

Tool Support for Software Variability Management
and Product Derivation in Software Product Lines

Hassan Gomaa1, Michael E. Shin2

1 Dept. of Information and Software Engineering, George Mason University,
Fairfax, VA 22030-4444, USA

 hgomaa@gmu.edu
 2 Dept. of Computer Science, Texas Tech University,

Lubbock, 79409-3104, USA
Michael.Shin@coe.ttu.edu

Abstract. Software variability management is a key challenge in developing
software product lines and deriving products from the product line. In order to
provide effective variability management and product derivation in software
product lines, which is capable of being automated, certain fundamental build-
ing blocks are required. These include multiple product line views, the feature
model as the unifying view, an underlying product line meta-model that pro-
vides a schema for a product line repository, support for consistency checking
among the multiple views, and support for feature-based product line deriva-
tion. This paper describes multiple-view modeling of software product lines,
with particular emphasis on the feature modeling view, multiple-view UML
meta-modeling for software product lines, variability management in the meta-
model, and consistency checking between meta-model views. The paper then
describes the requirements for tool support for product lines and product deri-
vation, before describing a software prototype tool for this purpose and evaluat-
ing the effectiveness of the tool.

1 Introduction

Software variability management is a key challenge in developing software product
lines and deriving products from the product line. In order to provide effective vari-
ability management and product derivation in software product lines, which is capa-
ble of being automated, the following is needed:

a) Multiple product line views. A better understanding of the product line can
be obtained by considering the different perspectives, such as requirements
modeling, static modeling, and dynamic modeling, of the product line. A
graphical modeling language such as UML helps in developing, understand-
ing and communicating the different views.

b) Feature model. One of the multiple views of the product line is the feature
modeling view. The feature model is essential for both variability manage-
ment and product derivation, because it describes the product line require-
ments in terms of commonality and variability, as well as defining the prod-
uct line dependencies.

c) Meta-model. A meta-model provides a unifying framework for the multiple
views. Whereas the multiple views each need to use a different notation, a
meta-model is represented in one notation. It contains the product line meta-
classes and the relationships between the meta-classes, which allow consis-
tency checking and assistance for product derivation.

d) Product line repository. The meta-model is essential for tool support as it
represents a schema for a product line repository, which stores the artifacts
developed as a result of product line engineering.

e) Consistency checking. Although a multiple view modeling approach helps in
developing the product line, it is easy to introduce errors and inconsistencies
in a multiple view model. It is therefore necessary to provide support for
consistency checking among the multiple views.

f) Product line derivation. The feature model is used to drive the process of
product line derivation. By selecting a consistent set of features required for
the individual product, the corresponding artifacts that realize those features
are selected from the product line repository to constitute the product.

This paper starts by describing multiple-view modeling of software product lines.

It then goes on to describe multiple-view meta-modeling for software product lines in
UML, how variability is handled in the meta-model, and consistency checking be-
tween meta-model views. The paper then describes the requirements for tool support
for product lines and product derivation, before describing a software prototype tool
for this purpose and evaluating the effectiveness of the tool.

2 Multiple-View Models of Software Product Lines with UML

A multiple-view model for a software product line defines the different characteristics
of a software family [8], including the commonality and variability among the mem-
bers of the family [1, 5, 7, 11]. A multiple-view model is represented using the UML
notation [4, 9]. The product line life cycle includes three phases for:
Product Line Requirements Modeling:
• Use Case Model View. The use case model view addresses the functional require-

ments of a software product line in terms of use cases and actors. Product line
commonality is addressed by having kernel use cases, which are common and
therefore directly reusable in all product line members. Product line variability is
addressed by having optional and alternative use cases, which are used by some but
not all product line members.

Product Line Analysis Modeling:
• Static Model View. The static model view addresses the static structural aspects of

a software product line through classes and relationships between them. Kernel
classes are common to all product line members, whereas optional and variant
classes address product line variability.

• Collaboration Model View. The collaboration model view addresses the dynamic
aspects of a software product line, which captures the sequence of messages passed
between objects that realize kernel, optional, and alternative use cases.

• Statechart Model View. The statechart model view, along with the collaboration
model view, addresses the dynamic aspects of a software product line. A statechart
defines states and state transitions for each state dependent kernel, optional, and
variant class.

• Feature Model View. A feature model view captures feature/feature dependencies,
feature/class dependencies, feature/use case dependencies, and feature set depend-
encies. The feature model view is the key for managing variability in software
product lines.

Product Line Design Modeling: During this phase, the software architecture of the
product line is developed.

For software product lines, it is important to address how variability is modeled in
each of the different views. A multiple-view model can be modified at specific loca-
tions referred to as variation points. More information on multiple-view modeling for
software product lines is given in [6].

3 Multiple-View Meta-Model for Software Product Lines

Consistency checking between multiple views of a model is complex, one of the
reasons being the different notations that are needed. An alternative approach [6, 10]
is to consider consistency checking between multiple views at the meta-model level.
The meta-model describes the modeling elements in a UML model and the relation-
ships between them. The meta-model is described using the static modeling notation
of UML and hence just uses one uniform notation instead of several. Furthermore,
rules and constraints can be allocated to the relationships between modeling elements.

The multiple views are formalized in the semantic multiple-view meta-model,
which depicts the meta-classes, attributes of each meta-class, and relationships among
meta-classes. Relationships can be associations, compositions/aggregations (strong
and weak forms of whole/part relationships), and generalization/specializations. A
high level representation of the phases containing the views in this meta-model is
shown in Figure 1. A phase is modeled as a composite meta-class that is composed of
the views in that phase, as shown in Figure 1.

In the meta-class model, all concepts are modeled as UML classes. However, as
the meta-classes have different semantic meaning, they are assigned stereotypes cor-
responding to the different roles they play in the meta-model. Thus in Figure 1, all the
meta-classes represent the different views of a UML model and are assigned the
stereotype «view». Meta-classes representing development phases are assigned the
stereotypes «phase» as they represent the different phases of the OO lifecycle, Re-
quirements Modeling, Analysis Modeling, and Design Modeling. Each view in Fig-
ure 1 can be modeled in more detail to depict the meta-classes in that view [10].

Fig. 1 depicts underlying relationships among multiple views in development
phases of a software product line. The views in each phase are:

Requirements phase:
- Use case model: This model describes the functional requirements of a software

product line in terms of actors and use cases.

Analysis phase:
- Class model: This model addresses the static structural aspects of a software prod-

uct line through classes and their relationships.
- Statechart model: This model captures the dynamic aspects of a software product

line by describing states and transitions.
- Collaboration model: This model addresses the dynamic aspects of a software

product line by describing objects and their message communication.
- Feature model: This model captures the commonality and variability of a software

product line by means of features and their dependencies.

The views of the design phase are described in [4]:

«view»
Use Case

Model

«view»
Class
Model

«view»
Statechart

Model

«view»
Collaboration

Model

Instantiated from

Realized by

Generates events for

«view»
Refined Class

Model

«view»
Consolidated
Collaboration

Model

«view»
Subsystem
Architecture

Model

«view»
Task

Architecture
Model

Refined to Integrated
into

Instantiates
objects for

Decomposed
into

Abstracted
into

Mapped to

«phase»
Design

Modeling

«phase»
Analysis
Modeling

«phase»
Requirements

Modeling

Generates actions
and activities for

«view»
Feature
Model

Supported by

Supported by

Behavior described by

Behavior
described by

Maps to

Maps to

Equivalent to

Fig. 1. High-level relationships between multiple views for a software product line

4 Consistency Checking between Multiple Views

Consistency checking rules are defined based on the relationships among meta-
classes in the meta-model. The rules resolve inconsistencies between multiple views
in the same phase or other phases, and to define allowable mapping between multiple
views in different phases. To maintain consistency in the multiple-view model, rules
defined at the meta-level must be observed at the multiple-view model level. Consis-
tency checking is used to determine whether the multiple-view model follows the
rules defined in the multiple-view meta-model.

Association

0..*
1

Attribute
0..*

Class Relationship

Generalization/
Specialization

Aggregation

2..*
Has

Class Diagram

1..* 0..*

Has

«view»
Class Model

Feature

Feature
Dependency

0..*
1

Feature
Diagram

1..*

Kernel Feature

Optional Feature
Feature

Set
1..*

Mutually Exclusive
Feature Set

HasAt-least-one-of
Feature Set

0..*

«view»
Feature Model

Optional Class

Supported by

1

1..*

0..1

1..*

Kernel Class

Variant Class

Maps to

Variant Feature

External
Class

Interacts with

0..*

1..*

Class Model

*

1

«optional»
Class1

Feature Model

Feature1
«optional»

Supported by

Multiple-View Model Multiple-View Meta-Model

Feature2
«optional>>

«optional»
Class2

Exactly-one-of
Feature Set

Fig. 2. Meta-model for feature and class model view

Fig. 2 depicts consistency checking between a feature in the feature model and a

class in the class model. Suppose an optional class “Class2” supports an optional
feature “Feature2.” Class2 and Feature2 in the multiple-view model are respectively
instances of Class and Feature meta-classes in the multiple-view meta-model. There
is a relationship between Class and Feature meta-classes, which is “each optional
class in the class model supports only one optional feature in the feature model.” For
the multiple-view model to remain consistent, this meta-level relationship must be
maintained between instances of those meta-classes, that is, Class2 and Feature2.
Consistency checking confirms that each optional class in the class model supports
only one optional feature in the feature model.

5 Tool Support for Software Product Lines - Objectives

In order to support software variability management and product derivation in soft-
ware product lines, the Product Line UML Based Software Engineering Environment
(PLUSEE) has been developed. The objectives of the PLUSEE prototype are to:

a) Provide tool support for representing the multiple graphical views of the
product line modeling method.

b) Provide a capability for consistency checking between the multiple views.
c) Provide a capability for mapping the multiple views to a product line reposi-

tory.

d) Provide automated support for product derivation from the product line re-
pository.

e) Provide a product line independent environment. Thus the prototype should
be capable of being used with multiple product line models.

f) Because of limited resources and the need to focus those resources on the in-
novative parts of the project, use existing software tools where possible.

6 PLUSEE

The scope of the PLUSEE [10, 12] includes the product line engineering and product
derivation phases (Fig. 3).
a) Product line Engineering. A product line multiple-view model, which addresses

the multiple views of a software product line, is modeled and checked for consis-
tency between the multiple views. The product line multiple-view model and ar-
chitecture is captured and stored in the product line reuse library.

b) Product derivation. A target system multiple view model is configured from the
product line multiple-view model. The user selects the desired features for the
product line member (referred to as target system) and the tool configures the tar-
get system architecture.

Product Line
Engineering

Product Line
Reuse

Library

Product
Derivation

Product Line
Requirements

Product Line Multiple-View Model,
Product Line Architecture,

Reusable Component Types

Target System
Target System
Requirements

Unsatisfied Requirements, Errors, Adaptations

Fig. 3. Overview of PLUSEE

The PLUSEE represents second generation product line engineering tools which
build on experience gained in previous research [2, 3]. PLUSEE builds on the experi-
ence gained with the earlier research with the Knowledge Based Software Engineer-
ing Environment (KBSEE). Whereas the KBSEE proof-of-concept prototype demon-
strated that product line derivation from a product line feature model, architecture and
components was feasible, it suffered from some serious limitations. Firstly, it used a
Structured Analysis tool as a front end, and therefore had to rely on graphical editors

for data flow diagrams and entity-relationship diagrams, which lacked the richness
needed to model object-oriented product lines. Secondly, although a product line
repository was used, it was developed in an ad-hoc way and lacked the underlying
meta-model to formally describe the product line artifacts and their relationships.
This experience with KBSEE guided the following design decisions for the develop-
ment of the PLUSEE:
a) Both Rose and Rose RT Commercial CASE Tools were used as the graphical

interface to this prototype. Rose supports all the views of the standard UML
notation, but it does not generate an executable architecture from the product line
multiple-view model. On the other hand, Rose RT generates an executable archi-
tecture from the product line multiple view model and simulates the product line
architecture although it does not support all the views of the standard UML. To
take advantages of Rose and Rose RT, two separate versions of PLUSEE, which
are very similar to each other, were developed.

b) The Knowledge Based Requirement Elicitation tool (KBRET) [2] and GUI de-
veloped in previous research were used without change.

6.1 Product Line Engineering

Fig. 4 depicts the overview of the product line engineering tools for PLUSEE, in
which a product line engineer captures a product line multiple-view model consisting
of use case, collaboration, class, statechart, and feature models through the Rose
tools.

Use Case Model

Collaboration Model

Class Model
0..*

Statechart Model

Event/ Action

State 1 State 2

Class 1 Class 2

Object 1 Object 2

Association

Message

Use Case

Rational
Rose S/W

Product Line
Repository

Classes

Aggregate
Class

Use Case
-

Rose
MDL
File for
Domain

Product Line
Multiple-View
Model
Relations
Extractor

Product Line
Multiple-View
Model
Consistency
Checker

Product Line
Dependent
Knowledge Base
Generator

Product Line
Dependent
Knowledge
Base (PLDKB)

Product Line
Engineer

Feature Model

Feature1
Feature2

Product Line
Multiple-View Model
Executable
Components
(Rose RT only)

1

Fig. 4. Product line engineering tools for PLUSEE

a) Multiple-View Product Line Relations Extractor. The multiple-view product
line relations extractor generates product line relations from the multiple-view
product line model. Rose and Rose RT save a multiple-view product line model in
ASCII MDL and RTMDL files, respectively. In these files, information about the
multiple-view model is stored with keywords. These keywords are used for ex-
tracting the information relevant to the multiple views of a software product line
from the Rose MDL and Rose RTMDL files. The product line relations extracted
are stored in an underlying tabular representation of the multiple views, which are
later used for consistency checking and target system configuration. The product
line relations are tool independent.

b) Product Line Model Consistency Checker. The product line model consistency
checker identifies inconsistencies between multiple views in the same phase or
different phases. The rules for consistency checking between multiple views are
checked against the product line relations extracted from the product line model.
For example, the consistency checking rule in section 4, “each optional class in
the class model must support only one optional feature”, is checked by the consis-
tency checker using Optional Class relation ((a) of Fig. 5) and Optional Feature
Class Dependency relation ((b) of Fig. 5), which are derived from the multiple-
view model for the flexible manufacturing product line. The Optional Class rela-
tion contains optional classes derived from the product line static model. The Op-
tional Feature Class Dependency relation defines a dependency between an op-
tional feature and an optional class supporting the feature. To check the rule, the
consistency checker confirms that each optional class in the Optional Class rela-
tion supports only one optional feature in the Optional Feature Class Dependency
relation. For example, if the consistency checker finds an optional class that sup-
ports more than one optional feature, a kernel feature, or no feature at all, it gener-
ates a consistency error message for this rule.

Part Scheduler
Part Agent
AGV Dispatcher
Flexible Workstation Controller

(b) Optional Feature Class Dependency relation

Flexible Manufacturing
Flexible Manufacturing
Flexible Manufacturing
Flexible Manufacturing

Part Scheduler
Part Agent
AGV Dispatcher
Flexible Workstation Controller

(a) Optional Class relation

Optional Class

Optional Feature Optional Class

Fig. 5. Product line relations for consistency checker

c) Product Line Dependent Knowledge Base Generator. The product line de-

pendent knowledge base generator generates the product line dependent knowl-
edge base from the product line relations. The product line dependent knowledge
base contains information about classes, optional features, feature/feature depend-

ency, feature/class dependency, generalization/specialization relations among
classes), aggregation relations among classes), and feature sets. The product line
dependent knowledge base is used by KBRET to select target system features
from the available optional features.

d) Knowledge Based Requirement Elicitation Tool. The Knowledge Based Re-
quirement Elicitation Tool (KBRET) is used to assist a user to select optional fea-
tures of each target system. KBRET, which was developed in previous research
[2], conducts a dialog with a human target system requirements engineer, present-
ing the user with the optional features available for selecting a target system. The
user selects the features that will belong to the target system; KBRET reasons
about feature/feature dependencies and then checks for feature set constraints such
as mutually exclusive feature sets, exactly one-of feature sets, and one-or-more
feature sets to resolve conflicts among features. Based on the selected features,
KBRET determines the kernel, optional and variant classes to be included in this
target system.

 6.2 Product Derivation

In the product derivation phase of PLUSEE (Fig. 6), a Knowledge Based Require-
ment Elicitation tool (KBRET) is used to assist the human target system requirements
engineer to select the optional features for the target system through KBRET GUI.
Once the features are selected, KBRET reasons about the feature/feature dependen-
cies to ensure that a consistent set of target system features are selected.

a) Target System Relations Extractor. The target system relations extractor creates

relations for a target system from the multiple-view product line relations. The
goal is to tailor the product line multiple view model so as to configure a target
system corresponding to the features selected for the target system. To extract tar-
get system relations, the extractor uses the optional and variant features that a user
has selected through KBRET, as well as kernel features that are automatically se-
lected for all product line members.

b) Target System MDL Generator. The target system MDL generator was devel-
oped to create the Rose MDL file for a target system. Using the target system rela-
tions, the target system Rose MDL generator generates a Rose MDL file for a tar-
get system by changing the color of the modeling elements in the target system. A
target MDL file for a target system is generated by changing the colors of target
classes in the class model, target use cases in the use case diagram, target objects
in the collaboration model, and target states in the statechart model. The changed
color of target system multiple-view models (for example, yellow) is distin-
guished from the color of the original product line multiple-view model (for ex-
ample, white).

Product Line
Dependent
Knowledge
Base (PLDKB)

Knowledge-
Based
Requirements
Elicitation
Tool
(KBRET)

KBRET
GUI

Target System
Feature Set

Target System
Relations
Extractor

Target
System
Relations

Target
System Rose
MDL
Generator

Rose MDL
File for
Target
System

User

User

Target System
Executable
Component
(Rose RT only)

Product Line
Repository

Classes

Aggregate
Class

Use Case
-

Rose
MDL
File for
Domain

Rational
Rose S/W

Use Case Model

Use Case

Collaboration Model

Object 1 Object 2

Message

Class Model
0..*

Class 1 Class 2

Association

1
Statechart Model

Event/ Action

State 2State 1

Fig. 6. Product derivation tools of PLUSEE

A Rose Real-Time executable model is a simulation of the target system, which is
then executed and tested to determine whether the multiple-view model performs in
accordance with the requirements.

7 Evaluation of PLUSEE

To evaluate this approach, the PLUSEE has been used in two case studies [10], a
factory automation product line and an electronic commerce product line. The evalua-
tion of the PLUSEE is conducted through the following validation procedure, which
also identifies the activities performed by the human product line developer and the
PLUSEE tool:

a) Develop a multiple-view model of a software product line (Human).
b) Map the multiple-view model to multiple-view model relations (Tool).
c) Perform consistency checking of the multiple-view model relations (Tool).
d) Implement multiple views using Rose Real-Time (Human).
e) Configure target systems from the software product line (Tool and Human).

Each of the objectives listed above in section 6 was achieved as follows:

a) Provide tool support for representing the multiple graphical views supported
by the product line modeling method. This was achieved using the Rose
graphical editors to support the multiple views. Rose was used to capture the
multiple views; the underlying representation of each view was then extracted
by our tools and mapped to the product line repository.

b) Provide a capability for consistency checking between the multiple views. We
developed a multiple view consistency checking tool for this purpose, which
reported any inconsistencies among the views to the user.

c) Provide a capability for mapping the multiple views to a product line reposi-
tory. This was achieved by first using the open architecture provided by Rose
to extract the information in the multiple views, mapping these views to an in-
tegrated set of data base relations that supported the multiple views, and then
mapping these relations to a knowledge base repository. This was achieved
using tools we developed for PLUSEE.

d) Provide automated support for product derivation from the product line reposi-
tory. This was achieved by developing the knowledge based requirements
elicitation tool (KBRET) for this purpose. KBRET interacts with the product
requirements engineer to derive the product from the product line repository.

e) Provide a product line independent environment. Thus the prototype should be
capable of being used with multiple product line models. Product line inde-
pendence is achieved by treating all product line specific information as data
and facts to be manipulated by the product line independent tools. To demon-
strate product line independence, several different product lines have been
modeled and products derived from them.

f) Use existing software tools where possible. Both Rational Rose and Rational
Rose RT were used for this research. It should be pointed out that the product
line repository is CASE tool independent. To support a different UML model-
ing tool, it is necessary to develop a new version of the product line multiple
view relations extractor. Thus, we developed two versions of the extractor, one
for Rose and the other for Rose RT.

8 Conclusions

Software variability management is a key challenge in developing software product
lines and deriving products from the product line. This paper has described how a
UML-based multiple-view modeling approach for software product lines can be sup-
ported by a multiple-view UML meta-model for software product lines, which allows
for variability management of the product line through the meta-model, and consis-
tency checking between meta-model views. The paper then described the require-
ments for tool support for product lines and product derivation, before describing and
evaluating a software prototype tool for this purpose. This research has demonstrated
the viability of using UML-based methods and tools as a basis for variability man-
agement and product derivation in software product lines.

References

1. P. Clements and L. Northrop, Software Product Lines: Practices and Patterns, Addison
Wesley, 2002.

2. H. Gomaa, L. Kerschberg, V. Sugumaran, C. Bosch, and I Tavakoli, "A Knowledge-Based
Software Engineering Environment for Reusable Software Requirements and Architec-
tures," J. Automated Software Engineering, Vol. 3, Nos. 3/4, August 1996.

3. H. Gomaa and G.A. Farrukh, “Methods and Tools for the Automated Configuration of Dis-
tributed Applications from Reusable Software Architectures and Components”, IEE Pro-
ceedings – Software, Vol. 146, No. 6, December 1999.

4. H. Gomaa, “Designing Concurrent, Distributed, and Real-Time Applications with UML,”
Addison-Wesley, 2000.

5. H. Gomaa, H. Designing Software Product Lines with UML: From Use Cases to Pattern-
based Software Architectures, Addison-Wesley. To appear, July 2004.

6. Hassan Gomaa and Michael E. Shin, “Multiple-View Meta-Modeling of Software Product
Lines” the Eighth IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS 2002), Maryland, December, 2002.

7. K. C. Kang et. al., “Feature-Oriented Domain Analysis,” Technical Report No. CMU/SEI-
90-TR-21, Software Engineering Institute, November 1990.

8. Parnas D., "Designing Software for Ease of Extension and Contraction", IEEE Transactions
on Software Engineering, March 1979.

9. J. Rumbaugh, G. Booch, I. Jacobson, “The Unified Modeling Language Reference Manual,”
Addison Wesley, Reading MA, 1999.

10. Michael E. Shin, “Evolution in Multiple-View Models in Software Product Families,”
Ph.D. dissertation, George Mason University, Fairfax, VA, 2002.

11. David M Weiss and Chi Tau Robert Lai, “Software Product-Line Engineering: A Family-
Based Software Development Process,” Addison Wesley, 1999.

12. Hassan Gomaa and Michael E. Shin, “A Multiple-View Modeling Approach for Variability
Management in Software Product Lines” 8th International Conference on Software Reuse
(ICSR 2004), Madrid, Spain, July, 2004.

