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Abstract. In this paper, we discuss the use of structure-based configu-
ration methods for deriving products in the context of software product
lines. Modeling techniques for features, artifacts as well as procedural
knowledge and inference methods are presented and illustrated with the
configuration tool KONWERK. The presented material is a result of our
practical work with product lines at our industrial partners.3

1 Introduction

Software development in general is a design task where new artifacts (software
components, programs, exe-files, libraries etc.) are developed. The result of each
development process is one software product. Using software product lines, soft-
ware development is divided into two processes: domain engineering and appli-
cation engineering. In domain engineering reusable artifacts are developed for
the concerned product family, i.e. not for only one product but for a set of prod-
ucts. During application engineering products are constructed by selecting a set
of these artifacts. Thus, an important part of application engineering is a com-
position task - assembling a set of artifacts that fit together and that as a set
meets the customer requirements. This task is still very complex since the set
of points where variability occur can be very large and several dependencies can
exist between them. Furthermore, there is a lack of support for application engi-
neering (see e.g. [7]). As a result, for instance, functionality is implemented anew
where reuse would have been possible or impacts of decisions are not known or
overlooked because the large set of components is hardly manageable.

Structure-based configuration from the field of AI is a method that supports
the composition of products out of a given set of components. In software prod-
uct lines such a set of components is developed in domain engineering. Based

3 This research has been supported by the EU under the grant IST-2001-34438,
ConIPF - Configuration in Industrial Product Families.



on the separation of domain engineering and application engineering structure-
based configuration can be used to support the latter. In this paper, we describe
different support opportunities and services for application engineering enabled
by structure-based configuration.

The remainder of this paper is organized as follows: first we present require-
ments and challenges which arise when software components of a product family
are composed in combination with an example, second we give a brief introduc-
tion to structure-based configuration (Section 3). Next, we describe the different
support opportunities and services enabled by structure-based configuration and
illustrate them with the tool KONWERK (Section 4). In Section 5 the integra-
tion of the approach described in this paper with tools already used in software
development is outlined. Finally, we give a discussion and some experience we
made.

2 Challenges in application engineering

The work presented in this paper is part of the ConIPF project. In the first
phase of this project case studies have been performed at the two participating
industrial partners. In the following, we describe some of the problems and chal-
lenges these companies are faced with during application engineering. In Section
4 we will explain how structure-based configuration can be used to offer support
in these areas.

Manage variability. Because of the lack of methodological support for appli-
cation engineering approaches like ”copy and modify” are used. Following
such manual processes the solutions can easily be inconsistent, e.g. the se-
lected components do not fit because their interfaces do not match. Moreover,
the solution can be incomplete, i.e. necessary components are missing in the
product. Finally solutions can be incorrect, i.e. the components included in
the product do not realize the needed functionality.

Process. The task of application engineering is very complex because of the
large number of decisions on different levels of abstraction involved in the
process. Furthermore, these decisions depend on each other. This can make
the process slow and error-prone even if no new development is involved.

Dependencies. The selection or change of a specific component, for instance,
often has effects on other parts of the system. During application engineering
it is very important to have information about all these dependencies. In
many cases however this information is only known by some experts.

Evolution. System components evolve over time and new features and com-
ponents might be integrated in the product line. Handling evolution is a big
challenge, for instance, the same component in different versions may require
the existence of different other components.

For illustrating our approach throughout this paper, we use an example which
comes from the domain of Car Periphery Supervision (CPS) systems as intro-
duced by [18]. A CPS system consists of automotive systems that are based on



sensors installed around the car to monitor its local environment. The recording
and evaluation of sensor data enables different kinds of high-level applications,
which can be grouped into safety-related and comfort-related applications. One
example of such applications is Pre-Crash Detection:. Based on sensor infor-
mation with Pre-Crash Detecion it is possible to estimate the time, area, and
direction of an impact before the crash happens. This enables e.g. adjusting trig-
ger points of specific airbags in different locations in the car appropriately for
the estimated crash situation. Further examples are Blind Spot Detection and
Adaptive Cruise Control.

3 Structure-based configuration

In this section we shortly describe our approach to structure-based configuration
(SBC). Similar approaches are presented in [17, 16, 12].

SBC supports the composition of complex products out of a given set of
components. The knowledge needed for this task is defined in a configuration
model. Basic modeling facilities enable the differentiation between three knowl-
edge types (compare [4]):

Conceptual knowledge includes concepts to model domain objects with pa-
rameters, and taxonomic and compositional relations between these objects,
as well as restrictions between arbitrary concepts and their dependencies (by
means of constraints).

Procedural knowledge declaratively describes the configuration process – i.e.
the order in which configuration decisions are processed.

A task specification describes the desired product capabilities and already
known components (e.g. 3rd-party components).

Parameters are specified by value descriptors of type string, integer, float, sets
of strings, integers and floats, and intervals of integers as well as floats. Complex
dependencies can be defined based on the compositional (e.g. has-parts) and
taxonomic (i.e. is-a) relation and constraints between arbitrary concepts and
concept properties. The taxonomic relation is a strong taxonomy, i.e. given a
superconcept o and a subconcept u all property values (parameters or relations)
which are defined in u must be subsets of the related property values of o. If
there is no related property value in o (e.g. because the property is not specified
for o) the property value of u is per default a subset. The configuration model
can be seen as an implicit enumeration of admissible configuration solutions in
a given domain.

To cope with this complexity, a well-structured configuration procedure –
as explained in the following – is needed. For each modeling facility inference
methods are provided that support the automatic derivation of configurations
by using the configuration model. The configuration process is performed incre-
mentally. Each step represents a configuration decision and the calculation of its
logical impacts. Thus, in an interactive configuration process some decisions are
made by the user and some are inferred by the configuration system. A decision



is either to set a parameter (parameterization), to decide which parts an ag-
gregate has (decomposition), to decide what aggregate a part has (integration),
or to decide if an instance belongs to a more specific concept of the taxon-
omy (specialization). The first decision in a configuration process is defining the
configuration goal – i.e. selecting a concept definition as task specification. By
inferring impacts of configuration decisions, a partial configuration (consisting
of concept instances) is computed.

After each step, optionally global mechanisms can be applied for computing
new values for specific properties (pg), testing, simulating or checking consistency
of the product – e.g. with constraint techniques (see also [8]). Global means
that the entire partial configuration is examined instead of only examining one
concept instance the configuration decision is directly concerned with. Through
constraints for example it is possible that other concept instances are affected
by a configuration decision. If the global mechanism cannot find a valid value for
a property, a conflict is raised and backtracking in the configuration process is
performed. After that other values for certain properties can be chosen and the
global mechanism can be applied again. Thus, the pg properties are computed
again, they are iteratively determined.

For getting consistent configurations following consistency rule for decision
making is specified in structure-based configuration like it is provided here: Prop-
erty values can only be restricted not enhanced. This means first, for a decision
possible values, which can be chosen, are taken from the concept definition. For
example, if in a parameter p of a concept the value descriptor is specified to be
the interval [0 10] only values in this range can be chosen for the decision! Thus,
the model determines possible choices. Furthermore, if a value is selected, e.g.
to be 5, for parameter p in a configuration step, it is not possible to change this
value in a later configuration step directly e.g to 6. It is only possible to go back
in the configuration process (i.e. to perform backtracking) to the point where the
previous decision was made for parameter p, namely just before 5 is selected, in
this configuration step the current value was the value from the model, namely
[0 10]. Here 6 can be chosen, because 6 is in that interval. Various backtracking
mechanisms are provided in [5]. Because of this consistency rule a logical based
process is performed and only monotonic decisions can be made. Furthermore,
the configuration process is deterministic, i.e. if same configuration steps are
executed in a different order, the resulting configuration is the same [15].

The result of a configuration process is a complete configuration: a description
of the generated solution. A complete configuration consists of concept instances
that are completely specified. A concept instance is completely specified when
there is no subconcept this instance can be specialized to and there are no prop-
erties (i.e. parameters and compositional relations) that can be further specified.
As discussed before changing of specified property values can only be done by
backtracking.

In our agenda-based approach, all configuration decisions needed for getting
a complete configuration are collected in an agenda. For each concept instance
that is part of the partial configuration and that is incompletely specified, for



each decision related to that instance a corresponding agenda entry is created.
Which decisions are put on the agenda, the order in which configuration decisions
can be made, and how the value for a decision is determined can be defined in
the procedural knowledge.

We use the configuration knowledge modeling language (CKML) for paper
presentations. CKML includes all the modeling facilities described above and is
implemented as the language BHIBS in the configuration tool KONWERK [6].
An example of a CKML notation is given in Figure 1. This defines the feature
Services-during-Operation to consist of 2 to 5 features which have exactly one
Activation-services and one Supervision and can have as optional Monitoring-
Services, Power-Management-Service, and a User-Interface.

Concept

name: Services-during-Operation

superconcept: Feature

relations:

has-subfeatures

[Feature 2 5] :=

[Activation-Services 1 1]

[Monitoring-Services 0 1]

[Supervision 1 1]

[Power-Management-Service 0 1]

[User-Interface 0 1]

Concept

name: Supervision

superconcept: Feature

relations:

has-subfeatures

[Features 1 2] :=

[Front 0 1]

[Rear 1 1]

Fig. 1. Example of two application-specific concepts in CKML

4 Support Facilities

In this section we describe what services can be provided for application engi-
neering when methods of structure-based configuration are used. First we con-
sider how features and artifacts can be modeled by the means given in Section
3. Than, we demonstrate with an example how configuration models are used
for product derivation (Section 4.2). How a declarative modeling of the product
derivation process can be done is explained in Section 4.3.

4.1 Modeling of Features and Artifacts

Features and artifacts are represented as concepts of CKML (see Figure 2).
Relations between features and artifacts are mainly the specialization relation
or compositional relations like has-subfeatures or has-parts. A further important
relation is the is-implemented-by relation, which is used to define the mapping
between features and artifacts and the requires relation, which is used between
features or artifacts respectively. Also the is-implemented-by and the requires



relation can be expressed by compositional relations between aggregates and
parts. Those compositional relations ensure in the context of configuration, that
if a description of the aggregate is generated for the configuration result also
a description of the parts are generated. This is also the meaning of the is-
implemented-by and the requires relation, i.e. if a description of e.g. Parking
Assistance is in the final result, also descriptions of Distance Measurement and
Rear Sensor are required. Thus, compositional relations can also be used for
these relations. Because compositional relations have number restrictions also
exclude relations can be modeled.

Artifacts

Sensors Applications

Rear Sensor Front Sensor Impact 
Analysis

Distance 
Indication

Feature

Parking 
Assistance

is implemented by

is implemented by

. . . Pre-Crash 
Detection

Fig. 2. Features and Artifacts modeled in the configuration model.

4.2 Supporting Automated Derivation

For illustrating how the derivation is supported by automatic inference meth-
ods we consider following complex integration step: Given the customer chooses
parking assistance and further specifies that he does not only want backward but
also forward assistance, an instance of the Front feature is automatically created.
Since this Front belongs to Supervision (see Figure 1), an concept instance of
Supervision is also generated. A supervision is mandatory for Services-During-
Operation and thus is automatically integrated there. Given another requires
relation, which specifies, that when selecting the parking assistance feature the
existence of a user interface is required, an instance of the feature User-Interface
is created. However, since the User-Interface is an optional part of the services
during operation, it is not automatically integrated. This situation is given in
Figure 3. Here the existing supervision concept instance Supervision-2 is already
integrated, the existing concept instance of user interface (User-Interface-2) can
be selected to be integrated, the Activation-Services are already selected to be
exact 1 because the model determines this value (see Figure 1), and the other
services still have to be configured.

This example also shows the use and processing of multiple compositional
relations. Here the User-Interface has two relations: one is Services-During-
Operation has-subfeature User-Interface and the other is Parking Assistance re-
quires User-Interface. Assuming the latter was processed first, when configuring
the has-subfeature relation of Services-During-Operation not a new instance of
User-Interface should automatically be generated but the existing User-Interface
should be usable and can indeed be used. Thus, User-Interface is shared by two



Fig. 3. Integrateable Feature Instance (Snapshot of KONWERK)

aggregates: one of type Services-During-Operation and another of type Parking-
Assistance.

4.3 Declarative Modeling of the Process

Based on these automatic inferences the composition of a product that is com-
plete, correct and consistent can be supported. All admissible products are im-
plicit defined in the configuration model. The product derivation process is per-
formed incrementally. Each step consists of a decision and the calculation of
its logical impacts, i.e. in each step a choice is made for one variation point
and the effects of this choice are computed. Thus, because of this incremental
approach it is possible to provide feedback to the user after each decision. If,
for instance, the application engineer selects the feature parking assistance (see
Figure 2), then the configuration system infers that the components rear sensor
and distance indication are needed because of the is-implemented-by relation in
the configuration model. Instances of the corresponding concepts are produced
and this effect of the user’s decision can be displayed to support the application
engineer.

By comparing the solution derived so far with the configuration model it is
possible to determine decisions still necessary to complete the product deriva-
tion. That is, it is possible to compute a list of variation points for which choices
have to be made. These decisions are collected in an agenda and can be pre-
sented to the application engineer to visualize the task. Furthermore, it can be
ensured that decision cannot be overlooked or forgotten. Additionally, it is pos-
sible to structure the product derivation process, e.g. according to the different
levels of abstraction. The decisions are sorted according to these levels of ab-
straction and the application engineer can switch between different agendas. In



the CPS domain, for example, one agenda with decision concerning features and
two other agendas with decisions concerning hardware and software components
respectively can be used.

Furthermore, it is possible to ensure that restrictions concerning the order of
decisions cannot be ignored. If, for example, a set of decisions must be made in
order to make certain other decisions, this can be defined in the configuration
model. During product derivation the configuration ensures that the defined
order is respected. In the CPS domain, for instance, the product needs to be
calibrated, i.e. a set of parameter values that make the software function opti-
mally in its run-time environment is iteratively determined. This step cannot be
executed unless all other decisions about the product have been made.

If the application engineer starts with making decisions on a high level of
abstraction (e.g. about product features), several decisions on a lower level of
abstraction (e.g. about components) can already be inferred by the configuration
system based on the knowledge defined in the configuration model. Thus, only
some of the decisions are made by the application engineer and others are derived
by the system leading to a more efficient derivation process.

5 Combination with Other Software Development Tools

In this section, a principle approach for integrating tools and languages known in
structure-based configuration with other tools and languages probably existing
in a software development and reuse environment are presented. Because there
exists a diversity of such tools (like Eclipse, Rational Rose, DOORS, MKS,
further on called SE-tools) we give a general or principal view in this section
which is based on mappings between representations.

5.1 Modeling

SE-tools are of major interest for automatic transformation of data, if already
structured models are represented with them. If not, only non-automatic map-
pings to domain models can be processed. However, representatives of the knowl-
edge types which are represented with SE-Tools are first mapped to CKML. If
knowledge that can be mapped is identified, a mapping can be defined from the
representation of the SE-Tool (typically some XML notation) to a representation
of a configuration tool (typically some other XML notation), e.g. by using some
kind of XSL transformation. Other knowledge has to be modeled manually with
the configuration tool.

Furthermore, software-engineering models that are already strongly struc-
tured like feature models, enable automatic transformations of those into a con-
figuration model. This is illustrated with the following example. Given a feature
model represented e.g. with DOORS this model maps directly to aggregate rela-
tions of a configuration model represented with CKML. However, in DOORS no
parameters can be represented, thus, typically relations are used for representing
parameters For maintainability, adequacy and a component-oriented modeling a



Concept

name: Steering-assistance

superconcept: Feature

parameters:

Number-of-Moves {Three Two}

Fig. 4. Representing Features with parameters

representation in a configuration model would use parameters. In Figure 4 a pa-
rameter representation is shown, where in DOORS additional subfeature would
be included.

5.2 Application Engineering

The result of a traditional configuration process is an abstract description of
the created solution while in application engineering the solution itself, i.e. the
software product is produced. Thus, to support application engineering two pro-
cesses need to be integrated: the configuration process and the realization process
(e.g. code generation, compilation or calibration). For example, code cannot be
generated or compiled unless it has been selected in the configuration process.
Since these two processes are dependent on each other they need to be syn-
chronized. This can be achieved by means of the procedural knowledge defined
in the configuration model. It is possible to initiate the execution of external
mechanisms e.g. for compilation. The synchronization of the two processes can
be achieved by defining preconditions for the execution of these external mech-
anisms.

Configuration management (CM) is already used in software development
to manage a set of changing artifacts. Using product lines one has not only
several versions in time but also different variants to handle. Current CM tools
are not sufficient for handling this latter aspect as Muthig states in [13]. On
the other hand, configuration tools from the field of AI are not laid out for
version management, but can handle versions and variants in the taxonomical
hierarchy. However, for generating applications these two technologies must be
further integrated.

6 Discussion and Experiences

Besides the challenges in application engineering presented in Section 2, in this
section we discuss further experiences made during the ConIPF project.

Modeling and configuring domain objects and considering the application
engineering processes at our project partners Bosch and Thales we found that it
is in fact possible to model and configure features and artifacts of a product line
with the structure-based configuration methodology. We currently verify this by
applying this methodology in experiments. For this the structure-based configu-
ration tool EngCon [1, 14] is used. At Bosch the CPS domain including features



and artifact is modeled. Thus, by selecting certain features, the tool automati-
cally selects the appropriate artifacts. This is also realized by taking constraints,
like ”if one of four presenting zones of a human interface is configured to be of
a certain type, than use the same type for the other zones” into account. The
experiments show the principle applicability of the structure-based configuration
approach to product derivation. There are a limited number of products in the
CPS experiment but with a large number of variety. By using structure-based
configuration tools it is now possible to automatically derive products in the
CPS domain. However, currently we extent the size of the experiments for get-
ting industrial-realistic scenarios. Earlier work in [14] show that thousands of
concepts can be handled by such configuration systems and be used for config-
uration.

One characteristic of configuring in product lines is that the number of gen-
eral types is high, like context descriptions, features, software components, hard-
ware, architecture, views, calibration parameters. Because the structure-based
configuration approach is domain-independent, such distinct types can easily be
modeled and configured.

A further characteristic of those domains is that several compositional re-
lations are necessary between domain objects, not only one has-parts relation
like it is often the case in hardware domains. For example, a has-feature, has-
subfeature, require relations between different types of features or artifacts have
to be used. However, by looking at the configuration process, those relations
have similar semantics — namely creating a feature or artifact description when
a certain feature or artifact is already in the partial configuration. For example,
the a requires b relation ensures that if a is in the resulting description then also
b should be there. This is similar for has-subfeatures, if a has-subfeatures b then
if a is in the resulting description also b is in. The opposite meaning is given by
the exclude relation. If a excludes b then if a is in the resulting description than
b should not. This is typically modeled in structure-based configuration by using
number restrictions with the value [0 0] in an aggregate description.

Furthermore, sharable parts are necessary, e.g. for modeling libraries, which
are used by several software applications. Also features can be qualities of several
features or artifacts, like the component which realizes the feature, an aggregate
which entails the component and the product as a whole [11]. Thus, a feature
can be shared by several other features or artifacts. However, the sharing is
automatically managed by a structure-based configuration system.

At our industrial partners only a small number of parameters are used for
modeling features and software components. Such domain objects are mainly
described by their types and compositional relations. Exceptions are only cali-
bration parameters for specific software modules. This is a further difference to
hardware domains.

The facility for declaratively describing the configuration process is especially
necessary for representing distinct activities and phases of the product derivation
process (like context configuration, feature configuration etc.). The inevitable
aspect of evolution in software product lines can be supported by analyzing the



configuration model and by systematically considering evolution operations on
the model. This aspect is worked out in [9].

Also the necessity to learn the way of modeling is an experience we made.
For example, the modeling is only done on a concept level, i.e. instances are not
modeled directly, they are created automatically by the configuration tool. This
is necessary for abstracting from a large number of instances, but is sometimes
difficult for those not familiar with these terms. Thus, we apply several tutorials
and hot-line work for supporting the industrial partners in their modeling task.

7 Related Work

[12, 2] also use methods of structure-based configuration for product derivation
in software product lines. However, our approach includes procedural knowledge
for defining the configuration process a-priori and is tested by the existing tools
KONWERK [6] and EngCon [1].

[18, 7] have suggested a feature-based approach for deriving products in soft-
ware product families. This approach is similar to ours where we additionally
map this approach to structure-based configuration and use those tools.

Other methods that have been built for enhancing reuse strategies in product
lines are e.g. defined in [10, 3]. These deal with building up a reusable asset store
and feature models that ease the selection for functionality to be included in the
product derivation process. Such methods can be supported with our structure-
based approach presented in this paper. Therefore, the configuration process
absorbs the task of selecting and combining reusable assets.

8 Summary

There exist several methods known in structure-based configuration, like declar-
ative modeling on the concept level, using constraints for expressing restrictions
in a domain, and using procedural knowledge for guiding the configuration pro-
cess. In this paper, we show how these methods can be used for deriving products
in a software product line environment. For example, diverse types of entities like
features and artifacts and their relations are modeled. Furthermore, in structure-
based configuration the models have certain semantics, which enable automatic
configuration. Thus, those models can be used for product derivation not only
for manual examination. Experiments at our industrial partners show that these
methods can in principle be applied to product derivation. Furthermore, the
existence of structure-based configuration tools enables an easy application of
automatic configuration.
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