M etaEdit+:
Domain-Specific M odeling and Code Gener ation
Environment

Slava Arion, Juha-Pekka Tolvanen
MetaCase, Ylistonmaentie 31
FIN-40500 Jyvaskyla, Finland

{sl ava, jpt}@metacase.com

http://ww. net acase. com

Abstract. The MetaEdit+ demonstration will focus on showimgv the do-
main-specific languages and generators are defiewdplete with examples
from different real-world cases.

1 Introduction

‘One tool fits all' — that seems to be the commoimgiple followed by many tools on
the market today. Alternatively, MetaEdit+ is arnvieonment that enables you to
build your own modeling tools and code generatitsd to your own domain —
without having to write a single line of code.

The capability to define modeling and generatolsti®relevant as it provides the
possibility to raise the abstraction of design windin code to domain concepts, and
a raise in abstraction leads to an imminent raige oductivity [1], [6].

2 Domain-Specific M odeling

In domain-specific modeling and MetaEdit+, one ekmefines a domain-specific

language containing the domain concepts and rates,specifies the mapping from

that to code in a domain-specific code generatprAS soon as the expert defines a
modeling method, or even a partial prototype, #eert can start to use it in MetaE-
dit+ to make models with the modeling language eode is automatically gener-

ated from those models. Developers no longer needlve the problem of manually

mapping domain ideas into quality code by themsgliirme after time. As the mod-

eling language is based on the already known aed demain concepts and rules, it
is easy to remember and understand by all devedoper



3 M etaCASE technology

For method implementation, MetaEdit+ provides aameideling language and tool
suite for defining the method concepts, their propg, associated rules, symbols,
checking reports and generators with ease. The auetlefinition is stored as a
metamodel to the MetaEdit+ repository allowing fetumodifications, which reflect
automatically to models and generators.

MetaEdit+ follows the given method definition andt@matically provides full
CASE tool functionality: diagramming editors, br@ss, generators, multi-
user/project/platform support, etc. Whole team icamediately start to edit designs
as graphical diagrams, matrices or tables, switchigtween views according to user
needs. User can browse designs with filters, apphgponents, link models to other
designs following domain rules, and check modelth wiarious pre/user-defined
reports. The results of modeling can be publisioethé web or word processors, and
generated into code for your product.

4 Code generation

In contrast to the generic code generators provigié¢id standard CASE tools, the
basis of code generation in domain-specific modei;ithe domain itself. As with
product line engineering the architecture and pastef code found in implementa-
tions for that domain are analyzed to determineeamnmonalities and variabilities
over a product family [4], [7].

The variabilities form a significant source of inftation when designing what in-
formation needs to be stored in models. For eaclahitity point, there must be a
corresponding point in a model where information ba stored about the choice of
value for this product variant. The code generattask is to transform the models
into code, often largely in the form of calls tammonents using these values as ar-
guments.

Commonalities are abstracted out into frameworkecadlayer of code between
the generated code and the platform and standaratiles [5], [6]. This information
is thus not included as part of the models — whyulth every model include some-
thing that is the same for all models? Instead fitamework code is linked in with
that generated from the models.

5 Conclusion

Domain-specific modeling provides significant ingses in productivity, especially
for product families. Providing tool support forckua modeling method has previ-
ously required at least a man-year of work. A m&8E tool such as MetaEdit+
reduces the time needed down to the order of daygeeks. Industrial experiences



such as Nokia [2], [3] show productivity gains 6fl6 times, and comparable de-
creases in the time needed for new users to bepoodective.

References

1. Kieburtz, R. et al., A Software Engineering Bxpent in Software Component Genera-
tion. In: Proceedings of 18th International Confeee on Software Engineering, Berlin,
IEEE Computer Society Press, March (1996)

2. MetaCase, Nokia Mobile Phones Case Study, hMtpu. metacase.com/papers/ (1999)

3. MetaCase, Automated product family developmentiokia Tetra terminals,
http://www.metacase.com/papers/ (2003)

4. Fayad, M., Johnson, R., (Eds.), Domain-Spegifiplication Frameworks, Wiley (1999)

5. Pohjonen, R., and Kelly, S., “Domain-Specific débing,” Dr. Dobbs Journal, August
(2002)

6. Tolvanen, J.-P., Keeping it in the family, Amgaliion Development Advisor, July-August,
101 Communications (2002)

7. Weiss, D., Lai, C. T. R., Software Product-liBegineering, Addison Wesley Longman
(1999)



