
Tool for Configuring Product Individuals from
Configurable Software Product Families

Varvana Myllärniemi, Timo Asikainen, Tomi Männistö, and Timo Soininen

Helsinki University of Technology
Laboratory of Software Business and Engineering

varvana.myllarniemi@hut.fi

Abstract. This position paper presents a tool for configuring product
individuals from configurable software product lines. The product deriva-
tion is done by making selections based on a configuration model in a
way that best satisfies customer requirements at hand. The tool produces
a description of the product individual as an output. The implemen-
tation is based on both component-based and feature-based modelling
techniques. The tool employs techniques from traditional product con-
figuration to ensure the validity of the product individual against the
model. The implementation of the tool is still in progress.

1 Introduction

This position paper presents a tool for configuring product individuals from con-
figurable software product lines. The implementation is still in progress, so this
paper describes the current status of the tool. This section covers the theoretical
background and basics of the tool. Section 2 discusses the implementation of the
tool, and section 3 draws conclusions and suggestions for future work.

This work is based on the concept of a configurable software product family
(see e.g. [1]). Configurable software product families correspond to the highest
maturity level of software product lines [2]: all development effort has moved from
application engineering towards domain engineering. During product derivation,
there is no need for additional product-specific coding. Instead, product indi-
viduals are derived from predesigned software components and a predesigned
configuration model in a routine manner. The output of this configuration task
is a configuration, which is a description of the product individual.

The tool is based on two modelling languages that describe the structure and
variability of the family. Koalish [3] is a architecture-driven modelling language
that is derived from architecture description language Koala by adding mecha-
nisms for variability. A Koalish system consists of components, interfaces, bind-
ings between interfaces, attributes and constraints. Components form a composi-
tional hierarchy that constitutes the configuration. (For more information about
Koalish, please refer to [3] or [4].) The other language employed is feature-driven
language called Forfamel that synthesises existing feature modelling languages.
Forfamel offers features, attributes and constraints between them, as well as a
compositional hierarchy of features. This language is still under construction.

The tool helps the user in deriving a product individual that conform both
to the product family architecture and to the customer requirements. The user



Fig. 1. The configuration task with the tool. The tool takes a configuration model as
an input. The user of the tool does selections that conform to the requirements of the
customer. Based on these selections, the tool produces a description of the product
individual.

selects wanted features and software components, and the tool produces a de-
scription of the complete product as a result (see figure 1). The tool constantly
checks the consistency of the selections and prevents the user from making in-
consistent selections.

The tool is inspired by techniques derived from traditional knowledge-based
product configuration. However, there are differences between traditional prod-
ucts and software. Thus the concepts used in this tool are derived from the
software world: instead of mechanical components, the configuration consists of
features, software components, interfaces and so on.

There are a few similar tools and approaches that are designed for configuring
product individuals from software product lines (e.g. [5], [6]). However, there are
certain differences between them and this tool. For example, this tool offers a
mix of features and software components, in a top-to-bottom selection order that
is freely chosen by the user.

2 Tool Implementation

The main objective of the tool developed is to offer the user aid in the con-
figuration task. It does this by offering the user a graphical user interface that
shows the compositional hierarchy of the configuration. The GUI can then be
used to modify the features and / or software components in the configuration.
These selections are made so that they conform to the structure of the product
family and to the customer requirements at hand. The tool takes as an input the
configuration model that describes the structure and variability of the product
family, and it produces a description of the product individual as an output (see
figure 1).



Our tool is based on two modelling languages for configurable software prod-
uct families (see section 1). Thus the tool employs both architecture-driven and
feature-driven approaches: the configuration consists of features, software com-
ponents, attributes, interfaces and bindings between these interfaces. For ex-
ample, the user might say “I want component client connected to component
server through interface caller” or “I want attribute bandwidth in feature
connection to have value high”. The user then makes these selections by mod-
ifying the configuration with the graphical user interface (see figure 2). There is
no pre-set order for these modifications, except that one must add components
and features in a top-to-bottom order in the compositional hierarchy.

Fig. 2. A screen shot from the configuration client. The client shows a compositional
hierarchy of the current configuration. This is the component view that shows the
components, interfaces and their connections.

The tool offers a distributed client-server architecture: clients offer a graph-
ical user interface and are connected to the configuration server. This enables
centralized management of the models: the user of the configuration client does
not need to possess the configuration model in order to use the tool.

For the selected configuration, the tool must check the validity of the con-
figuration, which includes both completeness (all the necessary selections are
made) and consistency (no rules of the model are violated). This reasoning uses
the inference tool smodels [7]. The same reasoning mechanism is used in an aca-



demic product configurator for traditional products [8]. In addition, the server
can deduct some of the consequences of the selections so far, for example, to tell
which instances must be present in the configuration and which instances must
not be present.

In addition, the tool produces a description of the complete configuration,
both as text and extension markup language (XML).

3 Conclusions and Future Work

In this position paper we presented a configurator tool for configurable software
product lines. The tool is still under construction, so there is some planned
functionality that has not been yet implemented.

In order to validate our tool, we are working on a real-world case for con-
figuring product individuals. This requires that we construct a configuration
model that represents the case product family, and then derive products using
our configurator tool.

A large part of the tool support for configurable software product families is
the modelling tool. At the moment, all configuration models have to be written
by hand. This is not a feasible approach, since it requires the user to be familiar
with the syntax of the language. In addition, when models are large, writing
them by hand might become too demanding. A semi-graphical modelling tool
would ease this task and provide a visual aid in model creation.

References

1. Männistö, T., Soininen, T., Sulonen, R.: Product configuration view to software
product families. In: International Workshop on Software Configuration Manage-
ment (SCM-10) at ICSE 2001. (2001)

2. Bosch, J.: Maturity and evolution in software product lines: Approaches, artefacts
and organization. In Chastek, G.J., ed.: Proceedings of the Second Software Product
Line Conference (SPLC2). (2002) 257–271

3. Asikainen, T., Soininen, T., Männistö, T.: A Koala-based ontology for configurable
software product families. In: IJCAI 2003 Configuration workshop. (2003)

4. Asikainen, T., Soininen, T., Männistö, T.: A Koala-based approach for modelling
and deploying configurable software product families. In: Proceedings of the Fifth
International Workshop on Product Family Engineering (PFE-5). (2003)

5. van der Hoek, A., Heimbigner, D., Wolf, A.: Capturing architectural configurability:
variants, options and evolution. Technical Report CU-CS-895-99, Department of
Computer Science, University of Colorado, Boulder, Colorado (1999)

6. Hotz, L., Krebs, T.: Supporting the product derivation process with a knowledge-
based approach. In: Proceedings of Software Variability Management ICSE 2003
Workshop. (2003) 24–29

7. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model
semantics. Artificial Intelligence 138 (2002) 181–234

8. Tiihonen, J., Soininen, T., Niemelä, I., Sulonen, R.: A practical tool for mass-
customising configurable products. In: Proceedings of the 14th International Con-
ference on Engineering Design (ICED’03). (2003)


