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Abstract. A key aspect of software variability management in software product 
families is the explicit representation of the variability. From experience at 
several industrial software product families we found that tool support for 
variability modeling techniques requires (1) uniform and first-class 
representation of variation points and dependencies in all abstraction levels, (2) 
support intrinsic variability modeling, (3) support for multiple views, (4) 
complete lifecycle coverage, and (5) support for complex and dynamically 
analyzable dependencies. Although some existing tools provide support one or 
two requirements, none supports all five. In earlier work we presented a 
framework for variability modeling, COVAMOF. The contribution of this 
paper is a description of Mocca, tool support for COVAMOF, that addresses all 
five requirements. 

1   Introduction 

The explicit representation of variability has been identified as a key aspect of 
software variability management in software product families [4] [6]. In the past few 
years, several approaches to variability modeling have been developed [1] [2] [3] [6] 
[11] [18] [20] [22]. 

In order to fully exploit the benefits of variability modeling techniques, tool 
support is required to manage the models and product family artifacts [9]. From 
experience at several industrial software product families [5] [8] [9] we found that 
tool support for variability modeling in industrial product families requires (1) 
uniform and first-class representation of variation points and dependencies in all 
abstraction levels, (2) support for intrinsic variability modeling, (3) support for 
multiple views on the models, (4) complete software development lifecycle coverage, 
and (5) support for complex and dynamically analyzable dependencies. Intrinsic 
modeling of variability means that the product family artifacts themselves capture 
their own variability model and that each variability realization technique in the 
artifacts provides the variability modeling elements. The variability modeling 
elements in intrinsically modeled product families together form the variability 
model. In the past few years several tools for variability modeling approaches have 
been developed, e.g. [1], [3] and [18]. Although some tools do address one or two 
requirements, none supports all five.  



In [20], we presented the ConIPF Variability Modeling Framework (COVAMOF), 
a variability modeling approach that uniformly models the variability in all 
abstraction layers of a software product family, i.e. in the features, the architecture 
and the component implementations. It treats variation points and dependencies as 
first-class citizens and provides means to model the relations between variation 
points; simple dependencies as well as complex dependencies. 

In this paper, we present Mocca, a variability management tool that supports 
software engineers to manage the variability model of a product family during domain 
engineering and application engineering. Mocca uses the variability modeling 
approach from COVAMOF as a basis. The variability model of Mocca is a union of 
variability information from multiple sources, e.g. intrinsic modeled artifacts and 
extrinsic models, and can be managed from multiple views. Mocca addresses all the 
requirements on tool support we presented above. We have validated the applicability 
of COVAMOF and Mocca at three industrial product families, of which an excerpt is 
presented in [20].  

The structure of this paper is as follows: in the next section we present 
requirements on tool support for variability management and in section 3 we show to 
what extent existing tools support these requirements. Section 4 briefly introduces 
COVAMOF and section 5 presents Mocca, whereas section 6 discusses this tool and 
concludes the paper. 

2   Requirements 

The main benefit of product families is that commonalities between products can be 
exploited, while at the same time the ability to vary the products is preserved. In order 
to be able to exploit these benefits, tool support is required to manage the variability 
provided by the product family artifacts [9]. Such tool support should provide means 
to maintain the models as part of domain engineering and use the models as part of 
application engineering. From our experience in variability management in software 
product families [5] [8] [9] and three industrial case studies [9] [20], we found five 
main requirements on tooling for variability management for industrial product 
families. In the next section we show to what extent three existing tools support these 
requirements.  
• R1: Uniform and first-class representation of variation points and 

dependencies in all abstraction levels: The uniform and first-class representation 
of variation points facilitates the assessment of the impact of selections during 
product derivation and changes during evolution [5]. Industrial experience 
indicated that most effort during product derivation is on satisfying dependencies 
[9]. As the first class representation of dependencies can provide a good overview 
on all dependencies in the software product family, the efficiency of product 
derivation increases. 

• R2: Support intrinsic models: [12] reports on the problem of the possible drift 
between variability models and the product family artifacts. As intrinsically 
modeled product family artifacts capture their own variability model, changes to 
these artifacts are in fact changes to the model itself. Tools that support the 



intrinsic modeling of the variability therefore address the problem of this possible 
drift.  

• R3: Support multiple views: Although there is not yet a general agreement 
about which views are useful, the reason behind multiple views is always the same 
[13]: separating aspects into separate views helps people to manage complexity. 
For medium and large scale software product families, variability models get too 
complex to manage in one single view. Therefore, software engineers should be 
able to manage the variability in the product family from different views.  Tools 
should be able to present and allow the user to edit the variability information 
from these views. 

• R4: Cover complete lifecycle: Tool support should provide means to manage the 
product family in all phases of the development lifecycle. For domain engineering, 
this means the extrinsic and intrinsic models of both pre-runtime and runtime 
variability should be manageable. For application engineering, this means that for 
pre-deployment variability the tooling should provide an interface to derive and 
configure products from the product family and for runtime variability should be 
configurable and manageable manually by a user or automatically by a software 
component. 

• R5: Support for complex and dynamically analyzable dependencies: In 
industrial product families, there are several types of dependencies. Simple 
dependencies fully specify the restriction on the binding of one or two variation 
points, e.g. “the binding of variant A1 to variation point A excludes the binding of 
variant B1 to variation point B”. Dependencies in industrial product families, 
however, are often more complex and typically affect a large number of variation 
points. Dependencies can furthermore, in many cases, not be stated formally, but 
have a more informal character, e.g. “these combinations of parameter settings 
will have a negative effect on the performance of the overall software system”. 
We refer to dependencies of which the validity can be calculated from the 
selection of variants of the associated variation points as statically analyzable 
dependencies, e.g. the mutual exclusion of two component implementations. In 
other cases, when the verification of the validity requires a test of the software 
system, we refer to the dependencies as dynamically analyzable dependencies. 
Having an explicit overview on the dependencies of all these types improves the 
product derivation process. 

3   Existing tools 

Below, we briefly describe three approaches with tool support that model variability 
in software product families and in Table 1 we show to which extent these approaches 
address the requirements presented in the previous section, based on the information 
currently available. From Table 1 we conclude that none of these three approaches 
fully support the requirements. 

• Building Product Populations with Software Components: Van Ommering 
[18] presents how Koala [19] can be used in the context of software product 
families. Koala is an approach to realize the uniform binding of pre-runtime 



and runtime variability of components, independent to its context. Components 
are recursively specified in terms of first class provided and required interfaces. 
The variability in the design is specified in terms of the selection of 
components, parameters on components, and the runtime routing of function 
calls. The interfaces of Koala components specify whether two components are 
compatible. There is currently no support for multiple views on the product 
family variability. 

• A Koala-Based Approach for Modelling and Deploying Configurable 
Software Product Families: Asikainen et al. [1] have developed Koalish, an 
extension to Koala [19] with constructs to specify variability and constraints, 
and the possibility to select the type and number of components. The 
constraints can be used to specify logical dependencies between components 
and interfaces. Tools currently support Koalish for the application engineering 
stage to configure a Koalish model and generate a configuration to a Koala 
product model. There is currently no support for multiple views on the product 
family variability. 

• Mapping Variabilities onto Product Family Assets: Becker [3] presents an 
approach in which the representation of variability of the product family is 
separated into two levels, i.e. the specification and the realization level. The 
variability on the specification level is defined in terms of variabilities, and on 
the realization level in terms of variation points. Variabilities specify the 
required variability and variation points indicate the places in the asset base that 
implement the required variability. This model contains two types of these 
variation points, i.e. static (pre-deployment), and dynamic (post-deployment) 
variation points. Dependencies can be specified in a 1-to-1 manner and are not 
represented as first-class citizens. 

 

Table 1 The adherence of existing tools to the requirements for tool support for variability 
management presented in section 2 

Approach R1 R2 R3 R4 R5 
Van Ommering [18] - + - + - 
Asikainen et al. [1] - + - + - 
Becker [3] - - - + - 

4   ConIPF Variability Modeling Framework (COVAMOF) 

As part of the ConIPF project [7], we developed the ConIPF Variability Modeling 
Framework (COVAMOF) [20]. In this section, we present a short description of this 
framework. The aspect of COVAMOF most relevant for this paper is the COVAMOF 
Variability View (CVV), which is a view on the variability provided by the product 
family. Below, we first describe the core concepts behind the CVV. Subsequently, we 
present the structure of the CVV. 



4.1   COVAMOF Variability View (CVV) 

A product family is divided into three abstraction layers, i.e. features, architecture, 
and component implementations, and the hierarchy throughout these layers is defined 
by levels of abstraction. As we briefly mentioned above, the CVV is a view on 
variability provided by a software product family (See Figure 1). As variation in 
software product families can occur in all three abstraction layers, the CVV view 
encompasses the variability on all these layers of abstraction. 
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Fig. 1. COVAMOF provides the variability as a view on the product family artifacts in terms of 
variation points and dependencies 

4.2   Structure of the CVV 

The main elements the CVV are variation points and dependencies, which are 
represented as first class citizens. Below, we briefly describe these elements and refer 
to [20] for a more elaborate description. 

Variation points 
Variation points are places in product family artifacts at which there is a choice 
between multiple options while configuring a product [14], e.g. the choice between 
two sub-features, the choice of including an optional component in the architecture, 
and the configurable value of a startup parameter. Variation points in the CVV are a 
view on these variation points. Each variation point in the CVV is associated with an 
artifact in the product family, e.g. an architectural component. There are five types of 
variation points in the CVV, i.e. optional, alternative, optional variant, variant, and 
value. 
• Optional: An optional variation point is the choice of selecting zero or one from 

the one or more associated variants. 
• Alternative: An alternative variation point is the choice between one of the one 

or more associated variants. 



• Optional variant: An optional variant variation point is the selection (zero or 
more) from the one or more associated variants. 

• Variant: A variant variation point is the selection (one or more) from the one or 
more associated variants. 

• Value: A value variation point is a value the can be chosen in a predefined range. 
The variation points in the CVV specify, for each variant or value, the actions that 
should be taken in order to realize the choice, for that variant or value, in the product 
family artifacts, e.g. the selection of a feature in the feature tree, the adaptation of a 
configuration file, or the specification of a compilation parameter. These actions can 
be specified formally, e.g. to allow for automatic component configuration by a tool, 
or in natural language, e.g. a guideline for manual steps that should be taken by the 
software engineers. 

Variation points that have no associated realization mechanism in the product 
family artifacts are realized by variation points on a lower level of abstraction, e.g. an 
optional architectural component that realizes the choice between two features in the 
feature tree. These realizations are represented by realization relations between 
variation points in the CVV. This relation provides traceability and a hierarchical 
structure on the variation points in the product family. 

Dependencies 
Dependencies in the context of variability are restrictions on the variant selection of 
one or more variation points, and are indicated as a primary concern in software 
product families [15]. These dependencies originate, amongst others, from the 
application domain (e.g. customer requirements), target platform, implementation 
details, or restrictions on quality attributes. These dependencies are modeled in the 
CVV and are associated to one or more variation points in the CVV and can be 
formulated formally, e.g. the mutual exclusion of two features, or informally, e.g. the 
estimated memory usage based on the variant selection of five parameter values. 

Dependencies furthermore are not isolated entities. The process of resolving one 
dependency may affect the validity of other dependencies. We refer to this as 
dependency interaction. Dependency interactions in the CVV specify how two or 
more dependencies mutually interact. The interaction provides a description of the 
origin of the interaction and specifies how to cope with the interaction during product 
derivation. 

Summary 
The structure of main entities the CVV we described above is presented in Figure 2. 
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Fig. 2. The metamodel of the main entities in the CVV. 

 



5   Mocca: Tool Support for COVAMOF 

As none of the approaches presented in section 3 addresses all requirements in section 
2, we have designed and implemented a new tool, called Mocca. The Mocca tool suite 
is designed to manage the COVAMOF Variability View (CVV) in all phases of the 
development lifecycle. From the user perspective, the functionality of Mocca boils 
down to the development and evolution of the CVV during domain engineering and 
the usage of the CVV during application engineering. It furthermore supports 
automatic configuration at both pre-compile time and runtime. In this section, we 
present the design and implementation of Mocca. 

5.1   Design 

The basic idea behind Mocca is presented by the architecture in Figure 3. The 
architecture consists of the CVV Platform, zero or more Mechanism plug-ins and zero 
or more Controller plug-ins. In section 2 we presented five requirements on tool 
support for variability management. In order to support requirement R1 and R5, 
Mocca uses the CVV as representation of the variability model. In the CVV, 
dependencies and variation points are therefore represented as first-class citizens 
uniformly on all abstraction levels [20]. 

In order to address requirement R2, the CVV Platform maintains the CVV and 
provides an interface to manage the model. It retrieves model information from 
Mechanism plug-ins and presents this information as one model to the Controllers, as 
explained in Figure 4. As different Mechanism plug-ins can provide variability 
information from different sources, both intrinsic modeled artifacts and extrinsic 
models are supported. 

The CVV Platform allows for multiple Controller plug-ins, in order to address 
requirement R3. Figure 4 shows that these Controller plug-ins allow for viewing and 
editing the CVV from different views, e.g. the variation point view or dependency 
view. 
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Fig. 3. Simplified view of the Mocca architecture 

 
Related to requirement R3, Mocca functionality can both be provided statically, for 
the development and pre-deployment configuration of the product family, and 
dynamically, for runtime configuration and maintenance of the product family 
variability. Therefore, the CVV platform should not only be realized as separate tool, 



but also as part of a running product. Note that the implementation of the plug-ins 
used during static and dynamic application may vary to serve the different types of 
usage. 

As presented in Figure 3, the Mocca architecture consists of three main entities: 
• Mechanism Plug-in: A Mechanism plug-in is associated to one or more 

variability realization mechanisms in the product family. It exports the provided 
variability related to the associated mechanism. This information can on the one 
hand come from an extrinsic model, e.g. represented in XML, which contains the 
provided variability. On the other hand, in order to support requirement R2, this 
plug-in can read the provided variability from intrinsically modeled artifacts. The 
plug-in can furthermore effectuate choices made within the CVV Platform for 
variation points that are associated to the Mechanism plug-in. The implementation 
of a Mechanism depends on the variability realization mechanism and the 
associated binding time. 

• CVV Platform: The CVV Platform maintains the CVV and provides an interface 
to manage the model. It retrieves model information from the associated 
Mechanisms and presents this information as one model to the Controllers (see 
also Figure 4). It furthermore notifies the Controllers and Mechanisms when the 
model changes, e.g. due to modifications during evolution or selections during 
product derivation. 

• Controller Plug-in: In order to support requirement R3, multiple Controller 
plug-ins manage the CVV Platform from different points of view. A Controller 
can be a user interface to a software engineer (for manual development and 
configuration), an interface to an external software system (for automatic 
configuration), or an independent component that manages the CVV, e.g. based on 
runtime measurements of a running software system. Modifications made by the 
user to the model are passed on to the CVV Platform. 
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Fig. 4. The CVV Platform presents the CVV information provided by the Mechanism plug-ins 
as one model to the Controllers. The Controllers manage the CVV in the CVV Platform from 
one viewpoint. 



5.2   Implementation 

Up to now, we have realized a subset of the Mocca design, i.e. the CVV Platform, two 
Controller plug-ins and two Mechanism plug-ins (See also Figure 5). Currently, the 
Mocca implementation supports pre-runtime development en configuration of the 
product family. We have implemented all functionality in the Java [16] programming 
language, partly as stand-alone components, partly as extensions to the Eclipse 
Platform [10]. Eclipse allows for a tight coupling between the source code and 
Eclipse plug-ins. As we have implemented Mocca as an Eclipse plug-in, Mocca 
provides a tight coupling between the source code and the variability model of a 
product family. 
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Fig. 5. Mocca Deployment Architecture. In addition to the CVV Platform, we have realized 
two Mechanism and two Controller plug-ins. We are currently working on the third Controller 
plug-in, i.e. the Product Derivation Tool. 

A more detailed description of the components in the Mocca deployment architecture, 
shown in figure 5, follows below.  

• CVV Platform: The CVV Platform is implemented as a stand alone Java 
library that can be instantiated in a tool for product derivation and evolution of 
a product family. 

• Variation Point View Controller: In this plug-in, the CVV can be managed 
graphically in the Variation Point View. The Variation Point View in the CVV 
provides the software engineers with an overview on the variation in all 
abstraction levels of a product family in terms of variation points. The 
realization and artifact relations provide the structure on the set of variation 
points. In this view, dependencies are attributes of the variation points. This 
plug-in has been implemented in Java as an extension to the Eclipse Platform. 
Figure 6 shows a screenshot of this plug-in as used during domain engineering. 

• Dependency View Controller: In this plug-in, the CVV can be managed 
graphically in the Dependency View. The main entities in the Dependency 
View are the dependencies and the dependency interactions that provide the 
structure on the set of dependencies. Variation points in this view are attributes 
of the dependencies. The Dependency View provides software engineers with 
an overview on the most critical dependencies, e.g. based on their type, number 
of associated variation points or number of dependency interactions, which can 



be used to develop a strategy to resolve the dependencies during product 
derivation. This plug-in has been implemented in Java as an extension to the 
Eclipse Platform. Figure 6 shows a screenshot of this plug-in as used during 
domain engineering. 

• Extrinsic XML Model Mechanism: This Mechanism plug-in reads and 
writes extrinsic CVV information, exports it to the CVV Platform, and 
maintains the link between the information in the model and the real product 
family artifacts. If, during product derivation, a variant is selected of a variation 
point associated to the Mechanism plug-in, the choice is effectuated in the real 
product family artifacts based on the information in the CVV variant. 

• Java with Intrinsic Variability Model Mechanism: This mechanism plug-in 
reads the CVV information from java [16] source files and exports this 
information to the CVV Platform.  
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Fig. 6. Screenshots of the Variation Point View Controller (a.) and the Dependency View 
Controller (b.) as Eclipse plug-in 

6   Conclusion and future work 

In this paper, we have introduced our approach to tool support for variability 
management in software product families. We presented five requirements on tool 
support for variability management and showed that none of the existing tools 
supports all of these requirements. We briefly introduced the ConIPF Variability 
Modeling Framework (COVAMOF) [20], and our approach to tool support for this 
framework, which addresses all five requirements: 

• R1: As Mocca uses the CVV as underlying variability model, dependencies 
and variation points are represented as first-class citizens uniformly on all 
abstraction levels [20]. Therefore Mocca fully supports requirement R1. 

• R2: In order to address R2, Mocca consists of a platform, the CVV Platform 
(see also Figure 4), which maintains information provided by several 
Mechanisms that provide parts of the model information. These mechanisms 
are plug-ins in the CVV Platform and are directly associated to the modeled 
artifacts. These artifacts can be modeled intrinsically or extrinsically. 



• R3: In order to address R3, the CVV Platform provides an interface to 
Controller plug-ins, which can manipulate the CVV from one view, e.g. the 
Variation Point View and the Dependency View. 

• R4: Information on the variability is maintained in the CVV, as pre-runtime 
stand alone tool and as runtime library next to the running product. The design 
of Mocca therefore also addresses R4. 

• R5: As Mocca uses the CVV as underlying variability model, complex 
dependencies and dynamically analyzable dependencies are supported. 
Therefore Mocca fully supports requirement R5. 

As part of the ConIPF project [7], we have validated the applicability of COVAMOF 
and Mocca at three industrial product families, of which an excerpt is presented in 
[20]. We are currently extending the implementation of Mocca with tool support for 
all functionality necessary to allow for pre-runtime automatic configuration and 
runtime (re-)configuration and maintenance of a product. 
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