
Product Derivation through Domain-Specific Modeling:
Collected Experiences

Risto Pohjonen, Juha-Pekka Tolvanen

MetaCase, Ylistönmäentie 31
FIN-40500 Jyväskylä, Finland

{rise, jpt}@metacase.com
http://www.metacase.com

Abstract. Domain-Specific Modeling raises the level of abstraction beyond
programming by specifying the solution directly using product domain con-
cepts. The final products can be generated from these high-level specifications.
This automation is possible because both the language and generators need fit
the requirements of only one company and domain. This paper discussed Do-
main-Specific Modeling approach to product family development. It derives
guidelines for DSM language and generator implementation by collecting the
experiences gained from different cases of model-based product derivation.

1 Introduction

Modeling languages have been seen as an important mechanism to manage variation
and guide development within product families [1], [8], [10]. However, traditional
all-purpose modeling languages, like SA/SD or UML, provide little or no support for
this matter. These languages are based on a fixed metamodels and therefore lack
possibilities to explicitly bind product variation points to modeling constructs accord-
ing to the domain or product family requirements. As a solution to this problem,
domain-specific information is often included into the models informally with nam-
ing conventions, stereotypes, profiles or additional constraint languages. Unfortu-
nately these kinds of language extensions do not solve the underlying problem, but
add more overhead to the use of language, cause mistakes and make it difficult to
achieve modeling and product derivation support.

Domain-Specific Modeling (DSM) addresses these issues directly on the level of
the language itself. It suggests that the variation within the product line should be
managed with well-focused modeling language specifically tailored for the product
domain – which is opposite to the traditional modeling languages that try to be as
general as possible. A DSM language is defined with natural domain and product
concepts. Identifying the variation points and their parameters and binding them to
the domain concepts then covers the variation space for the product family. Once
applied for the application development, the models made with DSM language cap-
ture all static and behavioral parts of the family member. This enables developers to

generate the finished product automatically from these models. The language thereby
shifts the abstraction level of designs to the product concept level, makes the product
family explicit to developers and effectively sets legal variation space.

This paper discusses how to adopt DSM for product variation management and
derivation – according to experiences collected from different industrially applied
product families. As only industrial DSM deployment cases were taken into account,
there are still too few cases to valid a statistical analysis of them1. The experiences
were gathered with interviews and discussions with domain engineers, personnel
responsible for the architecture and tooling and with consultants creating DSM lan-
guages for product family development. Some of these families, and related DSMs
respectively, can be characterized rather stable whereas others are under frequent
change. Also the main variation aspect is different between families: user interface,
configuration, hardware settings, platform services, business rules, or communica-
tion mechanisms. Sizes of the families vary from a few to more than 200 members,
and size of development teams ranges from 4 to more than 300 developers per fam-
ily. Largest product families have over 10 million model elements and largest DSM
languages have about 500 language constructs. Some languages were already used
more than 7 years whereas some were used just for creating first variants within the
family.

The organization of this paper is as follows. In the next section we present the ar-
chitecture for a DSM environment. This 3-level architecture enables the domain
engineers to find appropriate computational models for specifying variation inside a
family and to allocate variant specification to application development environment.
Sections 3 and 4 discuss the creation of the DSM language for variability manage-
ment and the code generator support for variant derivation with an example. Section
5 then summarizes the experiences gathered from DSM implementation for product
families.

2 Environment for Domain-Specific Modeling

A comprehensive DSM environment with full automatic generation of variants re-
quires three things: a modeling tool with support for the domain-specific language, a
code generator, and a domain-specific framework [10], [4], [9], [5]. This basic archi-
tecture is illustrated in Fig 1. The left side represents the entities relevant for creat-
ing the environment – a task carried out by domain engineers – while the right side
illustrates the use of the environment by engineers developing family members.

1 Due to confidentality all cases can be not illustrated in detail, but some cases are collected at

www.metacase.com/dsm.html.

Variant
design

tool

MetaCASE
tool

PRODUCT IDEA

PRODUCT
MODEL

PRODUCT
CODE

DOMAIN

DOMAIN-
SPECIFIC

MODELLING
LANGUAGE

+

DOMAIN FRAMEWORK

DOMAIN-
SPECIFIC

CODE
GENERATOR

Variant
design

tool

MetaCASE
tool

PRODUCT IDEA

PRODUCT
MODEL

PRODUCT
CODE

DOMAIN

DOMAIN-
SPECIFIC

MODELLING
LANGUAGE

+

DOMAIN FRAMEWORK

DOMAIN-
SPECIFIC

CODE
GENERATOR

Fig. 1. Architecture for designing and using a DSM environment.

The role of modeling language in a DSM environment is pivotal: as a representation
of domain concepts and semantics, a modeling language defines static and dynamic
variation space for the product family. The language is formalized into a metamodel,
from which all models describing family members are instantiated - this ensures that
application developers follow the family approach de facto. The metamodel is also
the key factor for the modeling tool support, which we will address shortly.

The code generator translates the specific model semantics into an output com-
patible with the domain-specific framework and provides variation for output for-
mats. The domain-specific framework then provides the DSM environment with an
interface for the target platform and programming language. This is achieved by
providing the atomic implementations of commonalities and variabilities as frame-
work-level primitive services and components.

Code generation also raises the question about the tool support for the DSM. Tra-
ditionally, there has been no cost-effective ways to implement full-blooded DSM
environments with tools like editors and code generators. Over the 1990’s, a new
breed of customizable CASE tools, known as metaCASE tools, has emerged as a
solution to this problem. A metaCASE tool is a development support environment
with parameterized or configurable front- and back-end tools which runtime behav-
ior is determined by the metamodel loaded into the environment. These kinds of
metamodel-driven tools reduce the effort of building a DSM environment to a few
man-weeks and change the focus of development mainly on specifying the meta-
model for the language and building generators. The metaCASE tool then makes the
language and generators automatically available for developers.

3 Variability Management with Modeling Language

In this and the next chapter we look at the process of building a DSM environment.
We will begin with by examining how the variation within the product line is identi-
fied and then managed by incorporating it into the modeling language. As confiden-
tiality prevents us from representing real world examples, we observe this process
through a small but complete ‘laboratory’ example of wristwatch product family2.
The basic idea in watch example is to consider a wristwatch as a set of small applica-
tions (like current time display, stopwatch, alarm, etc.) with user interface consisting
of buttons and such display widgets as time zone or icon.

3.1 Domain Engineering

When we look at product development in the context of an overall product family,
we need to define the product family in order to identify commonalities and differ-
ences among the related products. This process is known as domain engineering
[10], [11]. The domain experts carry out the domain engineering and create DSM
language and its support environment according to its results. Thus, the expert
knowledge is leveraged to all developers, who can now concentrate on developing
variants.

The starting point for language definition is the domain analysis that conceives
the identification of domain concepts. The key strategy for finding domain concept is
the commonality and variability analysis of the domain. The goal of this analysis is
to identify the entities that are common for all products within the domain and find
the variability between the products. However, it is important to understand that
there are several ways to do this and that usually none of them alone can provide a
complete coverage. Good results typically require concurrent use of a number of
various strategies. In any case, the key success factor in finding the domain concepts
is the domain expertise.

Once the commonalities and variabilities within the domain have been charted,
the identified entities are categorized as either static or behavioral according to their
nature. As an example, Table 1 summarizes the static and behavioral domain con-
cepts of the watch example and their commonalities and variabilities, gathered as 2-
by-2 matrix.

The next step of domain analysis is to adapt this rough presentation as a more
formal definition of domain concepts. To do this, we have to analyze the relation-
ships between the concepts and their possible variability attributes. The results of this
analysis define the hierarchy of domain concepts from the top-level “whole product”
to the low-level atomic elements. The identified variability attributes also partially
set the variation space for the whole intended product range. The concepts for the
example watch DSM environment and their variation space are presented in Table 2.

2 This is a part of a more comprehensive example. For the complete example, please contact

us at {rise, jpt}@metacase.com.

Table 1. The results of domain analysis for watch example

 Commonalities Variabilities
Static • display

• button
• zone
• icon
• application
• action
• time unit
• alarm

• number of buttons
• number of zones
• number of icons
• number of applications
• combinations of displays

and applications
• combinations of actions

Behavioral • applications are executed in
certain order

• application displays time
units and icons

• actions are triggered by user
via buttons or by alarms

• actions operate on time
units, icons and/or alarms

• application execution order
• time units and icons dis-

played vary depending on
application

• actions applied vary de-
pending on application

Table 2. The watch concepts with variation attributes

Concept Variability attributes
Watch Logical Watch + Display
Logical Watch Applications (0 – N) with execution order
Display Buttons (2 – 4) + Zones (2 – 4) + Icons (0 – N)
Button Up | Down | Mode | Set
Zone TimeUnit
Icon On | Off
Application DisplayedTimes (0 - N) + Actions (0 – N)
DisplayedTime Time
Time TimeUnits (2 – 4)
Action set Time | + Time | - Time | Icon on | Icon off | Alarm on |

Alarm off
TimeUnit Hours | Minutes | Seconds | Hundreds of seconds
Alarm Time

The final task of domain engineering is to refine the results of analysis as the product
reference architecture. This architecture can be derived fairly easily from the static
commonalities and their aggregation structures. The watch example architecture is
illustrated in Fig. 2.

It is worth to note that for the first deployable version of the DSM environment it
may not be necessary to implement all concepts identified during domain analysis. It
is possible to prioritize the concepts and implement of the DSM environment in
incremental fashion.

Fig. 2. The product architecture for watch example

3.2 Defining the Modeling Language

Domain engineering is strong on its main focus, finding and extracting domain con-
cepts, family commonalities and variabilities, but gives little help in designing and
implementing languages for the engineered domain. Typically, it offers some pa-
rameters of static variation, but does not acknowledge behavioral variation, rules
between different variation points or mapping to implementations. These aspects can
be covered with additional techniques of method engineering and metamodeling.
Method engineering is the discipline of designing, constructing and adopting devel-
opment methods and tools for specific needs [3], [6]. In particular, it emphasizes the
use of metamodels to specify concepts, terms and variation rules of product family
domain. MetaCASE tools, as stated before, can then read these metamodel (i.e.
product family) specifications to implement the tool support.

According to studied cases, there are two key requirements for DSM design. First
is the computational model that is suitable for specifying the required variation.
Another is the expected code generator output and its target platform and implemen-
tation language. These two requirements affect each other: sometimes the generation
output may require a certain computational model to be used, e.g. XML and data
models, when most variation points are based on static structures; or vice versa, the
state machine as a computational model and the state machine as an implementation
of behavior. The computational model(s) of variation and underlying platform for
generator output are then represented with the elements of DSM environment, mod-

eling languages, generator and domain-specific framework. The selection of compu-
tational model and underlying platform and programming language provide also
additional information for successful distribution and allocation of domain concepts
within the tree parts of DSM environment: the modeling language, code generator
and domain-specific framework.

As the modeling language is the only part that is visible for the user and thereby
provides the user interface for the development, it has to maintain control over all
possible variation within the product family. The modeling language is also the main
factor for productivity increase and it should operate on the highest achievable level
of abstraction. Based on our experience, language should be kept as independent
from the target implementation code as possible. It may initially appear easier to
build the language as an extension on top of the existing code base or platform but
this usually leads to a rather limited level of abstraction and mapping to domain
concepts3.

To ensure a high abstraction level for developers, the language should be based on
the product family domain itself. The optimal way to achieve this is to use the ele-
ments of product family architecture, common elements, and particularly those re-
lated with variation points. The nature of variation (static or behavioral) and level of
detail favors selecting computational models that can be represented with certain
basic modeling languages. Pure static variability can be expressed in data models,
while orderly variation requires some sort of flow model; state machines advocate
state models, etc. All these can be represented formally with metamodels and enrich-
ing them with variation data and rules allows creating the conceptual part of the
modeling language. Once defined, the modeling language (enacted by the supporting
tool) guarantees that all developers use and follow the same product family rules.

Fig. 3. State machine with watch domain extensions

Fig. 3 shows the example of modeling language for watch product family, presenting
a simple application that displays and changes the current time. In this case we

3 It seems not to be practice to design a DSM language by extending languages based on fixed

metamodels. For example, pure UML profile mechanisms have limited capabilities to ex-
press product family concepts and their correctness constraints.

found it best to rely on the typical computational model used with embedded soft-
ware, the state machine. We then enriched and narrowed the semantics of state ma-
chine to focus on the concepts of the watch domain. Basically, there are only two
watch-specific extensions in our state machine. First, the transitions can be triggered
only by the user interaction when a certain button is pressed. Second, the actions
taking place during the transition may only operate on time unit entities. Also the set
of possible operations is limited: one can only add or subtract time units or roll then
up or down. With these basic operations we can cover all current needs of our watch
family (an example of more advanced variant of application shown in Fig. 3 is pre-
sented in Fig. 4). If further needs arise in the future, we can simply extend the set of
possible operations or define new entity types to operate on.

Fig. 4. A more complex variant of current time application

In most cases it is not possible to cover all variation within just one type of model
and modeling language. This raises the important questions of model organization,
layering, integration and reuse. Modeling language development efforts typically
start with a flat model structure that has all concepts arranged on the same level
without any serious attempts to reuse them. However, as the complexity of the model
grows, while the number of elements increases, the flat models are rarely suitable for
presenting hierarchical and modularized software products. Therefore, we need to be
able to present our models in a layered fashion.

An important criterion for layering is the nature of the variability. For example, a
typical pattern we have found within the product families is to have a language based

on behavioral computational model (like state machine) to handle the low-level func-
tional aspects of the family members and to cover the high-level configuration issues
with a language based on a static model (like data and component models). Another
aspect affecting the layer structure is reuse. The idea of reuse-based layering is to
treat each model as a reusable component for the models on the higher level. In this
type of solution, the reusable element has a canonical definition that is stored some-
where and referenced where needed.

4 Variant Derivation with Code Generator

In previous chapter we discussed how variation could be handled from within the
DSM language. In this chapter we continue to familiarize ourselves how to derive
the actual product variants from the models with code generator. Again, we use the
wristwatch product line as an example.

4.1 Developing the Code Generator

To enable the code generator to produce completely functional and executable output
code, the models should capture all static and behavioral variation of the target prod-
uct while the framework should provide the required low-level interface with the
target platform. This and nothing less should be always the goal for the DSM envi-
ronment and its code generator. This ambitious sounding objective can be achieved
easier when the sub-domains and related languages provide formal and well-bounded
starting point.

As the translation process itself is complex enough, the generator should be kept
as simple and straightforward as possible. For the same reason, maintaining variabil-
ity factors within the generator structure has been found difficult – especially when
the family domain and architecture evolves continuously. Instead of generator-
centric approach we have detected that before including any variability aspect into
the code generator, the nature of the variation must be carefully evaluated: if some-
thing seems difficult to support with generator, consider raising it up to the modeling
language or pushing down to the framework. This also means that the developer
should do all basic decision-making (like choosing the type of the target platform, if
there are many) on the model level.

According to our experiences, the generator is a proper place for approximately
only two kinds of variation. As each target platform or programming language re-
quires, at least partially, a unique generator implementation anyway, it is widely
acceptable to handle the target variation within the generator. Another suitable way
to use the generator for managing variability is to build higher-level primitives by
combining low-level primitives during generation.

Listing 1 shows an example of code generated for the current time application
shown in Fig. 2. The product derivation is complete in the manner that full code is
generated from the modeler’s point of view and manual rewriting of the code is not

needed. This completeness is crucial for model-based product development – it has
been the cornerstone of other successful shifts made with programming languages.
Moreover, domain-specific models describing the application functionality in code-
independent manner gives possibility to use the same models to generate code for
multiple platforms. As the example in Listing 2 shows, C code can be generated
from the same designs: only the generator is different, not the product designs.

// All this code is generated directly from the model.
// Since no manual coding or editing is needed, it is
// not intended to be particularly human-readable

public class SimpleTime extends AbstractWatchApplication {

 // define unique numbers for each Action (a...) and DisplayFn (d...)
 static final int a22_1405 = +1; //+1+1
 static final int a22_2926 = +1+1; //+1
 static final int d22_977 = +1+1+1; //

 public SimpleTime(Master master) {
 super(master);
 // Transitions and their triggering buttons and actions
 // Arguments: From State, Button, Action, To State
 addTransition ("Start [Watch]", "", 0, "Show");
 addTransition ("Show", "Mode", 0, "EditHours");
 addTransition ("EditHours", "Set", a22_2926, "EditHours");
 addTransition ("EditHours", "Mode", 0, "EditMinutes");
 addTransition ("EditMinutes", "Set", a22_1405, "EditMinutes");
 addTransition ("EditMinutes", "Mode", 0, "Show");

 // What to display in each state
 // Arguments: State, blinking unit, central unit, DisplayFn
 addStateDisplay("Show", -1, METime.MINUTE, d22_977);
 addStateDisplay("EditHours", METime.HOUR_OF_DAY, METime.MINUTE,
d22_977);
 addStateDisplay("EditMinutes", METime.MINUTE, METime.MINUTE,
d22_977);
 };

 // Actions (return null) and DisplayFns (return time)
 public Object perform(int methodId)
 {
 switch (methodId) {
 case a22_2926:
 getclockOffset().roll(METime.HOUR_OF_DAY, true, displayTime());
 return null;
 case a22_1405:
 getclockOffset().roll(METime.MINUTE, true, displayTime());
 return null;
 case d22_977:
 return getclockTime();
 }
 return null;
 }
}

Listing 1. Java code generated for current time application.

typedef enum { Start, EditHours, EditMinutes, Show, Stop } States;
typedef enum { None, Mode, Set } Buttons;

int state = Start;
int button = None; /* pseudo-button for buttonless transitions */

void runWatch()
{
 while (state != Stop)
 {
 handleEvent();
 button = getButton(); /* waits and returns next button press */
 }
}

void handleEvent()
{
 switch (state)
 {
 case Start:
 switch (button)
 {
 case None:
 state = Show;
 break;
 default:
 break;
 }
 case EditHours:
 switch (button)
 {
 case Set:
 state = EditHours;
 break;
 case Mode:
 icon (Off,editHours);
 icon (On,editMinutes);
 state = EditMinutes;
 break;
 default:
 break;
 }
 case EditMinutes:
 switch (button)
 {
 case Mode:
 clockOffset = tempOffset;
 icon (Off,editMinutes);
 state = Show;
 break;
 case Set:
 state = EditMinutes;
 break;
 default:
 break;
 }
 case Show:
 switch (button)
 {
 case Mode:
 tempOffset = clockOffset;
 icon (On,editHours);
 state = EditHours;
 break;
 default:
 break;

 }
 default:
 break;
 }
 button = None;
 handleEvent(); /* follow transitions that do not require buttons */
}

Listing 2. C code generated for current time application.

4.2 Building Domain-Framework

In many cases the demarcation between the target platform and the domain-specific
framework remains unclear. We have learned to rely on the following definition:
target platform includes general hardware, operating system, programming lan-
guages and software tools, libraries and components to be found on target system.
The domain framework consists of any additional component or code that is required
to support code generation on top of them. It is must be noted that in some cases
additional framework is not needed but the code generator can interface directly with
the target platform.

We have found that, architecturally, frameworks consist of three layers. The com-
ponents and services required to interface with the target platform are on the lowest
level. The middle level is the core of the framework and it is responsible for imple-
menting the counterparts for the logical structures presented by the models as tem-
plates and components for higher-level variability. The top-level of the framework
provides an interface with models by defining the expected code generation output,
which complies with the code and templates provided by the other framework layers.

5 Conclusions

The lack of appropriate product specification and design languages has hindered a
wider adoption of the product family development approach. Domain-specific model-
ing languages provide major benefits for product family development. They make a
product family explicit, leverage the knowledge of the family to help developers,
substantially increase the speed of variant creation and ensure that the family ap-
proach is followed de facto. It is also worth to notice that experience reports on ap-
plying generators with languages targeted to specific domains have shown remarka-
bly fewer errors (e.g. [7] reports 50% less). These benefits are not easily, if at all,
available for developers in other current product family approaches: reading textual
manuals about the product family, mapping family aspects to code or code visualiza-
tion notations, browsing components in a library, or trying to follow a (hopefully)
shared understanding of a common architecture or framework.

In this paper we have presented architecture and experiences for designing lan-
guages and generators for product family development. DSM implementation seems

to require the extension of pure domain analysis by seeking computational models
for describing variation with design models. Metamodeling is a viable technique to
this kind of design of modeling languages that make a product family explicit: the
family concepts and variation are captured in a metamodel that forms a modeling
language. By instantiating the metamodel with supporting tools, models can specify
legal product variants within the family. The narrowed focus provided by the do-
main-specific languages makes it easier to automate the variant production with
purpose-built code generators. Generators can incorporate some variant handling,
but the possibility to bring it in front, into the modeling language, appears to be a
better choice. Generally, the 3-level DSM environment architecture provides a wide
variety of options for handling the variation, as opposed to approaches where varia-
tion can be handled in one place only. This is also important when supporting family
evolution and reflecting the changes to the specifications under development.

Implementation of DSM is not an extra investment in product family develop-
ment. Rather, it saves development resources: traditionally all developers work with
the family and variation concepts and map them to the implementation concepts
manually. And among developers, there are big differences. Some do it better, but
many not so well. So let the experienced developers define the concepts and mapping
once, and others need not do it again. If an expert specifies the code generator, it
produces applications with better quality than could be achieved by normal develop-
ers by hand. This approach also scales from small teams to large globally distributed
companies. Interestingly, the amount of expert resources needed to build and main-
tain a language and generators does not grow with the size of product family and/or
number of developers.

References

1. Arango, G., Domain Analysis Methods, In: Software Reusability. Chichester, England:
Ellis Horwood, (1994)

2. Batory, D., Chen, G., Robertson, E., Wang, T., Design Wizards and Visual Programming
Environments for GenVoca Generators, IEEE Transactions on Software Engineering, Vol.
26, No. 5 (2000)

3. Brinkkemper, S., Lyytinen, K., Welke, R., Method Engineering - Principles of method
construction and tool support, Chapman & Hall (1996)

4. Czarnecki, K., Eisenecker, U., Generative Programming, Methods, Tools, and Applica-
tions, Addison-Wesley (2000)

5. Greenfield, J., Short, K., Software Factories: Assembling Applications with Patterns,
Frameworks, Models & Tools, John Wiley & Sons, to appear (2004).

6. Kelly, S., Tolvanen, J.-P., Visual domain-specific modeling: Benefits and experiences of
using metaCASE tools, International workshop on Model Engineering, ECOOP 2000, (ed.
J. Bezivin, J. Ernst) (2000)

7. Kieburtz, R. et al., A Software Engineering Experiment in Software Component Genera-
tion, Proceedings of 18th International Conference on Software Engineering, Berlin, IEEE
Computer Society Press (1996)

8. Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer Peter-
son, Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical report
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon University (1990)

9. Pohjonen, R., Kelly, S., Domain-Specific Modeling, Dr. Dobb’s Journal, Vol. 27, 8 (2002)
10.Weiss, D., Lai, C. T. R., Software Product-line Engineering, Addison Wesley Longman

(1999)
11.White, S., Software Architecture Design Domain, Proceedings of Second Integrated De-

sign and Process Technology Conf., Austin, TX., Dec. 1-4, 1: 283-90 (1996)

