M., Integrating Features Modeling with the RSEB.
5th International Conference on Software Reuse, IEEE Computer Society (1998)

14. Hetrick, W.A., Krueger, C.W. and Moore, J.G. Incremental Return on Incremental Invest-
ment: Engenio’s Transition to Software Product Line Practice. Conference on Object
Oriented Programming Systems Languages and Applications, Companion to the
21st ACM SIGPLAN conference on Object-oriented programming systems, lan-
guages, and applications (OOPSLA), ACM pp. 798-804 (2006).

15. Jaring, M. and Bosch, J. Variability Dependencies in Product Family Engineering. 5th
International Workshop on Product family Engineering (PFE), Springer-Verlag, LNCS
3014, pp. 81-97, (2004).

16. Kang K. C., Cohen S., Hess J. A., Novak W. E., Peterson A. S.. Featured-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report, CMU/SEI-90-TR-21 ESD-90-TR-
22, Software Engineering Institute, Carnegie Mellon University, Pittsburgh (1990).

17. Kang K. C., Kim, S., Lee, J., Kim, K., Shin, E., and Huh, M. FORM: A Feature-oriented
Reuse Method with Domain Specific Software Architectures. Annals of Software Engineer-
ing, Vol 5(1) pp. 143-168, Springer (1998).

Page 46

18. Kim, K., Kim, H., Ahn, M., Seo, M., Chang, Y. and Kang, K.C. ASADAL: A Tool System
for Co-Development of Software and Test Environment based on Product Line Engineering.
ICSE 2006, pp. 783-786, (2006).

19. Krueger, C. W. Software Mass Customization. BigLever Software Inc. Available at:
http://www.biglever.com/extras/BigLeverMassCustomization.pdf, (2006).

20. Lee, K. and Kang, K.C. Feature Dependency Analysis for Product Line Component De-
sign. 8th International Conference on Software Reuse (ICSR), Madrid, Springer-Verlag
LNCS 3107, pp. 69-85, (2004).

21. Lee, Y., Yang, C., Zhu, C. and Zhao, W. An Approach to Managing Feature Dependencies
for Product releasing in Software Product Lines. 9th International Conference on Software
Reuse (ICSR), Turin, Italy, Springer-Verlag LNCS 4039, pp. 127-141, (2006).

22. Myllymäki, T. Variability Management in Software Product Lines. Technical Report 30.
Institute of Software Systems, Tampere University of Technology (2002).

23. Robak, S. Feature Modeling Notations for System Families. International Workshop on
Software Variability Management (SVM), ICSE’03, Portland, Oregon, USA pp. 58-62
(2003).

24. Shakari, P. and Møller-Pedersen, B. On the Implementation of a Tool for feature Modeling
with a base Model Twist. Available at: http://www.himolde.no/nik06/articles/08-
Shakari.pdf

25. Sinnema, M., Deelstra, S., Nijuis, J. And Bosch, J. COVAMOF: A Framework for Model-
ing Variability in Software Product Families. Procs of 3rd International Software Product
Line Conference (SPLC), Springer-Verlag LNCS 3154, pp. 197-213, (2004).

26. Sinnema, M., de Graaf, O. and Bosch, J. Tool Support for COVAMOF. Procs of the 2nd
Groningen Workshop on Software Variability Management (SVMG), Groningen, The Neth-
erlands, (2004).

27. Sinnema, M., Deelstra, S., Nijuis, J. And Bosch, J. Modeling Dependencies in Product
Families with COVAMOF. Procs of 13th International Workshop on Engineering of Com-
puter Based Systems (ECBS’06), pp. 299-307 (2006).

28. Sinnema, M., Deelstra, S., Nijuis, J. and Hoekstra, P. The COVAMOF Derivation Process,
9th International Conference on Software Reuse (ICSR), Turin, Italy, Springer-Verlag LNCS
4039, pp. 101-114, (2006).

29. Svahnberg, M., van Gurp, J. and Bosch, J. A Taxonomy of Variability Realization Tech-
niques. Software Practice & Experience, vol 35(8), 705-754, (2005).

30. Tolvanen, J-P., Kelly, S. Defining Domain-Specific Modeling Languages to Automate
Product Derivation: Collected Experiences, Proceedings of the 9th International Software
Product Line Conference, H. Obbink and K. Pohl (Eds.) Springer-Verlag, LNCS 3714, pp.
198 – 209, (2005).

31. Trujillo, S., Batory, D. and Díaz O. Feature Refactoring a Multi-Representation Applica-
tion into a Product Line. Procs of 5th International Conference on Generative Programming
and Component Engineering, pp. 191-200 (2006).

32. van Gurp, J., Bosch, J. and Svahnberg, M. Managing Variability in Software Product Lines.
Procs of IEEE/IFIP Conference on Software Architecture, WICSA 2001, Amsterdam, The
Netherlands, IEEE CS, pp. 45-54 (2001).

33. van Ommering, R. van der Linden, F., Kramer, J. and Magee, J. The Koala Component
Model for Consumer Electronics Software. IEEE Computer, pp. 78-85, (2000).

34. Oldevik, J. Solberg, A., Haugen, Ø., -Pedersen, B. Evaluation framework for Model-Driven
Product Line Engineering tools, In Software Product Lines Research Issues in Engineering
and Management, Springer-Verlag, Timo Käköla and Juan Carlos Dueñas (Eds), pp. (2006).

Page 47

http://www.biglever.com/extras/BigLeverMassCustomization.pdf

Tool-Supported Multi-Level Language Evolution

Markus Pizka and Elmar Jürgens

Technische Universität München
Institut für Informatik

Boltzmannstr. 3
Germany – 85748 Garching

Abstract. Through their high degree of specialization, domain specific
languages (DSLs) promise higher productivity and thus shorter develop-
ment time and lower costs than general purpose programming languages.
Since many domains are subject to continuous evolution, the associated
DSLs inevitably have to evolve too, to retain their value. However, the
continuous evolution of a DSL itself can be very expensive, since its
compiler as well as existing words (i. e. programs) have to be adapted
according to the changes to a DSL’s specification. These maintenance
costs compromise the expected reduction of development costs and thus
limit the success of domain specific languages in practice.
This paper proposes a concept and a tool for the evolutionary develop-
ment of domain specific languages. It provides language evolution oper-
ations that automate the adaptation of the compiler and existing DSL
programs according to changes to the DSL specification. This signifi-
cantly reduces the cost of DSL maintenance and paves the ground for
bottom-up development of domain specific languages.

1 Domain Specific Chances and Limitations

Albeit three decades of intense research and significant progress in research and
practice, the development and maintenance of software systems still constitutes
a time-consuming, costly and risky endeavor. The reduction of software devel-
opment and maintenance costs thus remains a research topic of paramount im-
portance to software engineering. A basic idea behind many approaches that
attempt to reduce these costs is to increase the productivity of software devel-
opers. One approach to raise productivity that has received increased attention
in recent years, are domain specific languages.

1.1 Productivity Through Specialization

A domain-specific language (DSL) is a programming language or executable
specification language that offers, through appropriate notations and abstrac-
tions, expressive power focused on, and usually restricted to, a particular prob-
lem domain [1]. Hence, the key characteristic of domain specific languages is
their specialization to a problem domain. This specialization allows them to of-
fer language constructs and abstractions tailored to the class of problems from

Page 48

this domain. DSLs typically allow these problems to be described very directly
and concisely, requiring less developer effort than general purpose programming
languages. DSLs thus have the potential to increase productivity and decrease
costs of software development. Particularly prominent examples for the benefits
of DSLs are found in the compiler construction field with specialized languages
and generators (amongst others) for hashing (e. g. gperf), scanners, and parsers.
Tools for the interactive design of graphical user interfaces, the query language
SQL, interface definition languages like WSDL or modeling languages like MAT-
LAB/Simulink add further examples for the benefits of DSLs, i. e. purpose-built
languages with powerful generators.

Besides reduced development time and cost, DSLs are a promising mean
to decrease the maintenance cost of software because of the reduced code size
and increased comprehensibility, both due to the higher expressiveness of DSLs
compared to general-purpose languages. The decrease of maintenance costs is
particularly important since 60-80% of the costs of software are usually not
devoted to initial development but to maintenance [2–4].

However, DSLs only help to reduce overall maintenance costs, as long as
the costs for development and maintenance of the DSL itself can be amortized.
If unanticipated changes to a domain require changes to the DSL definition,
maintenance costs can be high, as noted in [5].

1.2 Limitations

Thus, the success of DSLs is clearly still limited to few niches. To the extent of
our own practical experiences and that of our commercial partners, the bulk of
code that gets written, be it information systems in financial institutions or flight
control systems for commercial aircrafts, makes little use of DSLs. Languages
like Risla for Financial Products [5] are rare exceptions to the rule.

We state that there are at least three major reasons for this which we will ex-
plain more precisely in the following paragraphs. First are the costs of designing
and implementing DSLs. Second, the limited capabilities of one-step generation
and third, the constant need to evolve DSLs.

The multi-level language evolution concept and tool-support presented in
this paper largely increases the applicability of DSLs by helping to overcome
exactly these three current core difficulties in DSL design and implementation.

2 Challenges in DSL Design and Maintenance

The goal of the concept and tool-set presented in this paper is to increase the
long-term applicability of DSLs by supporting an evolutionary and bottom-up
oriented style for DSL design and implementation. The rationale for this ap-
proach is the need to overcome three major obstacles that we detail in the
following paragraphs.

Page 49

2.1 DSLs Are Expensive to Build

Though DSLs promise substantial gains in productivity, the development of
DSLs itself is expensive and troublesome. [6] summarizes the difficulties of build-
ing DSLs adequately as follows:

DSL development is hard, requiring both domain knowledge and lan-
guage development expertise. Few people have both. Not surprisingly,
the decision to develop a DSL is often postponed indefinitely, if con-
sidered at all, and most DSLs never get beyond the application library
stage.

Clearly, one of the primary contributions of DSLs is enabling reuse, i. e. reuse
of abstractions and reuse of the knowledge about how to implement these ab-
straction in different contexts. As such, DSLs must cope with the same economic
challenges like any other reuse oriented approach [7]. Building reusable compo-
nents requires a costly analysis of the domain and its variability followed by
an even more expensive implementation of reusable components1. The costs of
planning and building such generalized components are usually a multiple of the
costs of building a concrete solution to a particular problem [7]. Hence, building
DSLs only pays-off after repeated successful use of the DSL. However, due to the
constant change of requirements and the execution environment [8], the future
use of a DSL is uncertain and building DSLs is economically risky. Note, that
this risk increases with the degree of specialization respectively the potential
benefit.

Requirement 1 (Stepwise Bottom-Up Generalization)
To reduce the uncertainty of the benefit of DSL design and implementation, DSLs
should be built in an incremental and bottom-up oriented manner instead of the
currently predominant top-down and big-bang like approach. To support this style
of DSL development, means for the step-wise generalization of existing concepts
and solutions as needed are required.

If DSLs can be built by gradually abstracting and flexibilizing existing so-
lutions (including DSLs) as needed, then the cost of building a DSL will never
significantly exceed the costs of developing the desired new solution from scratch,
but often provide immediate pay-offs. No effort has to be put into speculation
about future requirements and there is no need for risky in advance investment
into flexibility that could possibly be needed in the future.

2.2 Generators are no Oracles

A DSL usually requires a generator that reads a word2 of the domain specific
language and produces a word in the desired target language. Program gen-
erators for DSLs are nothing but program transformation systems providing a
1 In case of DSLs represented through the domain language and a code generator.
2 The term word is used as in formal language theory to denote strings that conform

to the language syntax.

Page 50

A S L2L1

Generator G

Fig. 1. Generator basics

translation from a higher to a lower level language, (also called synthesis or
compilation). Hence, program generators are subject to the same inherent lim-
itations as conventional compilers that translate from C to Assembler or Java
to Byte-code, though program generators usually operate on a higher level of
abstraction.

Figure 1 illustrates the basic structure of a program generator G. G reads
words v ∈ L1 and produces words w ∈ L2 by first performing an analysis A
of v and then synthesizing (S) result w. The whole benefit of this strategy
corresponds to the distance between the level of abstractions of the input and
the output languages, denoted by A(L1) and A(L2). Basically3, there are three
different possibilities:

A(L1) = A(L2): The DSL L1 and its generator G are useless from a productivity
perspective. G does not contribute any decisions to the implementation. All
details of the output w are already specified in the input v. G only rephrases
v which might increase readability of v compared to w but not reduce its
complexity.

A(L1) > A(L2): This means that some details of w are not described in v but
G decides on the implementation of these details. Examples are the allo-
cation of memory for local variables in C compilers or the optimization of
an SQL query. Here, the gains for the user of L1 are obvious. By leaving
some decisions on how to implement w up to G, v becomes shorter and more
declarative, by describing G what to implement.

A(L1) >> A(L2): Unfortunately, the possibility to stretch the distance between
A(L1) and A(L2) is very limited because of computational complexity. Even
basic decisions, like the allocation of registers, turn out to be NP-hard [9]. It
is our conviction, that mapping higher level descriptions such as a financial
service specification to Java classes and objects efficiently will have to cope
with similar complexity issues. Usually this complexity is circumvented by
accepting suboptimal decisions and thereby reduces quality of the output.
The wider the gap between A(L1) and A(L2) gets, the less information will
be available to the decision maker G resulting in a weaker result w in terms
of performance, reliability, usability and so on. Clearly, reduced quality is
counterproductive for reuse. McIlroy stated in 1968 “No user of a particu-
lar member of a family should pay a penalty in unwanted generality” [10].
E. g. current Object-Relational mapping tools suffer from this trade-off.

This leads to the following contradictory observation:
3 Ignoring reverse engineering, since it cannot increase productivity, where A(L1) <

A(L2)

Page 51

1. The benefit that can be gained from a single generator is inherently and
severely limited. We are convinced that there will not be a single flexible
DSL for some high-level business domain with a generator that maps it to
high-quality Java code.

2. To gain a significant advantage from a DSL, the gap between the level of
abstractions of the input and the output has to be wide (see A(L1) > A(L2)).

The concept and tool-set presented in this paper aims at solving this concept
by fulfilling the following requirement.

Requirement 2 (DSL Layering)
The design and implementation of a DSL should not be limited to a one-step
compilation but support layers of DSLs and a staged generation process with
additional user input at each stage.

Note, that staging further increases the complexity and costs of building and
maintaining the DSL as discussed in 2.1 because changes on one stage might
affect other stages, too. Again, ruling this complexity requires a tool-set that
aids in gradually adapting the DSL hierarchy as needed (see requirement 1).

2.3 Language and Word Evolution

While building a DSL is costly, building layered DSLs is even more expensive
and maintaining a single or even layered DSL is even worse because nothing is
more constant than change entailing a constant need for evolution [8].

The design and implementation of a DSL trivially depends on the require-
ments of the domain. With the exception of DSLs that model a technical domain,
such as regular expressions or SQL, the requirements are directly connected with
the business processes in this domain. Unfortunately, business processes are very
volatile [11], simply because business process agility is the mean to achieve com-
petitive advantages.

This poses a serious difficulty for DSLs. On the one hand, a DSL should be
high-level or in other words as close to the business processes as possible in order
to provide increased productivity compared to a general purpose language. On
the other hand, the tighter the DSL is connected with the business processes,
the more fragile it gets and the more often it will have to be changed, which in
turn reduces the benefits of possible reuse.

A non-trivial change to an existing DSL L leading to a new DSL version L′

requires the following three major steps:

1. Change of the definition of L – its syntax and semantics.
2. Adaption of all tools processing L; at least the corresponding compiler or

generator but possibly also syntax aware editors (e. g. highlighting), debug-
ger, etc.

3. Transformation of all already existing words (programs) w ∈ L into language
L′.

Page 52

As an alternative to step 3, one could also maintain older versions of DSLs so
that words in older versions of the language could still be used and changed
independently of newer versions of the language. However, this would create a
complicated configuration management problem and in addition to this, users of
older versions of the language could not benefit from any advantages of newer
versions and new tools. In practice, this drawbacks forces users to migrate their
words to the new version.

Hence, most DSLs will have to evolve over time, including the tools that
process these DSLs and words written in these languages. Without adequate
tool-support, DSL evolution is a complex, time-consuming, and error-prone task
that severely hampers the long-term success of a DSL.

Requirement 3 (Automated Co-Evolution) DSL maintenance is inevitable
for most realistic domains and requires adequate tool support. The transformation
of existing words and the adaptation of language processing tools according to
changes of the language has to be automated as far as possible.

Note that this requirement complements requirement 1 because the tool-
supported co-evolution of language, tools and words is a contribution to stepwise
bottom-up generalization as formulated in requirement 1.

3 Related Work

The work presented in this paper combines DSLs [1] and generative programming
[12] with elements of program transformation [13] and compiler construction, as
well as software evolution [8]. Within this general context, the evolution con-
cept has strong relations with Grammar Engineering and language evolution as
described in the following paragraphs.

3.1 Grammar Engineering

In [14], Klint, Lämmel and Verhoef argue that although grammars and related
formalisms play a pervasive role in software systems, their engineering is insuffi-
ciently understood. They propose an agenda that is meant to promote research
on Grammarware and state research challenges that need to be addressed in
order to improve the development of grammars and dependent software.

One of these challenges is the development of a framework for grammar trans-
formations and the co-evolution of grammar-dependent software. The Grammar
Evolution Language proposed in this paper offers such grammar transforma-
tion operations, and the automatic generation of compilers from DSL definitions
with static validation of path expressions aims at the desired co-evolution of one
important instance of grammar-dependent software, namely the compiler.

In [15], Lämmel proposes a comprehensive suite of grammar transformation
operations for the incremental adaptation of context free grammars. The pro-
posed operations are based on sound, formal preservation properties that allow

Page 53

to reason about the relationship between grammars before and after transforma-
tion. [16] and [17] present systems that implemented these evolution operations
to incrementally transform LLL and SDF grammars.

Lämmel’s grammar adaptation operations inspired the design of the Gram-
mar Evolution Language used in our approach as a mean to automate language
evolution. However, this paper focuses primarily on the coupled evolution of
grammars and words of the language described by these grammars. Compared
to the operations suggested by Lämmel, the Grammar Evolution Language sacri-
fices the formal basis to allow for simpler coupled evolution operations. It would
be desirable to combine the coupled evolution capabilities proposed in this paper
with the formal preservation properties proposed by Lämmel in future versions
of our tool Lever.

3.2 Evolution of Language Specifications

TransformGen is a system that generates converters that adapt programs ac-
cording to changes of the language specification [18, 19]. While TransformGen
automatically produces converters for local4 changes, non-local transformations
must be specified manually. Furthermore, non-local transformations cannot be
reused between recurring evolution operations.

TransformGen only targets the adaptation of words but does not take lan-
guage processing tools into account. The tool Lever presented in this paper goes
one step further by semi-automating the adaptation of compilers, too. Moreover,
Lever supports reuse of coupled transformations.

3.3 Schema Evolution in Object Oriented Databases

Regarding a data base schema as a language and the information contained in a
data base as the words of this language allows to relate schema evolution with
program transformation. Co-evolution of language and words is of predominant
importance to this field and studied in various works.

In [20], Banerjee proposes a methodology for the development of schema
evolution frameworks for object oriented databases (OODB) that was used in
the ORION OODB system. The methodology suggests invariants for consis-
tent database schemas and evolution primitives for incremental changes to the
database. The evolution primitives perform coupled updates of both the schema
and the objects in the database. Similar schema invariants and update primi-
tives were proposed in [21] for GemStone OODB. The DSL Dictionary invariants
that we use in our approach were inspired by these ideas. In [22], Ferrandina de-
scribes the schema evolution approach used in the O2 OODB. In contrast to the
coupled evolution primitives of ORION, it performs schema and data updates
separately. While a declarative language is used for schema updates, migration
of objects to new schema versions is based on user-defined conversion functions.
Through this separation, O2 is able to support global evolution operations. The
4 Local transformations are restricted to the boundary of a grammar production.

Page 54

approach presented in this paper extends this idea by separating grammar and
word evolution language without requiring user-defined functions in a general
purpose language.

The SERF schema evolution framework [23] uses OQL for schema and data
manipulations and transformation templates, in order to provide extensible, cou-
pled evolution operations. The transformation templates combine the advantages
of the above mentioned approaches, by allowing both local and global transfor-
mations to be specified using expressive, coupled evolution operations affecting
both schema and data objects. These transformation templates stimulated the
use of Jython procedures to form language evolution statements by coupling
grammar and word evolution language statements in the approach presented
here.

4 Language Evolution Concept

The core concepts of the proposed approach to construct multi-level DSLs (see
4.1) incrementally are grammar, word, and language evolution languages (4.3),
and a generator architecture that is built around DSL histories (4.4).

4.1 Divide and Conquer

According to requirement 2 of section 2, layering DSLs is a key design principle
for building powerful DSLs that map high level specifications to their implemen-
tation. Figure 2 illustrates the difference between one-step generation and the
layering proposed in this paper.

G1

G2

G3

t

i1

i2

i3

G1

G2

G3

t

G

I = I1 ° I2 ° I3 ° I4

Fig. 2. Staged versus one-step generation

On a theoretical level, staging the compilation process as shown on the left
into three generators G1, G2, and G3 that produce the output t in a sequence,

Page 55

seems identical with one-step generation of a composed generator G as shown
on the right hand side; with the technical exception that inputs i1, i2 and i3 are
not fed into the generation process at once but at the beginning of each stage.
In fact, the concatenation of the various inputs i = i1 ◦ i2 ◦ i3 could be regarded
as a word of the language I that results from concatenating the input languages
I1, I2, and I3.

However, there are strong differences between the staged or the one-step
generation model when it comes to the implementation of the DSL. Note, that
not only the input fragments i2 and i3 depend on i1 respectively i2 ◦ i1 but
also every language In depends on all inputs previous to stage n. Technically
speaking, In corresponds with the information needed by Gn to further drive with
the generation process in the situation created by i0, . . . , in1 . Now, specifying the
unified language I of all possible input sequences would theoretically be possible
but technically impractical. It would yield a undesirable DSL with numerous
semantical conditions and exceptions allowing and restricting the use of language
elements within a word of the language depending on arbitrary prefixes of the
word.

In addition to the improved structuring of DSL, the staged model also indi-
cates a feasible way of implementing complex generation process by dividing the
task into separate steps with individual inputs at those points where it is needed.
Though this might seem surprising for DSL design and implementation, this is
exactly the strategy that system level software uses successfully to map high-
level applications to system-level representations for execution. E. g. the C++
source code i1 gets compiled with the C++ compiler G1. The link-loader G2

further sets the memory layout according to whether the user wants to execute
the code as a stand-alone application or a shared library as specified in i2. The
operating system kernel G3 then maps the results of these steps to main memory
pages, CPU cycles, and so on according to the priorities of the user (i3). Imagine
the same process without staging. It would surely be possible but either hard to
comprehend or less flexible.

4.2 Generator Maintenance By Transformation

Maintaining such a sequence of dependent generators is highly complex by itself
and only practical with adequate tool-support. For example, if the top level DSL
I1 must be changed to accommodate a new feature, there is a high probability
that the output of G1 changes too, entailing the need for changing I2, G2, and
so on. All of these changes of languages (In) and programs (Gn) can themselves
be treated as language and program transformations. Hence, the evident tool to
maintain a staged DSL is itself a DSL for the domain of DSL manipulation.

The crucial element of this overall architecture is the top-level language evo-
lution language and the meta-level generator H. Our tool called Lever5 presented
in section 5 implements significant parts of such a meta-level generator based
on grammar and word evolution languages.

5 Language evolver.

Page 56

4.3 Language Evolution Operations

The three proposed evolution languages for the manipulation of DSL specifica-
tions are displayed in Figure 3.

DSL

Specification

Syntax

Tree

instance- of

Grammar

Evolution

Language

Word

Evolution

Language

Language

Evolution

Language

Fig. 3. Evolution languages

Grammar Evolution Language (GEL) transforms the syntax and static and
translational semantics of a DSL. GEL operations can be used for both
creating the initial version as well as modifying it in order to yield subsequent
versions of a DSL.
The GEL is complete in the sense that its statements can be used to trans-
form any DSL syntax (and semantics) into any other DSL syntax (and se-
mantics).

Word Evolution Language (WEL) statements work on the syntax trees of
DSL words. During language evolution, they are used to perform syntax
tree transformations to compensate changes of the underlying grammar.
WEL is complete in the sense that its statements can be used to transform
any syntax tree into any other syntax tree and thus to compensate arbitrary
changes to the DSL specification.

From the point of view of expressiveness, the combination of these two evolu-
tion languages allows the specification of all possible transformations that might
arise during the evolutionary development of a DSL.

However, from the point of view of usability, a third evolution language is
desirable: the grammar and word evolution languages merely provide a low level
of abstraction. Even simple coupled evolution operations, such as renaming a
keyword in the syntax and all existing words, require at least two evolution op-
erations – one from each language. Furthermore, coupled transformation knowl-
edge cannot be reused to simplify recurring evolution operations. This gap is
filled by the third evolution language.

Page 57

Language Evolution Language (LEL) statements perform coupled evolution
of both the grammar and the syntax tree. They provide a higher level of ab-
straction to users and enable reuse of coupled transformation knowledge.
LEL builds on the GEL and WEL to implement its transformations.

LEL can be conceived as a procedure mechanism that uses GEL and WEL
statements in the bodies of LEL procedures.

4.4 Evolution Architecture

Figure 4 shows the central components of the architecture of our language evo-
lution tool Lever.

All evolution operations applied during the construction and evolution of a
DSL are stored in the DSL History. The DSL History thus contains transforma-
tion information that specifies the delta between consecutive versions of a DSL.
This transformation information is used to automatically adapt both the DSL
compiler and existing DSL words to conform to the latest language version.

Lever

DSL

History

DSL

Word

instantiation

parsing

DSL

Specification

Syntax

Tree

semantic

processing

Target

Code

generation

instance- of

Fig. 4. Lever architecture

DSL History contains evolution operations that define specifications for all
versions of a DSL: The first evolution operations create the DSL specification
for the initial version of a DSL. Subsequent evolution operations transform
the DSL specification to yield later DSL versions.

DSL Specification is a comprehensive, declarative specification of the syntax
and static and translational semantics of a single version of the DSL. It is
explicitly available at runtime and drives the compilation process.

Syntax Tree is the in-memory representation of DSL words. It is an abstract
syntax tree that is decorated with concrete syntax and semantic attributes.

Page 58

DSL Word is the input for the compilation process. DSL words are versioned
to allow the identification of the DSL version in which the word was written.

Target Code is the result of the compilation process.

Compiling Words of Arbitrary Versions The information contained in the
DSL history allows to translate DSL words written in any version of the DSL.
During the compilation process, the following steps are performed:

1. Identification of the DSL word’s language version.
2. Execution of the evolution operations from the DSL history in order to create

a DSL specification in the corresponding language version.
3. Generation of a parser from the information in the DSL specification. The

parser is then used to instantiate the syntax tree from the DSL word.
4. Transformation of DSL specification and syntax tree to the latest language

version. Versions of the DSL dictionary and the syntax tree are compared
with this latest DSL version. If needed, the DSL history is used to transform
both the DSL specification and the syntax tree to the latest version.

5. Semantic processing: according to the DSL semantics contained in the DSL
specification, target code for the syntax tree is computed and written to the
output.

5 Implementation: Lever

The proposed evolution operations and evolution architecture is implemented
prototypically in our tool Lever. Lever is implemented in Java. Evolution lan-
guages are implemented as internal DSLs in Jython [24], the Scannerless Gener-
alized LR parser (SGLR) [25] is used for parsing and the velocity template engine
is used for code generation.

5.1 DSL Specification Formalism

Lever uses an object oriented interpretation of attribute grammars6[26] as speci-
fication formalism for both syntax and semantics of a DSL. In Lever, DSL speci-
fications are called DSL Dictionaries, since they define the syntax and semantics
of every word a language comprises.

In DSL dictionaries, semantic rules specify how target code gets generated
from the data contained in the syntax tree. In order to cleanly separate target
code fragments, code generation logic and syntax tree access from one another,
DSL dictionaries use code generation templates as semantic rules. Access to the
syntax tree from within code generation templates runs via XPath [27] expres-
sions.

Every access to the syntax tree from within a semantic rule introduces a de-
pendency between the rule and the syntax tree. Language evolution operations
6 Context free grammars extended with semantic attributes and rules for their com-

putation.

Page 59

may change the shape of the syntax tree and thus potentially break these de-
pendencies. In order to support DSL architects, Lever can statically validate all
XPath expressions against the DSL dictionary and thus detect broken depen-
dencies during language evolution.

5.2 Evolution Operations in Lever

The Grammar Evolution Language (GEL) comprises statements to declare non-
terminals, to create, rename and delete productions, to add, modify and remove
(literal, terminal or nonterminal) production components and (inherited or syn-
thesized) attribute declarations, to set semantic rules, to change the order of
production components and to influence priorities and associativity of produc-
tions. Every GEL statement operates on a single DSL Dictionary element.

The Word Evolution Language (WEL) comprises statements that use XPath
expressions to select, insert, update and remove nodes from the syntax tree. Fur-
thermore, it contains statements to declaratively construct syntax tree fragments
and change the dictionary element a syntax tree node instantiates.

The Language Evolution Language (LEL) comprises statements for recurring
coupled evolution operations, such as the introduction or removal of literal or
terminal symbols, the encapsulation or in-lining of production components or
the renaming of productions or literals (i.e. keywords).

5.3 Limitations

The current version of Lever only automates the adaptation of the DSL compiler.
Additional tools, such as a debugger, pretty printer or syntax aware editor still
have to be maintained manually.

Furthermore, Lever currently only targets textual DSLs. However, it is our
conviction, that the stated problems also hold for visual DSLs and we believe
that the concepts this paper proposes can also be applied to them.

6 Case Study: Catalog Description Language

As a proof of concept, Lever was applied to develop a specification language for
product catalog management systems in an evolutionary way. The results show
the feasibility of the proposed approach to DSL development.

Due to space constraints, this case study only demonstrates language evolu-
tion in a single stage scenario. On a conceptual level, this can be justified, since
the conceptual distance between the DSL and the target code framework is small
enough to allow for generation of high-quality Java code.

6.1 Domain

Product catalogs are collections of structured product documents. Each docu-
ment belongs to a product family. Typically, all documents within a product

Page 60

family share the same structure, whereas different families have different docu-
ment structures.

Catalog management systems are used to create, manage and publish product
catalogs. This comprises the creation, manipulation and deletion of documents
by users, and the persistence and export of catalog data to different media.
Catalog management systems are data-centric. Thus, solution domain artifacts
that implement editors, display forms, persistence and data export depend on
the structure of the documents the implemented catalog comprises. Implement-
ing each artifact by hand—for every single document structure contained in a
catalog—is tedious, error prone and costly.

The goal of the Catalog Description Language (CDL) is to provide a declar-
ative specification language for product catalogs, from which these structure-
dependent artifacts can be generated. This increases the level of abstraction of
catalog management system development, by using generation to replace stereo-
type implementation activities.

Target System The Catalog management systems generated from CDL speci-
fications comprise two types of code: generic framework code, which implements
functionality common to all catalog management systems, and catalog specific
code, which gets generated from CDL specifications.

As suggested by the Generation Gap pattern [28], inheritance is used to
separate generic framework code (which resides in base classes) from catalog
specific, generated code (which resides in generated subclasses).

Fig. 5. Framework architecture

Page 61

The catalog management systems use a simple Model View Controller [29]
architecture (compare Figure 5): A central Model stores all documents of a cat-
alog. DocumentViewers (that serve both as viewers and controllers) are used to
display and edit documents. Common functionality resides in the abstract base
classes Document, Display and Editor in the framework package.

The document structure specific code resides in classes in the generated pack-
age, which derive from the abstract base classes. For each document family spec-
ified in a CDL document, a document class, a display class and an editor class
are generated.7

Figure 6 shows the different conceptual layers of the catalog management
system ordered by their level of abstraction. The higher an artifact appears in
the figure, the higher its specialization and potential fitness to solve a domain
problem and thus the lower its reusability to other problems in the domain.

Factories

Tongs

Tongs

Editor

Tongs

Display

Wrench

Wrench

Editor

Wrench

Display

Drill

Drill

Editor

Drill

Display

Swing
 Serialization
 Collections
 ...

Model
 DocumentView
 Controls
 ...

Generated

Code

Catalog

Browser

Framework

Java

Library

Byte Code for Java Virtual Machine

Catalog Description Language File

CDL Compiler

Java Compiler

Fig. 6. CDL stack

7 The current version uses serialization as a generic persistence mechanism and does
not support data export. In a future version, persistence and export code will also
be generated from document structure specifications.

Page 62

Initial Language Version Listing 1.1 shows an exemplary specification8 for
a tool catalog written in the initial version of CDL. The file specifies document
structures for two product families: Wrenches consist of a single multi-line text
field Description, whereas Drills comprise one single-line text field Headline and
two multi-line text fields Description and Shipment. The captions depict field
labels displayed in editor forms.

Due to space constraints, the complete specification of CDL and the evolution
operations applied during its evolution have been omitted. Refer to [30] and [31]
for a complete reference of the implementation and evolution of CDL.

1 vers ion 1
2 Wrench {
3 mul t i l i n e Descr ipt caption ” Desc r ip t i on ” ;
4 }

6 Dr i l l {
7 s i n g l e l i n e Headl ine caption ”Family ” ;
8 mul t i l i n e Descr ipt caption ” Desc r ip t i on ” ;
9 mul t i l i n e Shipment caption ”Shipment In fo ” ;

10 }

Listing 1.1. CDL file in version 1

6.2 Evolving the Language

As is typical for incremental development, the first language version only com-
prises a small set of core language elements. Instead of designing the complete
language up-front, we will grow it in small steps. This saves us from the effort
and cost of performing a domain and variability analysis for our DSL. Further-
more, as we employ the first version of CDL to create catalog specifications, our
understanding of the domain grows and we get feedback on our language design.
Based on this feedback, we can make founded decisions on how to evolve the
language.

In the following, we present two exemplary evolution steps: A relatively sim-
ple transformation that changes the concrete syntax, and a more complex trans-
formation that restructures the language in a non-local way.

Local transformation As a first change, we decide to make the concrete syntax
of CDL more expressive, by adding the keywords catalog, document and field
and encapsulating the documents of a catalog in curly braces. Since this change
only affects the concrete syntax of our language and leaves its abstract syntax
unchanged, no semantic rules have to be updated.

Listing 1.2 depicts the required evolution operations. Line 2 contains a Lan-
guage Evolution Language statement that inserts the keyword catalog into the
8 simplified due to space constraints

Page 63

production Cat in the DSL Dictionary. lbl is the label of the new catalog key-
word, docs is the label of the dictionary element before which the new keyword
gets inserted. 9 The statements in lines 3-10 behave accordingly for the braces
and remaining keywords.

These evolution statements offer a high level of abstraction to the DSL devel-
oper, since they transform both the DSL Dictionary and the syntax tree. Listing
1.3 shows the CDL file after transformation. The new keywords introduced by
the evolution operations are depicted in bold font.

1 # Add ca t a l o g keyword and b ra c k e t s
2 insert l i t before (” l b l ” , ” ca ta l og ” , ”docs ” , ”Cat”) ;
3 insert l it behind (”open” , ”{” , ” l a b e l ” , ”Cat”) ;
4 insert l it behind (” c l o s e ” , ”}” , ”docs ” , ”Cat”) ;

6 #Add document keyword
7 insert l i t before (” l a b e l ” , ”doc” , ”name” , ”Doc”) ;

9 #Add f i e l d keyword
10 insert l it behind (” l a b e l ” , ” f l d ” , ” type” , ” F i e ld ”) ;

Listing 1.2. Evolution operations for version 2

1 vers ion 2
2 ca ta l o g {
3 document Wrench {
4 mul t i l i n e f i e l d Descr ipt caption ” Desc r ip t i on ” ;
5 }

7 document Dr i l l {
8 s i n g l e l i n e f i e l d Headl ine caption ”Family ” ;
9 mul t i l i n e f i e l d Descr ipt caption ” Desc r ip t i on ” ;

10 mul t i l i n e f i e l d Shipment caption ”Shipment In fo ” ;
11 }
12 }

Listing 1.3. CDL file in version 2: local change of concrete syntax

Non-local transformation At this stage of development, we receive the re-
quirement that a catalog management system must support users that speak
different languages. As a consequence, catalog descriptions must be extended to
support field labels in multiple languages. We decide to extract the field captions
from the field definitions in order to preserve readability in the presence of many
languages.
9 In Lever, every part of a DSL Dictionary is labeled—language evolution operations

can thus refer to the DSL Dictionary elements they work on by their names.

Page 64

Listing 1.4 shows the CDL file after transformation. Lines 11-19 have been
created by the evolution operations. Now that the labels have been extracted into
a captions region, further captions regions can be added for additional languages.

This evolution scenario is an example for a non-local restructuring. It cannot
be specified completely using high-level Language Evolution Language State-
ments alone. Rather, statements from the low level grammar and word evolution
languages have been used to perform this evolution step. 10

1 vers ion 3
2 ca ta log {
3 document Wrench {
4 mul t i l i n e f i e l d Descr ipt ;
5 }

7 document Dr i l l {
8 s i n g l e l i n e f i e l d Headl ine ;
9 mul t i l i n e f i e l d Descr ipt ;

10 mul t i l i n e f i e l d Shipment ;
11 }

13 capt ions english {
14 Wrench {
15 Descript ”Description”;
16 }

18 Dril l {
19 Headline ”Family”;
20 Descript ”Description”;
21 Shipment ”Shipment Info ”;
22 }
23 }
24 }

Listing 1.4. CDL file in version 3: non-local restructuring

7 Conclusion

DSLs are a promising approach to increase the productivity of software develop-
ment through raising the level of abstraction and providing powerful generative
techniques. However, DSLs are expensive to build and even more expensive to
maintain. The concepts and implementation techniques presented in this paper
allow a new style of DSL development and maintenance by incremental step-wise
evolution. This strategy renders the critical task of domain analysis less time-
consuming and critical and significantly reduces the costs of changing a DSL
by

1. automatically transforming all existing words in previous versions of the DSL
and

10 The evolution script comprises about 20 evolution operations and has been left out
of this paper for brevity.

Page 65

2. providing prototypical tool-support for the adaptation of the DSL compiler.

As shown with the exemplary product catalog description language, DSL archi-
tects are enabled to introduce flexibility into the DSL as needed at any time. The
key to this flexibility is the transformation tool Lever (language evolver) that it-
self implements a powerful DSL for grammar, word, and coupled transformation
for the consistent manipulation of DSLs.

As shown in this paper, a tool like Lever contributes to the construction of
more powerful DSLs that span several levels of abstractions because this can
only be done realistically by structuring the compilation process into a sequence
of generation steps with a corresponding set of DSLs. Building and maintaining
such a sequence of DSLs without tool supported and coupled transformation of
grammars and words seems highly impractical.

Clearly, this work leaves room for interesting future work. One open question
is how to further automate the adaption of the compiler and other language
processing tools according to chances of the language. Another question that we
will further investigate in the future is the actual construction of realistically
applicable multi-level DSLs with the tool Lever implemented as part of the work
presented in this paper.

References

1. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated
bibliography. SIGPLAN Notices 35(6) (2000) 26–36

2. Lientz, B.P., Bennet, P., Swanson, E.B., Burton, E.: Software Maitenance Man-
agement. Addison Wesley, Reading (1980)

3. STSC: Software Reengineering Assessment Handbook v3.0. Technical report,
STSC, U.S. Department of Defense (March 1997)

4. Pigoski, T.M.: Practical Software Maintenance. Wiley Computer Publishing (1996)
5. Deursen, A., Klint, P.: Little languages: little maintenance? Technical report,

Amsterdam, The Netherlands (1997)
6. Mernik, M., Heering, J., Sloane, A.: When and how to develop domain-specific

languages. Technical Report SEN-E0517, CWI (December 2005)
7. Stützle, R.: Wiederverwendung ohne Mythos: Empirisch fundierte Leitlinien für

die Entwicklung wiederverwendbarer Software. PhD thesis, Technische Universität
München (April 2002) (Engl.: Reuse without Myth).

8. Lehman, M., Ramil, J.F., Wernick, P.D., Perry, D.E., Tursky, W.M.: Metrics and
laws of software evolution - the nineties view (1997)

9. Chaitin, G.: Register allocation and spilling via graph coloring. SIGPLAN Not.
39(4) (2004) 66–74

10. McIlroy, M.: Mass produced software components. In Naur, P., Randell, B., eds.:
Software Engineering, Garmisch, Germany, NATO Science Committee (October
1968) 138–155

11. Panas, T., Löwe, W., As̈mann, U.: Towards the unified recovery architecture for
reverse engineering. In: SERP’03. Volume 1., Las Vegas, NV, CSREA Press (June
2003) 854–860

12. Eisenecker, U.W., Czarnecki, K.: Generative Programmierung. Addison-Wesley,
München (2002)

Page 66

13. Visser, E.: A survey of strategies in program transformation systems. Electronic
Notes in Theoretical Computer Science 57 (2001)

14. Klint, P., Lämmel, R., Verhoef, C.: Toward an engineering discipline for grammar-
ware. ACM Trans. Softw. Eng. Methodol. 14(3) (2005) 331–380

15. Lämmel, R.: Grammar Adaptation. In: Proc. Formal Methods Europe (FME)
2001. Volume 2021 of LNCS., Springer-Verlag (2001) 550–570

16. Lämmel, R., Wachsmuth, G.: Transformation of SDF syntax definitions in the
ASF+SDF Meta-Environment. In: Proc. of the 1st Workshop on Language De-
scriptions, Tools and Applications (LDTA’01), publisher =. (April 2001)

17. Kort, J., Lämmel, R.: The grammar deployment kit - system demonstration.
In: Proceedings of the Second Workshop on Language Descriptions, Tools and
Applications (LDTA’02). Volume 65 of ENTCS., Elsevier Science (2002)

18. Staudt, B.J., Krueger, C.W., Garlan, D.: A structural approach to the maintenance
of structure-oriented environments. In: SDE 2: Proc. of the 2nd software engineer-
ing symposium on Practical software development environments, New York, NY,
USA, ACM Press (1987) 160–170

19. Garlan, D., Krueger, C.W., Lerner, B.S.: Transformgen: automating the main-
tenance of structure-oriented environments. ACM Trans. Program. Lang. Syst.
16(3) (1994)

20. Banerjee, J., Kim, W., Kim, H.J., Korth, H.F.: Semantics and implementation
of schema evolution in object-oriented databases. In: SIGMOD ’87: international
conference on Management of data, New York, NY, USA, ACM Press (1987) 311–
322

21. Penney, D.J., Stein, J.: Class modification in the gemstone object-oriented dbms.
In: OOPSLA ’87, New York, NY, USA, ACM Press (1987) 111–117

22. Ferrandina, F., Meyer, T., Zicari, R., Ferran, G., Madec, J.: Schema and database
evolution in the O2 object database system. In: Proc. of the 21th Intern. Conf. on
Very Large Data Bases, San Francisco, CA, USA, Morgan Kaufmann Publishers
Inc. (1995) 170–181

23. Claypool, K.T., Jin, J., Rundensteiner, E.A.: Serf: schema evolution through an
extensible, re-usable and flexible framework. In: CIKM ’98, New York, NY, USA,
ACM Press (1998) 314–321

24. : Jython Home Page. http://www.jython.org/ (January 2003)
25. CWI: SGLR. http://www.cwi.nl/htbin/sen1/twiki/bin/view/SEN1/SGLR (Jan-

uary 2006)
26. Paakki, J.: Attribute grammar paradigms a high-level methodology in language

implementation. ACM Comput. Surv. 27(2) (1995) 196–255
27. W3C: XSL Transformations (XSLT). http://www.w3.org/TR/xpath (November

1999)
28. Vlissides, J.: Generation Gap. http://www.research.ibm.com/designpatterns/

pubs/gg.html (December 1996)
29. Gamma, E., Helm, R., Johnson, R., Vissides, J.: Design patterns : elements of

reusable object-oriented software. Addison Wesley (1995)
30. Juergens, E.: Evolutionary Development of Domain Specific Languages. Master’s

thesis, Technical University of Munich (March 2006)
31. Juergens, E., Pizka, M.: Tool Demonstration: The Language Evolver Lever. In

Boyland, J., Sloane, A., eds.: Sixth Workshop on Language Descriptions, Tools,
and Applications (LDTA). (April 2006)

Page 67

Kumbang Modeler: A Prototype Tool for

Modeling Variability

Hanna Koivu, Mikko Raatikainen, Marko Nieminen, and Tomi Männistö

Helsinki University of Technology
Software Business and Engineering Institute (SoberIT)

P.O. Box 9210, 02015 TKK, Finland
{Hanna.Koivu, Mikko.Raatikainen, Marko.Nieminen, Tomi.Mannisto}@tkk.fi

Abstract. Variability is the ability of a system to be e�ciently ex-
tended, changed, customized, or con�gured for use in a particular con-
text. Several methods of modeling variability have been reported. How-
ever, tool support is also needed to take full advantage of models. We
describe a prototype tool called Kumbang Modeler. Kumbang Modeler
enables modeling the variability of a software product family using Kum-
bang conceptualization and language. The study follows the design sci-
ence methodology. A user-centered design was applied in the develop-
ment of Kumbang Modeler, and light-weight usability tests in the evalu-
ation. The usability tests show that a person with knowledge of Kumbang
concepts is able to correctly model the variability of a software product
family using Kumbang Modeler.

1 Introduction

Variability is the ability of a system to be e�ciently extended, changed, cus-
tomized, or con�gured for use in a particular context [1]. As a successful means
of managing variability, a software product family approach has emerged [2]. A
software product family refers to a set of product individuals that reuse the same
software assets and have a common structure called a software product family
architecture [3]. The assets and the architecture of a software product family
contain variability. This variability is resolved and, typically, product-speci�c
software is also developed in order to derive the di�erent product individuals
of a software product family [4]. In a con�gurable software product family, the
product individuals are constructed entirely on a basis of existing software only
by resolving the variability [5,6].

A con�gurable software product family can contain a great amount of vari-
ability. In addition, this variability includes, for example, traceability relations
and constraints [7]. Therefore, capturing and managing variability is challeng-
ing. Di�erent variability modeling methods have emerged for variability manage-
ment. When variability is expressed rigorously, such as in models with adequate
rigor, product derivation can bene�t from tool support. Tools can deduce con-
sequences, check conformance to the model, and show when all variability is
bound, for example [8]. Modeling also bene�ts from tools. Tools can hide the

Page 68

details of the modeling language and tools can provide a viewpoint to model
such that the model is only partially visible and easily navigatable. Hence, prod-
uct expects can express variability without considering the syntax details of a
particular language A modeling tool should also make it easier to demonstrate
variability modeling to companies that could bene�t from it, as well as making
it more approachable.

In this paper, we describe Kumbang Modeler, which is a prototype modeling
tool for Kumbang. Kumbang [9] is a domain ontology for modeling the vari-
ability in software product families. Kumbang includes concepts for modeling
variability, from the point of view of the component and feature structures. The
language that utilizes Kumbang conceptualization is likewise called Kumbang.
The modeling tool is an Eclipse plug-in [10] for creating and editing Kumbang
models. The tool stores models using the Kumbang language. In the study, we
followed the design science methodology [11]. For developing the tool, we applied
a user-centered design, and, in particular, the personas method [12,13]. The tool
was tested for feasibility and in two lightweight usability tests.

The rest of the paper is organized as follows. In Section 2, we describe the
research methods. In Section 3, we give an overview of Kumbang. Section 4 intro-
duces Kumbang Modeler. In Section 5, we describe the validation of Kumbang
Modeler. Section 6 discusses our experiences in developing Kumbang Modeler.
Section 7 outlines related work. Section 8 draws conclusions and provides some
directions for future work.

2 Method

The research followed the design science methodology [11]. The construction is
a prototype Kumbang Modeler. The objective of the prototype was to provide
the user with the ability to be able to create and edit Kumbang models through
a graphical user interface. The models made using Kumbang Modeler should
be saved to text �les using the Kumbang language. The study built on existing
Kumbang concepts, without changing them.

The development of Kumbang Modeler followed a user-centered design. The
methods used were Goal-Directed Design, and especially Personas [12,13]. How-
ever, users and context, which are central in user-centered design [14], could not
be studied in practice, e.g., in a case study. This was because Kumbang Modeler
is a new kind of product and not used anywhere. Therefore, di�erent use scenar-
ios and characteristics of potential users were explored, mainly on the basis of
results reported in the literature. The objective was to achieve a better under-
standing of the e�ective use of a modeling tool in an industrial setting, and the
skill requirements for users. In addition, the feasibility of a user-centered design
without actual users was assessed.

Kumbang Modeler was tested for feasibility and in lightweight usability tests.
In the feasibility test, di�erent models were developed and their correctness was
validated. The lightweight formative usability tests were carried out with two
di�erent users. Both users had experience with software product families. The

Page 69

users had not used or even seen Kumbang Modeler before the test. One user did
not have knowledge of Kumbang, while the other was familiar with Kumbang
concepts and language. The tests took roughly an hour and were done in an
o�ce room with a PC. Both tests were recorded with a video camera and screen
capture software. The users were interviewed before and after the tests.

3 Kumbang Overview

Kumbang [9] is a domain ontology for modeling variability in software product
families. Kumbang di�erentiates between a con�guration model, which describes
a family and contains variability, and a product description, which is a model of
a product individual derived from a con�guration model by resolving variability.
The elements in a con�guration model are referred to as types, while the elements
in a product description are referred to as instances.

Kumbang includes concepts for modeling variability from both a structural
and feature point of view. More speci�cally, the modeling concepts include com-

ponents and features with inheritance structure and compositional structure,
attributes, the interfaces of components and connections between these, and
constraints. A compositional structure is achieved through the concepts of a
subfeature de�nition and part de�nition that state what kinds of parts can ex-
ists for a feature or component, respectively. Constraints can be speci�ed within
components and features. Implementation constraints are a special class of con-
straints between features and components.

The semantics of Kumbang is rigorously described using natural language
and a UML pro�le. A language based on the Kumbang ontology, likewise called
Kumbang, has been de�ned. Kumbang has been provided with formal semantics
by de�ning and implementing a translation from Kumbang to WCRL (Weight
Constraint Rule Language) [15], a general-purpose knowledge representation lan-
guage with formal semantics.

A tool called Kumbang Con�gurator, which supports product derivation for
software product families modeled using Kumbang, has been implemented [8].
Kumbang Con�gurator supports a user in the con�guration task as follows:
Kumbang Con�gurator reads a Kumbang model and represents the variability
in the model in a graphical user interface. The user resolves the variability by
entering her requirements for the product individual: for example, the user may
decide whether to include an optional element in the con�guration or not, to se-
lect attribute values or the type of a given part, or create a connection between
interfaces. After each requirement entered by the user, the Kumbang Con�gu-
rator checks the consistency of the con�guration, i.e., whether the requirements
entered so far are mutually compatible, and deduces the consequences of the
requirements entered so far, e.g., automatically choosing an alternative that has
been constrained down to one; the consequences are re�ected in the user inter-
face. The consistency checks and deductions are performed using an inference
engine called smodels [15] based on the WCRL program translated from the
model. Once all the variation points have been resolved and a valid con�gura-

Page 70

tion thus found, the tool is able to export the con�guration, which can act as an
input for tools used to implement the software, or used for other purposes.

4 Kumbang Modeler

This section introduces Kumbang Modeler, a prototype tool for creating Kum-
bang models. Kumbang Modeler has been implemented as a plug-in for the
Eclipse Platform [10]. First, a short introduction to Eclipse will be given below,
then Kumbang Modeler is described in terms of architecture, user interface, and
usage.

4.1 Eclipse

Eclipse [10] is an integrated development environment popular among Java de-
velopers [16]. Eclipse began as an open source IDE tool for Java development,
but has been extended to a multi-purpose development environment via plug-in
extensions. Eclipse plug-ins are currently very popular [17].

Eclipse's development environment is called a workbench [18]. A user sees
a workbench as one or several windows. Each window contains a menu bar, a
toolbar, and one or more perspectives. A perspective de�nes what is included in
the menus and toolbar. The perspective also de�nes a default layout, which can
be changed or reloaded to undo changes. A perspective is also a container that
de�nes the initial group and layout of a group of editors and views. An editor or
a view contains the actual user interface elements. Plug-ins can consist of any of
the element such as views, editors, menus, or perspectives.

4.2 Kumbang Modeler Architecture

The main elements of the Kumbang Modeler architecture are the model layer, the
controllers layer, and the user interface layer. A Kumbang model is represented
as Java objects at the model layer and can be imported from or exported to
a text �le. The controllers layer combines some display information with he
model objects, provides ways to change the model and updates these changes
at the graphical user interface layer. The user interface elements are at the
graphical user interface layer. Kumbang Modeler reuses the model and parser
from Kumbang Con�gurator [8].

4.3 Kumbang Modeler User Interface

User interface elements speci�c to Kumbang Modeler are a perspective, an edi-
tor, and three views. In addition, Kumbang Modeler uses two standard Eclipse
views. The user interface design was guided by the Eclipse User Interface Guide-
lines [19].

The perspective for Kumbang Modeler comprises six di�erent areas, depicted
by letters a-f in Figure 1. The perspective is automatically opened when a �le
containing a Kumbang model is opened or a new Kumbang model is created.

Page 71

Fig. 1: The perspective for Kumbang Modeler: a) the editor area b) the type view c)
the feature view d) the component view e) the properties view f) the navigator view

The editor area (Figure 1, a) shows the currently active editor and enables
switching between open editors by selecting the model from the tabs. The editor
area displays the model name and type; all other information is shown in the
views. This gives the user more control over the user interface, as views can be
resized, moved, and closed freely. The editor takes care of opening and saving
the model. Several editors can be open at the same time.

The three views peculiar to Kumbang are a type view, a feature view and a

component view (Figure 1 b, c and d, respectively). The type view lists currently
available types. Kumbang has feature, component, interface, and attribute value
types. The feature and component views show the compositional hierarchies.
The hierarchies form trees with one root. The tree is composed using the sub-
feature de�nitions within the features types and the part de�nitions within the
components types. In addition, constraints are added to the feature and com-
ponent types in the feature and component views. Implementation constraints
between the feature hierarchy and the component hierarchy are placed in the
feature view.

The properties and navigator views are standard views in the Eclipse IDE.
The properties view (Figure 1, e) shows additional information on the currently

Page 72

(a) (b)

Fig. 2: Two Kumbang Modeler dialogs: a) a dialog for adding a new feature type; b) a
dialog for a subfeature de�nition.

selected elements. The navigator view (Figure 1, f) shows Eclipse projects and
�les.

Finally, Kumbang Modeler contains several dialogs that are needed when
editing a model. The archetypes of the dialogs are shown below in the section
describing the usage of Kumbang Modeler.

4.4 Usage

The available types, such as di�erent feature and component types, of a model are
created using dialogs. Figure 2(a) shows a dialog for creating a new feature type;
similar dialogs are used for other types, although the exact �elds are peculiar
for the respective type. The dialogs are needed in order to set all details of the
speci�c type. For example, a new feature type needs a name, possible supertypes,
speci�cation if the type is abstract, and an optional comment. The same dialogs
that are used for creating new types are used to display and change existing
types. Right-clicking in any of the views peculiar to Kumbang opens a menu
from which an option for the dialog for creating new types can be selected.
Alternatively, the dialog can be opened and new types created while de�ning
compositional structures other than root, as described below.

Page 73

The compositional structure of the features and components needs to proceed
from the root to the leafs. When a type is dragged from the type view to an
empty structural view of that type, the type becomes the root; or, when there
is no root set, an existing type can be selected to be the root from a list of all
possible types. Consequently, only existing type can be selected to be a root.

When the root is set, the other types can be added to the compositional
structure through their respective de�nitions. A type can be added to the struc-
ture by dragging. Alternatively, an existing type can be selected or a new type
can be created for the compositional structure during the construction of the
de�nition. Attributes and interfaces are attached to the structure using the con-
cept of de�nition, similar to the way the compositional structure is constructed.
A dialog is always needed to determine the necessary information when adding
a type to a structure. Figure 2(b) shows an example dialog for a subfeature def-
inition. If a type is dragged to the tree, those values that have feasible default
values are pre-�lled. For instance, the cardinality of de�nitions has a default
value of one-to-one, and the name is derived from the type, but the direction of
an interface de�nition has no sensible default value.

The constraint language of Kumbang [20] combines predicates with Boolean
algebra. A constraint can be very complex; hence, there is no simple way to
manage them. In addition, �exibility is required in constructing the constraints,
since length cannot be determined beforehand. The approach taken in Kumbang
Modeler splits constraints into parts that can be constructed separately. There
are two kinds of basic parts: expressions, which are predicates or functions, and
operators, which combine the expressions or implicate relationships between the
expressions. These parts are shown in a list, which is expanded every time a part
is added, as seen in Figure 3(a). When a new expression is added, an expression
type must �rst be chosen (Figure 3(b)). A similar dialog is also used for choosing
operators. Each expression has a special dialog for de�ning the details.

5 Validation of Kumbang Modeler

5.1 Feasibility to Produce Valid Models

We tested whether Kumbang Modeler is able to produce valid models based
on Kumbang concepts and written in the Kumbang language. The models were
syntactically correct and could be opened also in Kumbang Con�gurator. In
addition, Kumbang Modeler can be used to open and modify various existing
Kumbang test models.

5.2 Usability Evaluation of the Prototype

Kumbang Modeler was tested through lightweight formative usability tests with
two di�erent users by a prede�ned modeling task de�ned as a scenario. The
�rst user, who knew Kumbang very well, had very little trouble making a model
according to the scenario. She did have some suggestions for improving the user

Page 74

Fig. 3: A dialog for editing a constraint and a dialog for choosing an expression to a
constraint.

interface, however. Most of these proposals were implemented before the second
usability test. The second user had no previous knowledge of Kumbang before
participating in the test. He had trouble understanding the need for relation
between types and de�nitions used for compositional structure. This made him
very frustrated; when he wanted to add a feature to the model, he did not
understand why he had to make both a feature type and a subfeature de�nition
to achieve this. However, he was able to produce an acceptable model. Table 1
summarizes the main usability changes made to Kumbang Modeler on the basis
of the usability tests.

Problem Action taken

The icon used in an interface de�nition
did not show whether the interface was
provided or required.

Instead of a single interface icon, di�er-
ent icons was designed for a required and
provided interface.

Subfeature de�nitions could not be
moved in the feature structure.

Subfeature de�nitions were made drag-
gable.

User was irritated with having to name
both types and de�nitions.

Lower case version of the type name was
made to be the default de�nition name.

User was irritated with having to do too
many steps when wanting to make a def-
inition with a type that did not exist yet.

Several steps were combined into one.

Table 1: Changes made after the feedback from the usability tests

Page 75

6 Discussion

6.1 Feasibility of Tool Support for Variability Modeling

Kumbang Modeler seems feasible for modeling variability in software product
families. In addition, Kumbang Modeler seems to have advantages over writing
a model by a text editor. For example, the produced models are syntactically
correct, and the tree structure seems to make navigating within the hierarchy
easier.

Kumbang Modeler was developed as a plug-in for Eclipse, which seems to be
a practically applicable platform for such a modeling tool as Eclipse is currently
a popular development environment. In addition, di�erent plug-in extensions are
also relatively widely used and easy to install. Many developers are thus familiar
with Eclipse as a development environment, and with plug-in extensions for
Eclipse.

6.2 Validation of Kumbang Modeler

Two tests for Kumbang Modeler were carried out: the test of the validity of the
models produced and the usability tests. However, these tests have weaknesses.
First, Kumbang Modeler does not check anything other than the syntactical cor-
rectness of a produced model. However, we are currently implementing advanced
checks for Kumbang Modeler. The advanced checks ensure, for example, that a
model does not contain cycles in the inheritance, part, or subfeature structures;
a model contains all the references needed, such as the type declarations for the
types used in a part de�nition, and at least one con�guration can be found such
that all interfaces can be connected; for every required interface, a provided in-
terface exists; and constraints are not in con�ict with each other. Second, the
usability tests were lightweight and were not carried out using a real product.
Hence, more usability tests are required in industrial settings.

6.3 Feasibility to use Kumbang Modeler to Model Variability

Kumbang Modeler seems to be feasible for product experts to express the vari-
ability of a software product family as Kumbang models. The user who knew
Kumbang concepts was able to use the tool without di�culties. The user seems
to be, however, required to have some knowledge of Kumbang and software
product families, as the second usability test showed. Nevertheless, a thorough
understanding of Kumbang syntax and semantics did not seem to be needed.
The requirement of understanding Kumbang concepts is not necessarily a prob-
lem, since the tool is meant for highly specialized use. However, more tests are
needed, as argued above.

The di�culties the other user had with producing a model using Kumbang
Modeler seemed to be more related to Kumbang concepts than Kumbang Mod-
eler as a tool. The user had no previous knowledge of Kumbang and was, in fact,
used to modeling software product families di�erently. Especially troublesome

Page 76

were those concepts that are not widely used in other modeling approaches.
Three issues especially caused di�culties: the type and instance di�erentiation,
the part and subfeature de�nitions in the compositional structure, and termi-
nology. These are discussed in more depth below.

First, many feature modeling methods, for example, do not di�erentiate be-
tween types and instances. However, in Kumbang they are used in order to
distinguish between a family model that contains variability and an instance
model in which variability is resolved, enable several instances of the same type,
and enable feature type reuse in di�erent places of the model [21]. In addition,
software product family engineering distinguishes between family and instance,
e.g., in a form of family and instance development processes, or reusable and
reused assets. Consequently, di�erentiating between types and instances seems
reasonable.

Second, despite the fact that subfeatures and the compositional structure of
components are used in most modeling methods, the subfeature and part de�ni-
tions, which are slightly di�erent in Kumbang, caused di�culties. The subfeature
and part de�nitions are regarded as required in Kumbang [21]. However, espe-
cially in simple structures, such as in a subfeature structure without variability,
it seems that in many cases, default values can be used for the details of the
subfeature de�nitions. The user interface was simpli�ed, e.g., by making a low-
ercase version of the type name the default name of the part de�nition. Although
the subfeature de�nitions, for example, can be simpli�ed in the user interface by
using default values, they are still needed in order to express complex variability.

Third, the terminology of Kumbang Modeler was confusing. However, in soft-
ware product family engineering the same term is often used to refer to di�erent
concepts or several terms are used to refer the same concept. For example, fea-
ture modeling methods do not terminologically distinguish between feature types
and feature instances or product derivation can be also called instantiation, de-
ployment or con�guring. Hence, the terminology in general is ambiguous and
not established. A person used to one terminology can get confused when she
needs to use another terminology.

6.4 Variability Modeling

Issues concerning the nature of variability arose during the study. For example,
Kumbang uses constructs that can be used to model complex variability. How-
ever, much of the variability in usability tests was so simple that using Kumbang
constructs meant inserting information that was laborious, and default values
would have been feasible. In order to enhance tool support, the nature of vari-
ability in software in terms of, for example, the amount and complexity of vari-
ability needs to be studied in more depth. This could then be used to develop
tools that meet the actual requirements for modeling variability. For example,
syntactic sugar on top of modeling concepts could be developed in order to hide
complex structures. However, the rigor of the models should not be lost. The
models should be based on a well-founded conceptual foundation.

Page 77

6.5 User-Centered Design

We faced problems with the user-centered design approach during the develop-
ment of Kumbang Modeler. The users of Kumbang Modeler do not exist and,
hence, cannot be studied. We tried to study the literature in order to capture,
e.g., the skills of potential users, but little is reported in the literature. Another
option would have been to carry out a user study of software product family
engineers in general, but this was considered to be beyond the scope of this
study.

Goal-Directed Design considers necessary-use scenarios to be less important
than daily-use scenarios. However, Kumbang Modeler is mainly a prototype tool
and thus the threshold for using it for modeling should be low. Therefore, the
creation of new models is just as important in Kumbang Modeler as modifying
existing ones, although only modifying a model can be considered a daily use sce-
nario. Therefore, Goal-Directed Design was not directly applicable in Kumbang
Modeler design.

The usability tests brought about the same problem as with the overall de-
velopment of the tool, namely a lack of real users who would use the tool in
an actual, industrial environment. However, we assumed that such users could
have three kinds of knowledge: knowledge of the speci�c con�gurable product
family, con�gurable product family concepts, and modeling concepts. Since con-
�gurable product families are hard to �nd, in usability tests we used two kinds
of user: both had knowledge of con�gurable product family concepts and one
knew Kumbang.

7 Related Work

Several software variability modeling methods have been developed in addition
to Kumbang, such as feature modeling [22], orthogonal variability modeling [23],
and COVAMOF [24]. Di�erent kinds of tools have been developed for the mod-
eling methods; a review of a set of tools is provided in the ConIPF methodol-
ogy [25].

In addition, there are variability modeling tools that are not used for software
products. Instead, the tools are originally meant for modeling mechanical and
electronic products. Examples of such tools are the Wecotin [26] and EngCon [27]
modelers.

Tools can be also used in other phases of the software life cycle. In ConIPF
methodology [25], tools are used for requirements engineering, modeling, con�g-
uring, realization, and software con�guration management. Di�erent tools can
be used in di�erent phases. Kumbang currently has tool support for the model-
ing and con�guration phases. Di�erent tools or new tools for Kumbang need to
be developed for the other phases of development.

Page 78

8 Conclusions

In this paper we described Kumbang Modeler, which is a tool for modeling the
variability of a software product family. Modeling is based on Kumbang concep-
tualization. Hence, Kumbang Modeler enables modeling both from a structural
and feature point of view. The study followed design science methodology. We ap-
plied a user-centered design in developing Kumbang Modeler; more speci�cally,
the Goal-Directed Design and Personas methods. Kumbang Modeler was tested
for feasibility to produce correct models and in lightweight formative usability
tests.

The results showed the feasibility of modeling variability with Kumbang
Modeler. At least some knowledge on the applied Kumbang variability concepts
is required to use the tool. We faced problems with the user-centered design be-
cause actual users were not available. The usability tests, nevertheless, showed
that despite the fact that variability can be modeled with the existing methods,
more studies are needed to show that modeling is e�cient and convenient. For
example, much of the variability can be simple and details of more complex con-
structs to model variability can then be hidden or default values can be used.
However, modeling also seems to need complex structures. In addition, in order
for, e.g., tool-supported derivation to be possible, modeling should be based on
rigorous foundations.

Kumbang Modeler provides the missing tools support for Kumbang. That is,
with Kumbang Modeler, the captured variability of a software product family
can be modeled, whereas with the existing Kumbang Con�gurator, expressed
variability can be bound during product derivation. Hence, other tools, such as
a generator, are still needed.

Acknowledgements

The authors acknowledge the �nancial support of Tekes, the Finnish Funding
Agency for Technology and Innovation.

References

1. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization
techniques. Software � Practice and Experience 35 (2000)

2. Weiss, D.M., Lai, C.T.R.: Software Product-Line Engineering: A Family-Based
Software Development Process. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1999)

3. Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns.
Addison-Wesley (2001)

4. Bosch, J.: Design and Use of Software Architecture. Addison-Wesley (2000)
5. Bosch, J.: Maturity and evolution in software product line: Approaches, artefacts

and organization. Lecture Notes in Computer Science (Proc. of SPLC2) 2379

(2002) 257�271

Page 79

6. Männistö, T., Soininen, T., Sulonen, R.: Con�gurable software product families.
In: ECAI 2000 Con�guration Workshop, Berlin. (2000)

7. Thiel, S., Hein, A.: Modeling and using product line variability in automotive
systems. IEEE Software 19(4) (2002)

8. Myllärniemi, V., Asikainen, T., Männistö, T., Soininen, T.: Kumbang
con�gurator�a con�guration tool for software product families. In: IJCAI-05
Workshop on Con�guration. (2005)

9. Asikainen, T., Männistö, T., Soininen, T.: Kumbang: A domain ontology for mod-
elling variability in software product families. Advanced Engineering Informatics
21(1) (2007)

10. Eclipse Foundation: Eclipse platform. http://www.eclipse.org/ (2006) Visited
December 2006.

11. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Quarterly 28(1) (2004)

12. Cooper, A.: The Inmates Are Running the Asylum. Macmillan Publishing Co.
Inc. (1999)

13. Cooper, A., Reimann, R.: About Face 2.0: The Essentials of Interaction Design.
John Wiley & Sons, Inc. (2003)

14. ISO/IEC: 9241-11 ergonomic requirements for o�ce work with visual display ter-
minals (vdt)s - part 11: Guidance on usability (1998)

15. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable
model semantics. Arti�cial Intelligence 138(1-2) (2002)

16. Goth, G.: Beware the march of this ide: Eclipse is overshadowing other tool tech-
nologies. IEEE Software 22(4) (2005) 108�111

17. Murphy, G.C., Kersten, M., Findlater, L.: How are java software developers using
the eclipse ide? IEEE Software 23(4) (2006) 76�83

18. Eclipse 3.2 Documentation. http://help.eclipse.org/help32/index.jsp (2006) Vis-
ited December 2006.

19. Edgar, N., Haaland, K., Li, J., Peter, K.: Eclipse user interface guidelines, v. 2.1
(2004) http://www.eclipse.org/articles/Article-UI-Guidelines/Index.html. Visited
December 2006.

20. Asikainen, T.: Kumbang language, technical report (2007, to appear)
21. Asikainen, T., Männistö, T., Soininen, T.: A uni�ed conceptual foundation for

feature modelling. In: Proceedings of the 10th International Software Product
Line Conference. (2006)

22. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented do-
main analysis (foda) feasibility study. Technical Report CMU/SEI-90-TR-21, ADA
235785, Software Engineering Institute (1990)

23. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer (2005)

24. Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J.: Covamof: A framework for mod-
eling variability in software product families. In: Proceedings of Software Product
Line Conference (SPLC). (2004) 197�213

25. Hotz, L., Wolter, K., Krebs, T., Deelstra, S., Sinnema, M., Nijhuis, J., MacGregor,
J.: Con�guration in Industrial Product Families. IOS Press (2006)

26. Tiihonen, J., Soininen, T., Niemelä, I., Sulonen, R.: A practical tool for mass-
customising con�gurable products. In: In Proceedings of International Conference
on Engineering Design (ICED 03). (2003)

27. Hollmann, O., Wagner, T., Guenter, A.: Engcon - a �exible domain-independent
con�guration engine. In: Con�guration Workshop at ECAI-2000. (2000)

Page 80

Variability Management and Compositional SPL
Development

Jilles van Gurp

Nokia Research Center, Helsinki, Finland
jilles.vangurp AT nokia.com

This position paper reflects on the implications for variability management
related practices in SPL development when adopting a compositional style of
development. We observe that large scale software development is increasingly
conducted in a decentralized fashion and on a global scale with little or no
central coordination. However, much of the current SPL and variability
practices seem to have strong focus on centrally maintained artifacts such as
feature and architecture models. We conclude that in principle it should be
possible to decentralize these practices and identify a number of related
research challenges that we intend to follow up on in future research.

Introduction

Over the past ten years software product line (SPL) conferences and related
workshops have established SPL research as a new discipline in the broader field of
software engineering. We, and others, have been contributors to this field with
publications on software variability management [1, 2] and involvement in earlier
workshops [3]. In more recent work, we have published about compositional
development of software products [4]. Compositional development decentralizes
much of the traditionally centralized activities in an integration oriented SPL,
including requirements management, architecture and design. These activities are
pushed down to the component level.

 So far, Moore's law has accurately predicted the exponential growth of transistor
density on chips and software developers seem to have matched this growth with a
similar growth in software size (generally measured in lines of code).
Decentralization of development activities allows development to scale better to such
levels. This scalability is required to create more products that integrate a wider
diversity of components and functionality. Making software products that support an
ever wide range of functionality is necessary in order to differentiate in the market.

Unfortunately, decentralization has far reaching consequences for SPL
methodology and tooling. A common characteristic of many of the currently popular
SPL methodologies is the use of centrally maintained feature models that describe the
variability in the SPL. For example, much of the SPL specific tooling depends on
such models. This includes build configuration tools; requirements management
tooling and product derivation support tools. Additionally, processes and

Page 81

organizations are generally organized around these tools and models.
In a compositional approach where development is decentralized and different

components are developed by different people, business units and organizations using
different methodologies and tools, these approaches break down. Products are not
created by deriving from a central architecture and feature model but by combining
different components and writing glue code.

The intention of this position article is to reflect on this topic and identify new
research issues. It seems that much of the current research is conducted under a closed
world assumption where one central organizational entity is in charge of overall
design, management and governance of the SPL software. We believe this assumption
to be flawed. The reality on the ground is quite different. Increasingly software
companies are collaborating either directly or through open source projects on
software assets that they have a shared interest in. It seems that it is almost impossible
to develop software these days without at least some dependencies on external
software. Additionally, in large companies software development is distributed
throughout the organization. Consuming software from a business unit on a different
continent poses very similar challenges to partnering with a different company.

In the remainder of this article we first briefly introduce the topic of compositional
development before reflecting on what that means for variability management and
finally reflecting on some future research topics related to that.

Compositional development

Compositional development might be interpreted as a move back to the COTS
approaches popular in the past decade. In those days, it was suggested that companies
would either buy components developed by other components or use in house
developed components from a reusable component base. These approaches
fragmented in roughly four directions over the past decade:

• Integrated Platforms. In this approach, one vendor offers a fully
integrated software platform complete with tools, documentation, vast
amounts of reusable software and consulting. Examples of companies that
provide such vertical stacks of software are IBM, Oracle and Microsoft.
While successful, this approach is mostly limited to the domain of
enterprise systems. Characteristic of this domain is that most systems built
are one of a kind.

• SPLs. For other domains than enterprise systems (e.g. embedded
software), SPLs have emerged as a successful way to develop a platform
in house and use that to build software products. Unlike enterprise
software, most embedded software products are not one of a kind. Product
lines for embedded software also tend to be highly specialized for the
domain (e.g. mobile phones; audio visual equipment; medical equipment).
Within those domains, the product line aims to support a wide range of
products.

• 'True' COTS . The vision in the nineties was not SPLs or huge vertical
stacks of technology but a market of component vendors whose products

Page 82

could be combined by product developers. Except for a few limited
domains (e.g. GUI components), this market never emerged [5]. However,
this market is comparatively small. Problems with respect to ownership of
source code; interoperability; documentation and support are usually cited
as the causes for this.

• Open source. From the mid nineties a vast amount of software has been
released in the form of open source. Currently there are tens of thousands
of active projects releasing high quality software. Most commercial
software development, including embedded software development, now
depends on substantial amounts of this software. Very few commercial
software companies are 100% open source though. It seems many
companies have a small layer of differentiating software & services that
are not open source.

Of course, these approaches overlap. For example, several SPL case studies have been
published for enterprise systems. Additionally using COTS in combination with either
SPLs or enterprise platforms is quite common. In fact, most of the COTS companies
seem to make components that are specialized for a particular platform. Finally, open
source is important for COTS, integrated platforms and SPLs. Compositional
development of products involves combining elements from all of these approaches
and is certainly not about just COTS.

In compositional development, development teams of components or subsystems
operate with a higher degree of autonomy then they would in a SPL organization.
Identification of key requirements and design solutions is largely the responsibility of
these teams. They interact with developers of other components they depend on and
with developers of components (or products) that depend on them. However, the
central coordination of this communication is absent.

The rationale here is to bring the decision processes as close to where it has an
impact; and also to where the domain and technical experts operate. This is a quite
different working model from the traditional one where a group of seniors decides
together with the major stakeholders on design, requirements and other issues.

 The problem with integrated SPL model is that it does not scale to the current
industrial practice where software systems spanning multiple millions of lines of code
are now the rule, not the exception. Managing the design and architecture of such
software centrally is extremely difficult. The amount of people with a detailed enough
knowledge of the software is very low in such companies. Additionally these people
tend to be very busy and are generally very hard to replace.

In practice, this means that as software size grows, decision makers at the top are
increasingly detached from the design details of the software. In other words, it
disqualifies these individuals for making the technical decisions they should be
making. The logical, and in our view inevitable, approach is to stop trying to take
most of these decisions centrally.

A useful analogy here might be that of the communist era planned economies vs.
the capitalist free market system. Making government level decisions about when,
where, and how to move a few tons of tomatoes is obviously nonsensical to
proponents of the latter. Yet this is exactly what happened in the strictly hierarchical
organized planned economies leading to obvious issues such as one half of the
country having a shortage of tomatoes and another half having tons of tomatoes rot in

Page 83

some central deposit. Similarly, detailed decisions about design and features are best
left to the experts working on the actual software and any depending stakeholders.

Variability Management

Software variability is the ability of software assets to be extended, customized,
configured or otherwise adapted. In SPLs, the intention is to have a set of reusable
assets and architecture as well as a means to create software products from those. In
other words, the reusable assets and architecture feature a degree of variability that is
put to use during product creation.

In line with research from others at the time, our earlier work on variability
management identified feature models as a means to identify so-called variant
features in the requirements; and also as a means to plan the use of variability
realization techniques to translate the variant features into variation points (i.e.
concrete points in a software system where there is an opportunity to bind variants to
the variation points during product creation).

More recent research, has focused on (partially) automating and supporting this
process; formalizing the underlying models (e.g. using the UML meta model); tool
support; etc. Some of these approaches are now used successfully in industry. A small
commercial tool and support community is emerging. E.g., Big Lever
(www.biglever.com) can support companies with support and tooling when adopting
a SPL approach. MetaCase (www.metacase.com) provides similar services.
Additionally, various research tools integrate feature modeling support into popular
IDEs. Clearly, these tools are useful and various case studies seem to confirm that.

However, all of them more or less depend on the presence of a centrally governed
architecture and feature model. Introducing compositional development implies less
central control on these two assets. Consequently, requirements analysis and
architecture design activities are also affected.

Assuming that software development is fully decentralized, this means the
following:

• New features or variant features are identified, prioritized and
implemented locally rather than at a central level.

• Important architecture decisions with respect to component variability and
flexibility are mostly taken without consulting a central board of
architects.

• New variant features are not represented in centrally maintained feature
models unless the updating of such models is either automated or
enforced with (central) processes and bureaucracy. This may be hard or
even impossible given differences between organizations & processes of
the various software development teams involved.

• For the same reason, any tool mapping of such new variant features to
software variation points is not updated. Such mappings are critical in e.g.
build configuration tools.

Page 84

Provided vs. required variability

Feature models may be regarded as descriptions of either required or provided
features in a software system. Feature models of required features are the output of
the software analysis process. They may be interpreted as specifications of the
software or be used to guide the design process. On the other hand, feature models of
provided features describe implemented software systems in terms of the features
actually implemented in the software. Models of provided features may be of use for
e.g. configuring software products derived from the platform. In theory, these models
should be the same but in practice requirements constantly change and few software
products actually conform to initial requirements specifications. In fact, most
development on large software systems is software maintenance and concerns
changes to both the software and its provided feature specifications.

A similar distinction can be made for architecture documents. While the words
'architecture document' suggest that software is developed according to the blueprints
outlined in this document, a more popular use of architecture documentation tools
seems to be to document the design of already implemented software. This type of
documentation is generally used to, for example, communicate the design to various
stakeholders. Additionally, models described in an architecture description language
may be used to do automated architecture validations; simulations; or system
configuration.

When using a build configuration tool based on feature models, developers select
existing implementations of features or variant features. In other words, they make
use of a model of the provided variability. The tool in turn needs to map the feature
configuration to variation points in the implementation artifacts. In other words, it has
an internal model of the provided variation points in the software architecture.

This distinction of provided vs. required variability is highly relevant because we
observe that much of the SPL tooling is more related to provided rather than required
variability. De-centrally developed components may not conform to a centrally pre-
defined model of required features but they certainly do provide features that may be
described. Similarly, these components do not realize a pre-defined central
architecture but may still provide explicit variation points. There is nothing inherently
central about either feature models or architecture.

Research Issues & Concluding remarks

This article observes that there is a trend to decentralize software development in the
current software industry and that this raises issues with respect to SPL development,
particularly where it concerns the use of centrally defined feature models, architecture
models, and related tooling. Fundamentally, this centralized/top down style of
software development is not compatible with the bottom up style development seen
across the industry and we foresee that this centralized approach will not continue to
scale to the required levels. Already, the incorporation of de-centralized elements is
evident in the increasing popularity & use of open source components, and also in
publications such as Van Ommering.

Page 85

From this observation, we explored a bit what it means to do decentralized
compositional development and what that means for the centralized use of feature
models and architecture models in current SPL development. An important
conclusion we make is that most of the current tooling is focused around using feature
models of provided features in a software system to configure provided variability
points in a software architecture. We do not see any fundamental objections to
continue doing that in a decentralized development model. Feature models of
individual components may be provided and similarly the variability provided in these
components may be described.

The above suggest that much of the tooling that currently exists for variability
management may be adapted for use in a de-central fashion. Some potential research
topics related to this that we intend to explore further in future work are:

• How to synthesize aggregated feature models and architecture models
from the individual component level models given a component
configuration.

• How to validate component configurations given incomplete feature &
architecture information from components.

• How to deal with integrating components without formally documented
features and variation (e.g. most open source software comes without such
documentation).

• How to deal with crosscutting variant features that affect multiple,
independently developed components. E.g., security related features
generally have such crosscutting properties.

Some preliminary work related to this has already been done by amongst other Van
Ommering [6] who wrote articles on KOALA and development issues related to
compositional development. The trend, judging from KOALA, similar approaches
and, also from the increased popularity of component frameworks such as
standardized in OSGI, seems to be to address these issues with microkernel like
architectures that explicitly requires components to state dependencies and interfaces.

References

[1] J. van Gurp, J. Bosch, M. Svahnberg, On the Notion of Variability in Software Product
Lines, Proceeedings of WICSA 2001, 2001.

[2] P. Clements, L. Northrop, “Software Product Lines - Practices and Patterns”, Addison-
Wesley, 2002.

[3] J. van Gurp, J. Bosch, Proceedings of First workshop on software variability management
(SVM 2003), Groningen 2003.

[4] J. van Gurp, C. Prehofer, J. Bosch, Scaling Product Lines to new Levels: the
Open Compositional approach, submitted December 2006.
[5] B. Lang, Overcoming the Challenges of COTS, news @ SEI, 4(2)

http://www.sei.cmu.edu/news-at-sei/features/2001/2q01/feature-5-2q01.htm, 2001.
[6] R. van Ommering, Building product populations with software components, proceedings of

Proceedings of the 24rd International Conference on Software Engineering (ICSE 2002), pp.
255-265, 2002.

Page 86

Variations in Model-Based Composition of Domains

Anca Daniela Ionita1, Jacky Estublier2, German Vega2

1Automatic Control and Computers Faculty, Univ. "Politehnica" of Bucharest,

Spl.Independentei 313, 060042, Bucharest, Romania

Anca.Ionita@mag.pub.ro
2LIG-IMAG, 220, rue de la Chimie BP53 38041 Grenoble Cedex 9, France

{Jacky.Estublier, German.Vega}@imag.fr

Abstract. As model driven engineering increases the level of abstraction, there

are more possibilities to hide complexity and to introduce variability points.

Variations and composition, which are usually complementary approaches, may

be merged inside models and complement each other. The “domains”, presented

in this paper represent a coarse granularity reuse units. Domain variability is de-

fined by models and the way domains are composed is also defined by a (com-

position) model. Therefore, variations are found at two levels, (1) inside do-

mains (by choosing the appropriate model) and (2) in the composition

mechanism itself (by defining the composition semantics).

Keywords: Model Driven Engineering (MDE), variability, composition, reuse

1 Introduction

For managing diversity, variation and composition are often considered two inde-

pendent “schools of thought”, but merging them has been identified as a necessity [1].

Variation, in product family approaches, supposes a top-down approach, based on an

architecture where the elements, common to the whole family, and the “features” spe-

cific to each family member, are clearly identified. While planned variations are easy

to perform (feature selection), unplanned evolution is difficult to address. Conversely,

composition supposes a bottom-up approach, where existing units are selected and

glued, in order to form an application. Composition is not limited to putting together

components that perfectly fit together, but must also solve functional and non func-

tional mismatches. This paper investigates the links between variation and composi-

tion, supported by Model Driven Engineering [2].

Composition may be seen as a variation mechanism because it allows building dif-

ferent combinations that constitute variations, and hierarchical composition [3] in-

creases the variability potential. The current composition approaches use a rigid com-

position mechanism, which reduces both the reuse potential and the range of possible

assemblies. Generally, variation only consists in changing method call parameters

and/or in selecting the classes/components implementing the required interfaces. The

composition logic and the variability are spread among components and cannot be

changed without changing their code. To enhance flexibility, reusability and evolutiv-

ity, the control flow should not be the scattered in the components, but centralised,

like in orchestration [4].

Page 87

To improve both variation and composition, MDE raises the level of abstraction of

the applications, allowing abstract composition mechanisms independent from techni-

cal details. In an MDE approach, the elements to compose are models, and composi-

tion means more than selecting and gluing pieces of code. A powerful model compo-

sition mechanism, which includes variability capabilities, is needed. Composition can

be used to create large applications pertaining to product populations [5], but new

concepts and mechanisms are required to support this complexity.

The paper discusses a new model-based composition mechanism, tailored for large

units of reuse called “domains”. Each domain is associated with a DSL (a metamodel)

and an application in the domain is defined as a model written in this DSL (conform

to the metamodel). Composing two applications (A and B) pertaining to two domains

is reduced to composing their models (MA and MB). First, our approach composes

the two DSLs (DSL_A and DLS_B) through the definition of new relationships be-

tween them and obtains a new DSL (DSL_AB). This (meta) composition may include

some variability. Then, MA and MB are composed, while the composition model is

expressed in DSL_AB, leaving MA and MB unchanged.

A development environment, called Mélusine has been realised and a correspon-

dent methodology [7] has been defined for supporting this approach. Chapter 2 de-

scribes the variability introduced by the domain architecture, while chapter 3 presents

the variation points related to domain composition through relationships. Both of

them are exemplified on real examples used and reused in industrial applications.

2 Variations and Composition with Domains

2.1 Variability inside Domains

The domains presented in this paper have been designed to reuse heterogeneous com-

ponents that do not know each other. The composition model is explicit, according to

the domain specificity and to the application variability. The layered architecture al-

lows the definition of variation points on multiple levels.

Domains are fully independent and autonomous: they do not have dependencies of

any kind. A domain has a domain specific language and can interpret models con-

forming to it (see Fig. 1). This DSL gives an abstract and stable description of the

problem to solve and also gives the possibility for the domain experts to deal with the

concepts, without knowing technical details. An example of DSL is presented in Fig.1

for Product domain, used as a basic versioning system for various products, character-

ised by types and attributes.

After defining the domain DSL, a DSL interpreter is realized by mapping the ab-

stract architecture on concrete components, which are called tools in our approach.

The mapping is not done directly, but in terms of a feature model that captures func-

tional and non-functional properties, which are optional and may be maintained inde-

pendently from the DSL.

Once the domain and its interpreter are available, creating an application simply

stands in choosing the variation points at three levels: (V1) defining the application

model conforming to the DSL, (V2) selecting the features and (V3) selecting the

Page 88

components (tools). Thus, application development becomes a simple task that can be

performed by non experts.

 (V1) Application Model

 definition
 (e.g. J2EE architecture)
 Domain Specific Language (e.g. for Product Domain)

 Revision

AttributeTypeProductAttribute 1* 1*

 Branch

1..*1..*

Attribute

+value

**

*

+reference

*

Effectivity

 ProductType

 Product 1..*1..*

*

1

*

1

*

+shared

*

ProductDomain

 (V2)

 Feature selection
 (e.g. persistency, visibility)

 (V3)

 Component selection
(e.g. SQL or CVS storage)

Application Model

Domain

Domain Interpreter

Components

Feature Model

Fig. 1. Variation points inside the domain architecture

2.1.1 Application Model Definition
For a particular application, one has to define a model conforming to this DSL, which

is then understood by the domain interpreter. As the model is often structural only, the

application development does not need any programming [7], so it may be performed

directly by domain experts and not necessarily by software engineers. E.g., if Product

domain is used to version software artefacts conforming to J2EE architecture, a prod-

uct type may correspond to the Servlet concept.

2.1.2 Feature Selection
The DSL incorporates the variability regarding the domain concepts, but there are

other variations, regarding behaviour or non-functional properties, which are not re-

lated to a single concept. For this reason, the DSL, which is defined a priori, is com-

plemented by a feature model, which may be identified and incorporated in the sys-

tem a posteriori. As this feature model does not try to grasp all the variability, it is

rather simple and does not need the generality of the feature models from product

lines [8]. Features are optional and may be selected through the wizard given by Mé-

lusine environment. Examples of features for Product domain are:

- persistency – for objects instantiated from Product, Branch and Revision;

- visibility – for visualizing products and revisions stored in ProductDomain.

Page 89

2.1.3 Component Selection
The domain realization finally stands in mapping the abstract features to concrete

components, which contain most of the implementation code. It has been a purpose of

this approach to be able to reuse non-homogenous tools, using wrappers that adapt

them to abstract components. The tools for implementing an abstract feature may be

chosen through a wizard. For instance, the persistency feature may be mapped on

components having different implementations, based either on SQL storage, or on the

repository of a versioning system like Subversion or CVS.

2.2 Variation through Domain Composition

Domains are by nature narrow in scope, so applications usually span over several do-

mains. Therefore, a domain composition mechanism is necessary, such as to:

- “match” any pair of domains, irrespective of their DSLs;

- keep unchanged the original implementation.

Being a (large) unit of reuse, a domain has an “interface”, or a visible part, which

is actually its DSL, expressed as classes and relationships. This DSL is used to per-

form composition between domains at a high level of abstraction, irrespective of fea-

tures and components used at lower levels. Domain matching is performed by creat-

ing relationships between concepts, to support flexible interactions. The goal of

preserving the code was obtained through aspect oriented programming (AOP).

The composition mechanism is exemplified on RichProduct, a composite domain

reused for various purposes, from document management to software configuration

management. It is obtained by composing the autonomous domains Product and

Document, while preserving their original implementation. The idea behind the Rich-

Product domain was to have a versioning system for complex, “rich“ elements, which

are both characterized by some attributes (managed by Product domain) and by sup-

plementary information stored in one or more files (managed by Document domain).

 (V5) Inter-model relationship definition

 (V4) Inter-domain relationship definition (V6) Inter-domain relationship properties

Product Model Document Model

Product Domain DSL Document Domain DSL

Fig.2. Variation points in the RichProduct composition mechanism

2.2.1 Inter-domain Relationship Definition
The composite domain DSL includes the subdomain DSLs (see an example for Prod-

uct and Document composition in Fig. 2) plus relationships that either establish inter-

Page 90

actions characteristic to the new composite domain, or link “the same” concept found

in both domains - called inter-domain relationships (for example Product – Docu-

ment or Revision – DocRevision, representing the variation point V4 from Fig.2)

Inter-domain relationships are not modifying the code of the original domains; links

and interactions are implemented in a non-invasive way, using AOP.

2.2.2 Inter-model Relationship Definition
An application pertaining to a composite domain is characterized by several models,

one for each of the composed domains. For developing a new application, the applica-

tion designer should select a model from each domain and should define the relation-

ships between these models, in conformity with the previously described inter-domain

relationships. These inter-model relationships (variation point V5 from Fig. 2) may be

established either automatically (if there are enough criteria for matching the model

elements) or manually, through another Mélusine wizard (methodological details

were given in [7]).

2.2.3 Inter-domain Relationship Properties
The inter-domain relationships in composite domains are characterised by several

properties, which also constitute the variation points of our composition mechanism

(see V6 from Fig.2). Some characteristic attributes are given below:

a) Destination Life Cycle Management:

- Source Independent - if objects from the source and destination classes are

created independently and then related by an implicit or an explicit selection;

this is similar to an association in UML;

- Source Dependent - if the life cycle of the objects instantiated from the desti-

nation class is managed by the objects instantiated from the source class; these

relationships are similar to UML composition but the implementation is dif-

ferent from a composition between classes belonging to the same model.

In our example, the documents life cycle, with branches and revisions, is under the

control of products, with their respective revision tree. Thus, the destination life cycle

is dependent on the source one.

b) Multiplicity – an object from the source class may be linked to one or more ob-

jects from the destination class and vice-versa; the link may be optional or not.

Multiplicity may vary with respect to the composition policy and strongly depends on

the context in which the composed domains will be used. Let us take as example the

multiplicity choice for the Revision class related to DocRevision. What happens

when the product attributes change, while the document content remains the same? If

the multiplicity is 1..*, a document revision may be linked to more product revisions.

c) Link Creation Moment - represents the moment at which the source and destina-

tion instances are linked:

- Early, at instantiation - means creating the link immediately after the instantia-

tion of the source;

- Late, at navigation - means creating the link when navigation requires the des-

tination object;

In RichProduct,, a document is instantiated immediately after creating a product and

linked to it. So happens to branches and revisions also.

Page 91

d) Persistence – if the link is persistent and must be recreated in case of failure;

e) Captures - the signature of methods that have to be captured for supporting inter-

actions across the relationship.

Mélusine environment includes a user interface that asks the composite domain

developer to make the right choice for these properties. The code for implementing

the above properties (like establishing and navigating the links, persistency, or desti-

nation object creation) is generated automatically in the form of AspectJ extensions.

Other complex interactions between the linked objects should however be manually

coded, on the basis of the skeleton generated for the captures.

3 Conclusion

The increase of size, complexity and evolution requires more flexible composition

mechanisms, such as to manage variation points inside the units of reuse, but also in

the composition mechanisms itself. This may be obtained through model-based com-

position, at a high level of abstraction. This paper presents such a composition

mechanism for high granularity units of reuse called domains. Any pair of domains

may be composed by establishing inter-domain relationships, whose properties repre-

sent variation points of the composition.

Acknowledgments. The work of Anca Daniela Ionita was supported by a FP6, Marie

Curie – EIF fellowship at LIG-IMAG and by MEC-CNCSIS A37 grant.

References

1. van Ommering, R., Bosch, J.: Widening the Scope of Software Product Lines – From

Variation to Composition. In: G. Chastek (Ed.): SPLC2 2002. LNCS 2379 (2002) 328-

347

2. Favre, J.M.: Towards a Basic Theory to Model Driven Engineering. 3rd Workshop in

Software Model Engineering, WiSME 2004 (2004)

3. Bruneton, E., Coupaye, T., Stefani, J.B.: Recursive and Dynamic Software Composition

with Sharing. Seventh International Workshop on Component-Oriented Programming

(WCOP02), Malaga, Spain (2002)

4. Peltz, D.: Web services orchestration. A review of emerging technologies, tools and stan-

dards. Hewlett Packard, Co., January (2003)

5. van Ommering, R., Beyond Product Families: Building a Product Population ?. In: F. van

der Linden (Ed.): IW-SAPF-3, LNCS 1951 (2000) 187-198

6. Estublier, J., Vega, G., Ionita, A.D.: Composing Domain-Specific Languages for Wide-

Scope Software Engineering Applications. Lecture Notes in Computer Science. Proceed-

ing of MoDELS/UML Conference, Jamaica 3713 (2005) 69 – 83.

7. Estublier, J., Ionita, A.D., Vega, G.: Relationships for Domain Reuse and Composition.

Journal of Research and Practice in Information Technology, 38, 4 (2006) 287-301

8. Riebisch M., Streitferdt D., Pashov I.: Modeling Variability for Object-Oriented Product

Lines. Workshop Reader of 17th European Conference on Object Oriented Programming

ECOOP 2003, Darmstadt, Germany (2003) 165-178

Page 92

Towards Integration of Modelling and Reusing
Software Cases

Katharina Wolter1, Lothar Hotz1, and Thorsten Krebs1

HITeC e.V. c/o Department Informatik, Universität Hamburg
Hamburg, Germany, 22527

{hotz|krebs|kwolter}@informatik.uni-hamburg.de

Abstract. This paper introduces a novel approach to integrate reuse of
software cases and dynamic variability modelling. Software cases com-
prise both a problem description in form of a requirements specification
and a solution in form of architecture, design and code. Previous soft-
ware cases are identified based on the requirements specification and can
be reused for different but similar problems. This paper describes work
in progress. The ideas stem from research work within the EU-funded
project ReDSeeDS (Requirements-driven Software Development)1.

1 Introduction

The necessity to enhance reuse in software development is known. Software prod-
uct lines and variability modelling are well-known approaches to reach this goal
[1] [2]. Adopting these approaches, the variability of the domain is modelled in
advance to software development and is reused during application engineering.

In this paper, we propose a novel approach in which reuse is based on software
cases and variability can be modelled during software development. Using this
approach, the additional effort for variability modelling is kept minimal. Our
approach clearly differs from the software product line approach. New variability
and new artefacts are defined during application engineering, when needed. The
approach can be seen as a complement or alternative to the strict separation of
application engineering and domain engineering which is typical for development
in software product lines.

A software case comprises a problem statement (requirements) and a solution
(architecture, design and implementation) [3]. The requirements specification is
mapped to appropriate elements of the solution. Between the solution elements,
there is also a mapping defined: i.e. between requirements and architecture, be-
tween architecture and design, and between design and code. For a more detailed
description of this approach we refer the interested reader to [3].

All software cases of one domain are collected in a software knowledge model.
While a single software case does not contain any variability, each new software
case introduces new variability. The variability in the software knowledge model

1 http://www.redseeds.eu

Page 93

2 Katharina Wolter, Lothar Hotz and Thorsten Krebs

is exploited during software development as follows. Based on a partial require-
ments specification similar software cases are identified [3]. From these retrieved
software cases, both requirements and the corresponding solutions can be reused.
The resulting new software case is added to the software knowledge model.

In order to compute similarity between different software cases it is apparent
that the software knowledge model must be consistent at any time. A challenge
to this is the fact that customers use their own, probably domain-specific, ter-
minology. Hence, there is no explicit one-to-one mapping from the requirements
of a new software case to requirements of stored software cases. For keeping re-
quirements customer-understandable, but being able to map their requirements
to stored cases, a local vocabulary is created for every software case. Terms of this
vocabulary contain a mapping to terms defined in a global, common vocabulary
which is maintained within the software knowledge model. The mapping between
the local vocabulary and the common vocabulary can be one-to-one, but also in-
clude synonym and homonym definitions. Whenever requirements specifications
contain new terms that the global vocabulary does not yet contain or terms
used with a different meaning, these are integrated into the common vocabu-
lary – henceforth called consolidated vocabulary. This approach allows to define
different, customer-related terminologies but nonetheless using the full power of
similarity-based identification and reuse of different software cases. The software
knowledge model grows incrementally and thus can become very large. In order
to ensure consistency, tool support is essential.

The remainder of the paper is organised as follows. First, we illustrate how
software development looks like using a software knowledge model for defining
variability of stored software cases (2.1). Then we detail the software knowledge
model (2.2) and show how similarity of software cases can be computed based
on the consolidated vocabulary (2.3). We discuss and compare the approach to
related work (3), present future work and finally summarise the main benefits
(4). Throughout the paper we use examples from the domain of management
software applied for a fitness club.

2 Case-base variability modelling

2.1 Vision

Within the ReDSeeDS approach [4, 3], reuse already starts during requirements
specification. The Requirements Engineer (RE) defines requirements e.g. in a
set of scenarios2. Each scenario is a sequence of sentences written in restricted
English3, called requirements statements. A tool supports the RE during re-
quirements specification. When the RE enters a new sentence the tool checks
2 Note that the ReDSeeDS approach also supports other forms of requirements spec-

ifications. Fore simplicity reasons we restrict ourselves to scenarios in this paper.
3 One example of restricted English is Subject-verb-object (SVO) sentences where the

subject comes first, the verb second and the object third [5]. There are also other
approaches to restrict English text, like the Attempto Controlled English (ACE).
The extended form of SVO sentences used in ReDSeeDS have the advantage of

Page 94

Modelling and Reusing Software Cases 3

the consolidated vocabulary for terms of the statement and displays relevant
parts, if any. The following cases need to be distinguished:

1. The term is already defined in the software knowledge model
(a) Both terms have the same meaning

The term can be reused and the software knowledge model does not need
to be changed.

(b) The new meaning differs from the one in the software knowledge model
An example for this are homonyms. The term ’enter’ for example can de-
scribe that a person goes into a room or that a person types in data. The
software knowledge model needs to be extended with the new meaning.

2. The term is not yet defined in the software knowledge model
(a) The new meaning is already defined using a different term

An example for this are synonyms. The term ’enter’ may already be
defined but ’typing’ is not. The software knowledge model needs to be
extended with the new term.

(b) The new meaning is not yet defined
The software knowledge model needs to be extended with the new term
and its meaning.

Please note that the RE usually will not capture all requirements from
scratch. One main benefit of the ReDSeeDS approach is that the RE specifies
some initial requirements and then uses a query engine to search for software
cases with similar requirements [3]. Because of the traceability links between
requirements, architecture, design and code it is possible to reuse appropriate
solutions to the problem specifications. This means that the RE can reuse parts
of problem descriptions together with the associated parts of the problem so-
lutions from several former software cases. These partial problem descriptions
together with associated problem solutions are called subcases in the following.

The consolidated vocabulary enables measuring of similarity of requirements
even without lexical correspondence between the statements. Although the con-
solidated vocabulary can be very large, integration of new terms and mainte-
nance are supported by structuring the terms in an ontology (see next section).

The software development process originally performed in an organisation
needs to be adapted to this approach. However, there are only slight differences
compared to the implementation of a traditional product line approach. A main
difference is in the set of activities to be performed in software development:
besides traditional development activities (i.e. making architecture and design
decisions, coding, etc.) new activities are related to the integration of subcases
from different software cases and their adaptation. Methods like generic com-
ponents or aspect-oriented programming can support this task. Comparing new
customer-specific terms to existing terms in the consolidated vocabulary, and, if
needed, extending this vocabulary at appropriate places are new activities, also.

being syntactically unambiguous in contrast to natural language which can also be
used in ReDSeeDS if necessary.

Page 95

4 Katharina Wolter, Lothar Hotz and Thorsten Krebs

Fig. 1. The software knowledge model.

2.2 Software Knowledge Model

The software knowledge model contains a representation for complete software
cases (requirements, architecture, detailed design, and code) and the consoli-
dated vocabulary. Since we present a first step towards this uniform representa-
tion in this paper, we limit ourselves to modelling requirements.

We propose to use a generic logical representation for the software knowl-
edge model and thus for representing variability (see for example [6]). Concepts
are used to represent requirements, components, code, and other artefacts used
for software development. A taxonomy defines an inheritance structure between
concepts and a partonomy composes concepts by relating aggregates and parts.
Figure 1 depicts a taxonomy of terms that are modelled by means of concepts.
These concepts are related to the terms in all software cases they are used in, as
specified with the occurrence relation (definition relation in the other direction).
Structuring the vocabulary in a taxonomy has some key benefits:

– The system’s knowledge of a term is defined by the concept representing
the term and its relations (specialisation, composition, etc.). As a result
semantic-based similarity measures can be applied (see next section).

– Homonyms can be disambiguated by the specialization paths of the terms.
The two meanings for the term ’enters’ for example can be identified by the
path via ’moving’ for ’club member enters fitness club’ and ’typing’ for ’staff
member enters club member address’.

– The vocabulary can be browsed for identifying reusable terms.

2.3 Software Case Retrieval

For identifying cases, (partial) requirements of the current software case are
compared to requirements of stored cases. With the consolidated vocabulary,

Page 96

Modelling and Reusing Software Cases 5

the terms of all software case are comparable: the ontological structure can be
exploited to identify similarity of terms from different cases.

A child concept is similar to its parent because the former is a specialization
of the latter. Two siblings are also similar because both are children of the same
parent (they inherit the same characteristics). Concepts in different places of
the taxonomy are not necessarily similar. For example ’staff member’ and ’club
member’ are both ’person’s which means that they are siblings and have a lot in
common (e.g. name, address, etc.) compared to a ’staff member’ and a ’bracelet’
which is a ’thing’. Several heuristic similarity measures that are based on a
common hierarchial structure of terms are described in [7].

3 Discussion and Related Work

In case-based reasoning, cases (i.e. past experience) are stored to be retrieved for
similar problems [8]. The solution in the retrieved case is examined and applied
to the current problem with suitable modifications. While most case-based ap-
proaches to software reuse apply reuse on the level of software components and
code [9], ReDSeeDS starts reuse already on the level of requirements. This is an
essential advantage due to the fact that former cases can be identified early and
requirements specification can be skipped when requirements are reused together
with the solution.

Software Product Lines (SPLs) are a means for large-scale reuse. A product
line contains a set of products that share a common, managed set of features
satisfying the specific needs of a particular market segment or mission [1]. Do-
main engineering plays a key role: analysing the product domain, building a
common architecture and planning reuse. Variability is modelled explicitly e.g.
in a feature model. This modelling can be done in a waterfall-like approach or
incrementally. Our approach models variability is implicitly through the different
software cases. In contrast to a-priori domain engineering, our approach enables
dynamic extension of the reusable asset repository, i.e. reuse is not planned a-
priori. Evolving the model during product development contains both, evolving
the problem description (vocabulary, scenarios, etc.) and including the solution
to the problem (i.e. architecture, design and code). This means that domain
engineering is not a separate tasks but done during application development.
In SPL reusable artefacts are determined using a variability model while in the
ReDSeeDS approach these artefacts are identified by searching for software cases
with similar requirements.

4 Summary and Future Work

In this paper, we have introduced a novel approach that integrates variability
modelling and reuse of former software cases. A software case comprises the
problem description in form of a requirements specification and a solution de-
scription in form of architecture, detailed design and code artefacts. Reusing

Page 97

6 Katharina Wolter, Lothar Hotz and Thorsten Krebs

software cases or subcases is enabled with a query engine that compares re-
quirements specifications of former cases to the current problem. Variability is
modelled implicitly by the set of all known software cases and is automatically
extended for every new software case that is developed and stored.

The ideas in this paper originate from research work within the ReDSeeDS
project, in which a similarity measure will be developed based on the con-
solidated vocabulary sketched in this paper. The AMPL (Asset Modelling for
Product Lines) language developed in the ConIPF (Configuration in Industrial
Product Families)4 project defines a language to represent complete product
knowledge (incl. features, context, software and hardware artefacts) [6]. These
modelling facilities will be extended to formalize requirements, architecture, de-
sign and code. The adaptation of subcases from former software cases and the
integration of subcases from different software cases are further challenges.

Acknowledgement

This work is partially funded by the EU: Requirements-driven Software Devel-
opment System (ReDSeeDS) (contract no. IST-2006-33596). The project is coor-
dinated by Infovide, Poland with technical lead of Wasaw University of Technol-
ogy and with University of Koblenz-Landau, Vienna University of Technology,
Fraunhofer IESE, University of Latvia, HITeC e.V. c/o University of Hamburg,
Heriot-Watt University, PRO DV, Cybersoft and Algoritmu Sistemos.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley (2002)

2. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-021 (1990)

3. Smialek, M.: Towards a Requirements driven Software Development System. In:
Models 2006. (2006)

4. Smialek, M.: Acoomodating Informality with Necessary Precision in Use Case Senar-
ios. Journal of Object Technology 4(8) (2005) 59–67

5. Graham, I.: Task scripts, use cases and scenarios in object oriented analysis. Object
Oriented Systems 3 (1996) 123–142

6. Hotz, L., Wolter, K., Krebs, T., Deelstra, S., Sinnema, M., Nijhuis, J., MacGregor,
J.: Configuration in Industrial Product Families - The ConIPF Methodology. IOS
Press, Berlin (2006)

7. Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet::similarity - measuring the
relatedness of concepts. In: In Proceedings of the Nineteenth National Conference
on Artificial Intelligence (AAAI-04). (2004)

8. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodologi-
cal variations, and system approaches. Artificial Intelligence Communications 7(1)
(1994) 39–59

9. Fouque, G., Matwin, S.: A case-based approach to software reuse. Journal of
Intelligent Information Systems 2(2) (1993) 165–197

4 http://www.conipf.org

Page 98

Goal and Variability Modeling for
Service-oriented Systems: Integrating

i* with Decision Models

P. Grün-
bacher1

D. Dhun-
gana1

N.
Seyff2

M.
Quintus2

R.
Clotet3

X.
Franch3

L.
López3

J.
Marco3

Christian Doppler Lab for
Automated Software Eng.1
Johannes Kepler University

4040 Linz, Austria

Systems Engineering and
Automation2

Johannes Kepler University
4040 Linz, Austria

Universitat Politècnica
de Catalunya (UPC)3

Barcelona, Spain

Paul.Gruenbacher@jku.at

Abstract. Variability modeling and service-orientation are important ap-
proaches that address both the flexibility and adaptability required by stake-
holders of today’s software systems. Goal-oriented approaches for modeling
service-oriented systems and their variability in an integrated manner are
needed to address the needs of heterogeneous stakeholders and to develop and
evolve these systems. In this paper we propose an approach that complements
the i* modeling framework with decision models from orthogonal variability
modeling. We illustrate the approach using an example and present options for
tool support.

1 Introduction

Stakeholders of today’s software-intensive systems demand flexibility and adaptabil-
ity to allow rapid system evolution made necessary by new and changing require-
ments. Variability modeling and service-orientation are promising with respect to
both flexibility and adaptability. Variability modeling is an approach fostering soft-
ware reuse and rapid customization of systems [8][10]. Service-orientation is visible
in buzzwords such as service-oriented computing, service-oriented architectures, or
service-oriented software engineering and is promoted by a number of emerging
standards for service-oriented development. Recently, researchers have started to
explore the integration of service-oriented systems and variability modeling. Variabil-
ity modeling is increasingly seen as a mechanism to support run-time evolution and
dynamism in different domains and to design, analyze, monitor, and adapt service-
oriented systems [7]. At the same time the modeling framework i* [11] is gaining
popularity to model service-oriented and agent-based systems [9] and researchers are
seeking new ways to enhance it with variability modeling capabilities [6].

Pursuing similar goals we have been using i* to model a service-oriented multi-
stakeholder distributed system (MSDS) in the travel domain to validate its usefulness

Page 99

in this context [3]. Despite the power and expressiveness of i* we experienced some
deficiencies when modeling variability in particular when specifying the needs of
heterogeneous stakeholders in the MSDS or when investigating the modeling needs
of service provides and service integrators. As a result we started investigating the
dependencies of goal modeling and variability modeling. In this paper we discuss an
initial approach integrating orthogonal variability modeling techniques into i*. We
illustrate the approach using examples and discuss tentative tool support based on our
existing work on meta-tools for variability modeling. Our approach is based on our
integration framework [3] as well as our earlier work on the use of i* [5] and variabil-
ity modeling [4].

2 Modeling the Variability of Service-oriented Systems with i*

Modeling service-oriented systems requires an understanding of stakeholder goals
and goal variability. i* is an established framework for goal modeling [11] which is
goal-oriented as well as actor-oriented and supports the assignment of responsibilities
to system actors to express high-level actor requirements. There are two types of
models in i*: Strategic Dependency (SD) models define actors, their relationships
(e.g., specialization and composition) and how they depend on each other. Strategic
Rationale (SR) models state the main goals of these actors and their decomposition
using some refinement constructs. Together the SD and SR models provide a com-
prehensive system overview. i* supports recording the rationale behind requirements
and decomposing elicited requirements at the required level of detail. At the require-
ments level actors are mainly used to represent stakeholders’ needs, while at the ar-
chitecture levels they can be used to model services: For instance, Franch and Maiden
have explored the use of i* to model architectures using roles and agents [5]. A simi-
lar approach has been proposed by Penserini et al. in [9]. i* supports traceability from
high-level actor goals to concrete services in the running system and vice versa. It has
been shown that high-level stakeholder goals tend to be more stable than underlying
requirements and selected software solutions. Linking services to high-level stake-
holder goals modeled in i* thus increases system stability and adaptability by guiding
the replacement of malfunctioning services with services also fulfilling essential
stakeholder goals. It also facilitates the identification of affected stakeholders [3].

Fig 1. Modeling Goal Variability in i*: Customer assistance can be either provided

using asynchronous or synchronous support.

Page 100

We are currently exploring the benefits and limitations of i* for developing and
evolving service-oriented systems. A key experience is that variability essential for
modeling service-oriented systems at different levels of abstraction. Figures 1 and 2
show partial i* examples of external and internal variability.

Our framework presented in [3] defines four different modeling layers for service-
oriented systems: stakeholder needs, architecture prescription, solution architecture,
and open system. Figure 2 shows a concrete modeling example on the architecture
layers. For instance, the architecture prescription layer may define the actor “Travel
services provider” (expressed as role in i*) for undertaking the “Book hotel” and
“Book flight” system tasks. At the lower solution architecture layer several services
cover the role “Travel services provider”: The services “Amadeus” and “Schubert”
are modeled as i* agents since they are real-world entities. The open system instance
layer describes a running system. If the service “Amadeus” is chosen one may choose
the “Spanish Amadeus Server” service hosted on a Spanish site or the “Austrian
Amadeus Server” hosted on an Austrian site. Again these services are modeled as i*
agents, related to “Amadeus” by using the instance relationship in i*.

Fig 2. Modelling Service Types and Services in i*.

The example shows the capabilities of i* for modeling service-oriented systems at
different levels of abstraction. The language can be used to model high-level concerns
such as stakeholder goals, architecture-level aspects, and even the configuration of
the open system based on service instances [3]. The flexibility of i* was also pointed
out by other authors [1]. Traceability is a major benefit: The contributes relationship
in i* allows establishing traceability between stakeholder goals, service types, se-
lected services, and service instances.

Page 101

The examples, however, also show some limitations of modeling variability in i*.
The expressiveness and formality is insufficient compared to existing variability mod-
eling approaches. There are no language constructs to capture more formal aspects
required in variability models such as constraints (e.g., between services), conditions
under which services become active or inactive, selector types, or cardinalities [10].
The variability modeling capabilities of i* should therefore be enhanced.

3 Using Variability Modeling with i*

We propose an approach based on our framework for multi-stakeholder distributed
systems [3] and our earlier work on the use of i* [5] and meta-tools for variability
modeling [4]. A fundamental approach in variability modeling is to complement ex-
isting models and artifacts with variability information rather than using specific
notations or languages. Our work is influenced by a decision-oriented approach pro-
posed by Schmid and John [10] that supports orthogonal variability modeling for
arbitrary artifacts independent from a specific notation. The benefits of such ap-
proaches are the flexibility gained and traceability established by using one variability
mechanisms for different artifacts at the requirements, design, architecture, imple-
mentation, application, and runtime level. We propose to complement i* with or-
thogonal variability modeling techniques. Such an approach requires:

• The development of a decision model describing the variability of the system
and dependencies between variabilities [4].

• An asset model describing the system elements and their dependencies [4].
In the domain of service-oriented systems the elements include service types,
services, and service instances together with their dependencies (e.g. a pay-
ment service might rely on a transaction service).

• The annotation of i* models with rules referring to the decision model to
model inclusion conditions for services and the dependencies among assets
and decisions.

• A mechanism to prune i* models based decisions taken at design-time or
runtime to generate/update system configurations on the fly (e.g., by add-
ing/removing/updating services).

We envisage an i* model to hold a snapshot of a service-oriented system at a certain
point in time that can be adapted based on decisions taken by stakeholders by consid-
ering all assets and their dependencies. In the product line terminology such a snap-
shot is based on the domain-level, ”product-line“ version of the i* model. Obviously,
beyond the i* model, the runtime configuration requires the generation of additional
information for configuration, i.e., concrete values of decision variables that inform
system configuration (see Figure 3).

Page 102

Decision
Variable

Question Selection
Type

Cardi-
nality

Link to i*
element

Type of
customer
assistance

What kind of customer
assistance do you need?

Set
{Synchronous
Support,
Asynchro-
nous Support}

1:2 Customer
assistance
provided

Degree of
customer
assistance

How many hours per day
should the hotline be
available?

Value
[0..24]

1 Customer
assistance
provided

Travel
Service
Provider

Which is your preferred
travel service?

Set (Ama-
deus, Schu-
bert)

1 Travel
Service
Provider

Fig 3. Partial decision model.

4 Adopting a Variability Modeling Meta-Tool

We are aiming to provide tool support for the discussed approach and have been
tailoring the orthogonal variability modelling meta-tool DecisionKing to our problem
context [4]. DecisionKing allows the definition of meta models for arbitrary asset
types to create a customized variability modeling tool. The tailoring of a custom-built
variability modeling tool in DecisionKing covers (i) the definition of a domain-
specific meta-model and (ii) the development of domain-specific plug-ins:

Definition of the meta-model for service-oriented variability modeling. This step
covers the identification of the relevant asset and dependency types. We identified the
asset types goal, service type, service, and service instances: A goal of a stakeholders
maps to an actor goal in i*. Different services types contribute to fulfilling these goals
(e.g., “Travel services provider”). Available services realizing a service type are mod-
eled as a service (e.g., “Amadeus”). Finally, available runtime implementations of
services can be modeled as service instances (e.g., “Spanish Amadeus Server”). We
also identified two kinds of relationships between the assets: The requires relation-
ship is used whenever the selection of a certain assets leads to the selection of another
asset. This can be a result of logical dependencies between goals, conceptual relation-
ships between service types, relationships between services, or functional dependen-
cies between service instances. The contributesTo relationship is used to capture
structural dependencies between assets of different levels. Service instances for ex-
ample contribute to services. Services contribute to service types which contribute to
goals. It is however also possible that goals are split up into sub-goals. Such composi-
tional relationships between goals can also be modeled using the contributesTo rela-
tionship.

Development of plugins. DecisionKing’s capabilities can be extended by plugging-
in domain-specific functionality [4]. Using this mechanism we are developing a link
between DecisionKing and the i* modeling tools REDEPEND using an XML-based
interchange language for our tool suite.

Page 103

5 Open Issues

In this paper we proposed an initial approach to complement i* with an orthogonal
variability modeling technique. There are several open issues needing attention:

We need to extend the i* language in order to include variability information. On
the one hand, we need to provide complete formal semantics for the is_a inheritance
i* mechanism, which is currently only defined at the actor level. On the other hand,
we need to provide a formal syntax for modeling taken decisions (e.g., which services
are chosen) and variation points. We are considering the use of the i* routine concept
for reflection decisions taken in the model.

We also need to complete tool integration to improve traceability between i* and
variability models. For this purpose we will link the i* meta-model and the variability
meta-model and exchange information between models using an XML interchange
definition language currently under definition.

References

[1] J. Castro, M. Kolp, J. Mylopoulos. “Towards Requirements-Driven Information Systems
Engineering: The Tropos Project”. Information Systems, vol. 27, 2002.
[2] L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos, Non-functional requirements in software
engineering, Kluwer Academic Publishers, 2000.
[3] R. Clotet, X. Franch, P. Grünbacher, L. López, J. Marco, M. Quintus, N. Seyff: “Require-
ments Modelling for Multi-Stakeholder Distributed Systems: Challenges and Techniques”.
RCIS'07: 1st IEEE Int. Conf. on Research Challenges in IS, Ouarzazate, 2007
[4] D. Dhungana, P. Grünbacher, and R. Rabiser, "DecisionKing: A Flexible and Extensible
Tool for Integrated Variability Modeling.", 1st International Workshop on Variability Model-
ling of Software-intensive Systems, Limerick, Ireland, 2007.
[5] X. Franch, N.A.M. Maiden. “Modeling Component Dependencies to Inform their Selec-
tion”. In Proceedings 2nd International Conference on COTS-Based Software Systems
(ICCBSS), Lecture Notes on Computer Science 2580, Springer,2003.
[6] S. Liaskos, Y. Yu, E. Yu, J. Mylopoulos. “On Goal-based Variability Acquisition and
Analysis”. Proc. 14th IEEE Int’l Requirements Engineering Conference (RE'06) (Sept 11-15,
2006). IEEE Computer Society
[7] J. Peña, M.G. Hinchey, A. Ruiz-Cortés. “Multi-agent system product lines: challenges and
benefits”. Communications of the ACM, vol. 49, n. 12 (Dec. 2006), 82-84.
[8] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line Engineering: Founda-
tions, Principles, and Techniques: Springer, 2005.
[9] L. Penserini, A. Perini, A. Susi, J. Mylopoulos. "From Stakeholder Needs to Service Re-
quirements". Proceedings of the 2nd International Workshop on Service-Oriented Computing:
Challenges on Engineering Requirements (SOCCER), 2006.
[10] K. Schmid and I. John, "A Customizable Approach to Full-Life Cycle Variability Man-
agement". Journal of the Science of Computer Programming, Special Issue on Variability
Management, vol. 53(3), pp. 259-284, 2004.
[11] E. Yu. Modeling Strategic Relationships for Process Reengineering, PhD Thesis, To-
ronto, 1995.

Page 104

	Towards the Comparative Evaluation of Feature Diagram Languages
	Ontology-Based Software Reliability Evaluation and Software Reliability Ontology
	An Analysis of Variability Modeling and Management Tools for Product Line Development
	Tool-Supported Multi-Level Language Evolution
	Kumbang Modeler - A Prototype Tool for Modeling Variability
	Variability Management and Compositional SPL Development
	Variations in Model-Based Composition of Domains
	Towards Integration of Modelling and Reusing Software Cases
	Goal and Variability Modeling for Service-oriented System - Integrating i with Decision Models

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

