
Demonstration: Variant and Variability Management with
pure::variants

Danilo Beuche

pure-systems GmbH, Agnetenstr. 14
D-39106 Magdeburg, Germany
http://www.pure-systems.com

Abstract The demonstration will show a round-trip through the development and deployment of product
lines with the pure::variants Eclipse plug-in using concrete examples from the embedded software domain.
pure::variants is a one of the few commercially available tools specifically designed for product line devel-
opment.
The tool covers all steps of product line development from requirements and variability analysis to product
generation. Extended feature models are used for problem domain modeling. Family models are used to
represent the variable architecture of product line solution domains independent of the programming or
modeling languages used for product line implementation.

1 Introduction

Several important issues have to be considered for tool chains supporting the complete process of
variability management:

– Easy, but universal model(s) for expressing variabilities and commonalities should be supported.
– Variability at all levels must be manageable.
– Introduction of new variability expression techniques should be possible and easy.

The pure::variants tool chain outlined in the next sections and presented in the demonstration was
developed to meet all these requirements. It is the commercial successor of the research prototype
presented in [1].

2 Integration of pure::variants into PLD processes

The pure::variants-based tools are used in different phases of the software development process. The
development of product lines is basically divided into two steps. In the first step the problem and
solution domains are analyzed, common assets are identified and realized (domain engineering). In
the second step the individual products are derived from the product line (application engineering).

Several model types are used to capture the information required to manage variability and vari-
ants on the different levels of domain knowledge, software design and implementation.Feature mod-
elsplay a key role in this. They allow a uniform representation of variabilities and commonalities of
the products of the entire product line. Compared to orignal works on feature models, pure::variants
supports an extended version of this concept. Implementations of the product line are described by
family models. They enable the mapping of the problem space to the different implementations. This
model type was developed especially for the pure::variants technology, since existing modeling tech-
niques such as UML or SDL were not suitable for this purpose. The variant description model is used
to describe a individual product. It describes the product’s features and values associated with those
features, and it is used to derive the final product from the family models.



2.1 Domain Engineering

The principle operational sequence of such a development process is described in the following, be-
ginning with the identification of the common assets:

1. Analysis of the problems:
Based on a content-wise problem analysis, feature models [2] are build to capture the dependen-
cies between the individual features of the product line. Feature models are easly visualized and
conceived.
Based on the experience with the practical use of feature models, the expressiveness of
pure::variants’s feature models was substantially extended. The support of model hierarchies in
particular enables different representations of the problems depending on the user (customer, de-
veloper, sales, . . . ).

2. Design of the solutions:
Starting from the feature model and in combination with further requirements for the software
systems, the design of the software solution is performed. The elements of the software solution
with their relations, restrictions and requirements are integrated into the family model and hence
are available for automatic processing.
The family model is divided into several levels. The highest level is formed by the so-called
components. Each component represents one or more functional features of the solutions and
consists of logical parts of the software (classes, objects, functions, variables, documentation).
In the next level, the physical elements of the solution are assigned to the logical elements. The
physical elements can be files that already exist as well as files that are to be created and actions
that are to be performed based on the variant knowledge.
The pure::variants technology captures the problems (feature model) and the solutions (family
model) separately and independently. This enables a simplified re-use of the solutions and of the
feature models in new projects.

3. Realization of the solutions:
The solutions are realized by employing the capabilities of the selected programming language and
tools, and by using the additional possibilities of generating variants provided by the pure::variants
transformation modules, .

2.2 Application Engineering

Feature
Selection

Feature
Model

Pure::Consul
Component

Family Model

Concrete
Component

Model

XML based
Transformator

Module 1

Module 2

Module 3

Module N

Module
Selection

Product
Variant

Transformation
Protocol

Figure1. pure::variants transformation process



Figure 1 gives an overview of the basic process of creating variants with pure::variants. Once the
different models are produced, the remaining steps are performed automatically. The developers of
the product line are responsible for providing the feature model as well as the solution description
with family models. The user then selects the features. Here, the user can be both a human or a tool
that determines the necessary features automatically based on the application. Further processing is
performed in two steps. At first pure::variants analyzes the different models. The result is a construc-
tion plan from which the customized component of the final product is derived in a second step, called
transformation. The transformation step is configurable by the product line developers/users.

manual
feature

selection

valid
selection ?

analysis
family model

valid
selection ?

automatic
confict

resolution

successful ?

automatic
confict

resolution

successful ?

component
transformation

valid
system

manual
confict

resolution

successful ?

no

yes

yes no

no

yes

yes no

noyes

Figure2. Employing pure::variants to create a problem solution

Figure 2 illustrates the tool supported evaluation of feature models with pure::variants in more
detail. The main steps of that process are as follows:

1. Determining a valid combination of features:
The user (customer, sales, application developer) selects the features relevant to the problem so-
lution from the feature model. pure::variants checks whether the feature selection is valid and, if
necessary, resolves dependency conflicts automatically. This ensures that even complex depen-
dency structures can be efficiently transformed into a valid system.
The result is a combination of features that describes the problem to solve as intended by the
developers of the models.

2. Selecting a suitable solution:
Based on the selected features, the family model is used to find a suitable solution. Using the in-
formation contained in the family model, the feature selection is analyzed by each component and
its logical and physical elements. For each part it is decided whether and in which form it belongs
to the solution. Problems that may arise due to further dependencies are resolved automatically
if possible or handed over to the user for manual solution (example in figure 3). The strategy for
the selection of the best suitable solution is in general manually realized by the users . However,
it is possible to integrate problem-specific strategies into pure::variants if necessary, depending
on user demands. Thus it is possible to select a solution according to optimization parameters,



e.g. according to the customer’s cost model for parts of the component.
The result is a description of the selected solution in form of a component description.

3. Creating the solution:
The customized software solution is created by a transformation process controlled by the com-
ponent description. During this process all necessary transformation modules are activated and
perform the conversions specified in the component description.

Not only the creation of new product lines, but the integration of existing software (re-engineering)
into a product line based development in particular is easily possible with pure::variants. For this
purpose the development process does not begin with the identification of the common assets but with
the (partial) automatic production of the family model based on the already existing software and with
the step-by-step construction of the associated feature model by the users. The remaining steps are
similar to the process outlined above.

Figure3. Configuration of a weather station product line with pure::variants

3 Conclusion

A promising solution to increase development productivity and quality of software are product lines
that support software development not only for one product but for a class of products. Because of
the initial identification of common assets, synergies can be exploited that do not come to fruition
in classical software design technologies . For a successful use of software product lines, tools are
necessary that support the entire process beginning with the design up to the deployment. The efficient
management and realization of building variants within the common assets represents a technological
challenge. The pure-systems GmbH provides support for this process with its variants management
tools based on the pure::variants technology.

References

1. Danilo Beuche, Holger Papajewski, and Wolfgang Schröder-Preikschat. Variability Management with Feature Models.
In Proceedings of the Software Variability Management Workshop, pages 72–83, University of Groningen, The Nether-
lands, February 2003. Technical Report IWI 2003-7-01, Research Institute of Mathematics and Computing Science.

2. K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature Oriented Domain Analysis (FODA) Feasibility Study.
Technical Report CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
USA, November 1990.


