Product Derivation through Domain-Specific M odeling:
Collected Experiences

Risto Pohjonen, Juha-Pekka Tolvanen

MetaCase, Ylistonméaentie 31

FIN-40500 Jyvéaskyla, Finland
{rise, jpt}@retacase.com
http://ww. net acase. com

Abstract. Domain-Specific Modeling raises the level of ahstion beyond
programming by specifying the solution directly ngsiproduct domain con-
cepts. The final products can be generated frosethégh-level specifications.
This automation is possible because both the |layjegaad generators need fit
the requirements of only one company and domaiis paper discussed Do-
main-Specific Modeling approach to product familgvdlopment. It derives
guidelines for DSM language and generator impleatemt by collecting the
experiences gained from different cases of modsédgroduct derivation.

1 Introduction

Modeling languages have been seen as an importcianism to manage variation
and guide development within product families [H], [10]. However, traditional
all-purpose modeling languages, like SA/SD or UMtgvide little or no support for
this matter. These languages are based on a fixdmnmodels and therefore lack
possibilities to explicitly bind product variatigroints to modeling constructs accord-
ing to the domain or product family requirements & solution to this problem,
domain-specific information is often included iritee models informally with nam-
ing conventions, stereotypes, profiles or additioo@nstraint languages. Unfortu-
nately these kinds of language extensions do riee sbe underlying problem, but
add more overhead to the use of language, causekessand make it difficult to
achieve modeling and product derivation support.

Domain-Specific Modeling (DSM) addresses theseeisdlirectly on the level of
the language itself. It suggests that the variatidihin the product line should be
managed with well-focused modeling language spzdifi tailored for the product
domain — which is opposite to the traditional madgllanguages that try to be as
general as possible. A DSM language is defined watural domain and product
concepts. Identifying the variation points and thgarameters and binding them to
the domain concepts then covers the variation sfracéhe product family. Once
applied for the application development, the modedsie with DSM language cap-
ture all static and behavioral parts of the familgmber. This enables developers to

generate the finished product automatically froesthmodels. The language thereby
shifts the abstraction level of designs to the pobadtoncept level, makes the product
family explicit to developers and effectively sktgal variation space.

This paper discusses how to adopt DSM for prodaciation management and
derivation — according to experiences collecteanfrdifferent industrially applied
product families. As only industrial DSM deploymeratses were taken into account,
there are still too few cases to valid a statisteozalysis of therh The experiences
were gathered with interviews and discussions widimain engineers, personnel
responsible for the architecture and tooling anith wonsultants creating DSM lan-
guages for product family development. Some of @éhfamilies, and related DSMs
respectively, can be characterized rather stablereds others are under frequent
change. Also the main variation aspect is diffefggttveen families: user interface,
configuration, hardware settings, platform servidassiness rules, or communica-
tion mechanisms. Sizes of the families vary froffiev to more than 200 members,
and size of development teams ranges from 4 to thane 300 developers per fam-
ily. Largest product families have over 10 milliomodel elements and largest DSM
languages have about 500 language constructs. $orgeages were already used
more than 7 years whereas some were used justdatirg first variants within the
family.

The organization of this paper is as follows. g tiext section we present the ar-
chitecture for a DSM environment. This 3-level atetiure enables the domain
engineers to find appropriate computational motispecifying variation inside a
family and to allocate variant specification to kgation development environment.
Sections 3 and 4 discuss the creation of the DSiMuage for variability manage-
ment and the code generator support for varianvatén with an example. Section
5 then summarizes the experiences gathered from D§iementation for product
families.

2 Environment for Domain-Specific Modding

A comprehensive DSM environment with full automageneration of variants re-
quires three things: a modeling tool with supportthe domain-specific language, a
code generator, and a domain-specific framework [40, [9], [5]. This basic archi-
tecture is illustrated in Fig 1. The left side regents the entities relevant for creat-
ing the environment — a task carried out by donesigineers — while the right side
illustrates the use of the environment by engindexgloping family members.

! Due to confidentality all cases can be not illatgd in detail, but some cases are collected at
www.metacase.com/dsm.html.

’ PRODUCT | DEA

MetaCASE Variant
tool design
tool

DOMAIN-

SPECIFIC PRODUCT
MODELLING P o MODEL
LANGUAGE 1

DOMAIN-
SPECIFIC celeececececrer > PRODUCT
CODE CODE
GENERATOR
/

A

DOMAIN FRAM EWORK

Fig. 1. Architecture for designing and using a DSM envinemt.

The role of modeling language in a DSM environnisrgivotal: as a representation
of domain concepts and semantics, a modeling lagggdafines static and dynamic
variation space for the product family. The languégformalized into a metamodel,
from which all models describing family members srgtantiated - this ensures that
application developers follow the family approach fecto. The metamodel is also
the key factor for the modeling tool support, whieh will address shortly.

The code generator translates the specific modeliscs into an output com-
patible with the domain-specific framework and pdeg variation for output for-
mats. The domain-specific framework then provides DSM environment with an
interface for the target platform and programmiagduage. This is achieved by
providing the atomic implementations of commonafitand variabilities as frame-
work-level primitive services and components.

Code generation also raises the question aboubtihsupport for the DSM. Tra-
ditionally, there has been no cost-effective waysniplement full-blooded DSM
environments with tools like editors and code gatws. Over the 1990’s, a new
breed of customizable CASE tools, known as metaCARIES, has emerged as a
solution to this problem. A metaCASE tool is a depement support environment
with parameterized or configurable front- and baok} tools which runtime behav-
ior is determined by the metamodel loaded into éheironment. These kinds of
metamodel-driven tools reduce the effort of buigdima DSM environment to a few
man-weeks and change the focus of development ynamlspecifying the meta-
model for the language and building generators. Me&aCASE tool then makes the
language and generators automatically availablddoelopers.

3 Variability Management with M odeling L anguage

In this and the next chapter we look at the prooédmilding a DSM environment.
We will begin with by examining how the variationthin the product line is identi-
fied and then managed by incorporating it intortimdeling language. As confiden-
tiality prevents us from representing real worldimples, we observe this process
through a small but complete ‘laboratory’ exampfemoistwatch product famiBy
The basic idea in watch example is to consideristwatch as a set of small applica-
tions (like current time display, stopwatch, alaett.) with user interface consisting
of buttons and such display widgets as time zorieauor.

3.1 Domain Engineering

When we look at product development in the contéxan overall product family,
we need to define the product family in order tenidfy commonalities and differ-
ences among the related products. This processasrk as domain engineering
[10], [11]. The domain experts carry out the domergineering and create DSM
language and its support environment accordingtdorésults. Thus, the expert
knowledge is leveraged to all developers, who caw concentrate on developing
variants.

The starting point for language definition is thendhin analysis that conceives
the identification of domain concepts. The keytsiyg for finding domain concept is
the commonality and variability analysis of the dom The goal of this analysis is
to identify the entities that are common for albgucts within the domain and find
the variability between the products. However,sitiinportant to understand that
there are several ways to do this and that usuoaite of them alone can provide a
complete coverage. Good results typically requivacarrent use of a number of
various strategies. In any case, the key succesy fa finding the domain concepts
is the domain expertise.

Once the commonalities and variabilities within th@main have been charted,
the identified entities are categorized as eitl&ticsor behavioral according to their
nature. As an example, Table 1 summarizes thecsatl behavioral domain con-
cepts of the watch example and their commonaléres variabilities, gathered as 2-
by-2 matrix.

The next step of domain analysis is to adapt tbigh presentation as a more
formal definition of domain concepts. To do this Wwave to analyze the relation-
ships between the concepts and their possiblebitityaattributes. The results of this
analysis define the hierarchy of domain concemimifthe top-level “whole product”
to the low-level atomic elements. The identifiediahility attributes also partially
set the variation space for the whole intended yrbdange. The concepts for the
example watch DSM environment and their variatipace are presented in Table 2.

2 This is a part of a more comprehensive example ti@ complete example, please contact
us at {rise, jptt@metacase.com.

Table 1. The results of domain analysis for watch example

Commonalities Variabilities

Static « display * number of buttons

* button ¢ number of zones

e zOne ¢ number of icons

* icon « number of applications

« application « combinations of displays

* action and applications

« time unit e combinations of actions

e alarm

Behavioral | « applications are executed in application execution orde

certain order ¢ time units and icons dis-

« application displays time played vary depending on
units and icons application

« actions are triggered by user actions applied vary de-

via buttons or by alarms pending on application

actions operate on time

r

units, icons and/or alarms

Table 2. The watch

concepts with variation attributes

Concept Variability attributes

Watch Logical Watch + Display

Logical Watch | Applications (0 — N) with executiorder
Display Buttons (2 — 4) + Zones (2 — 4) + Icons-R)
Button Up | Down | Mode | Set

Zone TimeUnit

Icon On | Off

Application DisplayedTimes (0 - N) + Actions (0 3} N
DisplayedTime| Time

Time

TimeUnits (2 — 4)

Action set Time | + Time | - Time | Icon on | laaffh| Alarm on |
Alarm off

TimeUnit Hours | Minutes | Seconds | Hundreds obrses

Alarm Time

The final task of domain engineering is to refihe tesults of analysis as the product

reference architecture. This architecture can bietk fairly easily from the static

commonalities and their aggregation structures. Wath example architecture is

illustrated in Fig.

It is worth to note that for the first deployablersion of the DSM environment it

2.

may not be necessary to implement all conceptdifteehduring domain analysis. It

is possible to prioritize the concepts and implemeinthe DSM environment in

incremental fashion.

Watch model

: Q :

Display unit]
Logical watch
0.4
\t 1.2 lcon
0. Watch 1.0 f:,;/ﬁr/
i oro
application Action
activates 24
st - 4 Button
1. .
ool
DisplayedTime Alarm
) 4) 5) 1.4
Time Time Unit Digplay zone

Fig. 2. The product architecture for watch example

3.2 Defining the M odeling L anguage

Domain engineering is strong on its main focusjifig and extracting domain con-
cepts, family commonalities and variabilities, lgives little help in designing and
implementing languages for the engineered domaypically, it offers some pa-
rameters of static variation, but does not ackndgdebehavioral variation, rules
between different variation points or mapping t@iementations. These aspects can
be covered with additional techniques of methodiregsging and metamodeling.
Method engineering is the discipline of designiognstructing and adopting devel-
opment methods and tools for specific needs [3],Ifbparticular, it emphasizes the
use of metamodels to specify concepts, terms andtiem rules of product family
domain. MetaCASE tools, as stated before, can tiead these metamodel (i.e.
product family) specifications to implement theltsopport.

According to studied cases, there are two key rements for DSM design. First
is the computational model that is suitable forc#gmg the required variation.
Another is the expected code generator output @rndriget platform and implemen-
tation language. These two requirements affect edtodr: sometimes the generation
output may require a certain computational modebdoused, e.g. XML and data
models, when most variation points are based dit Suctures; or vice versa, the
state machine as a computational model and the stathine as an implementation
of behavior. The computational model(s) of variatend underlying platform for
generator output are then represented with theeglesrof DSM environment, mod-

eling languages, generator and domain-specific déraonk. The selection of compu-
tational model and underlying platform and programgnlanguage provide also
additional information for successful distributiand allocation of domain concepts
within the tree parts of DSM environment: the motgllanguage, code generator
and domain-specific framework.

As the modeling language is the only part thatisible for the user and thereby
provides the user interface for the developmentai to maintain control over all
possible variation within the product family. Thedeling language is also the main
factor for productivity increase and it should aggeron the highest achievable level
of abstraction. Based on our experience, languageld be kept as independent
from the target implementation code as possiblendy initially appear easier to
build the language as an extension on top of tlitieg code base or platform but
this usually leads to a rather limited level of tadsstion and mapping to domain
concepty

To ensure a high abstraction level for developéiesJanguage should be based on
the product family domain itself. The optimal waydchieve this is to use the ele-
ments of product family architecture, common eletseand particularly those re-
lated with variation points. The nature of variati@tatic or behavioral) and level of
detail favors selecting computational models thert de represented with certain
basic modeling languages. Pure static variabileg be expressed in data models,
while orderly variation requires some sort of flomodel; state machines advocate
state models, etc. All these can be representeaafty with metamodels and enrich-
ing them with variation data and rules allows dreatthe conceptual part of the
modeling language. Once defined, the modeling lagguenacted by the supporting
tool) guarantees that all developers use and fdlh@same product family rules.

clockTime y clockOffset
EditHours
/_',Ho:

a 3 Shaw Mode Set
A

Edithinutes
AN

/l\
ik clockOffset

Fig. 3. State machine with watch domain extensions

Fig. 3 shows the example of modeling language faickv product family, presenting
a simple application that displays and changesctireent time. In this case we

3 It seems not to be practice to design a DSM laggliy extending languages based on fixed
metamodels. For example, pure UML profile mechasisrave limited capabilities to ex-
press product family concepts and their correctnesstraints.

found it best to rely on the typical computatiomaddel used with embedded soft-
ware, the state machine. We then enriched and wedrthe semantics of state ma-
chine to focus on the concepts of the watch domBasically, there are only two
watch-specific extensions in our state machinestFihe transitions can be triggered
only by the user interaction when a certain buimpressed. Second, the actions
taking place during the transition may only oper@igime unit entities. Also the set
of possible operations is limited: one can only addubtract time units or roll then
up or down. With these basic operations we canrcaeurrent needs of our watch
family (an example of more advanced variant of iggpion shown in Fig. 3 is pre-
sented in Fig. 4). If further needs arise in theirfe, we can simply extend the set of
possible operations or define new entity typespierate on.

sysTime
77 BN 77

clockOffset

¥ I tempOfiset

-
Show Set EditHours -

Ho,
¥
Moe ‘

termpOffzet

clockOffset

- Show

ot Time: Ml it Time

(®

Show

Fig. 4. A more complex variant of current time application

In most cases it is not possible to cover all wamwithin just one type of model
and modeling language. This raises the importaestipns of model organization,
layering, integration and reuse. Modeling langudgeelopment efforts typically
start with a flat model structure that has all @pis arranged on the same level
without any serious attempts to reuse them. Howesethe complexity of the model
grows, while the number of elements increasesflahenodels are rarely suitable for
presenting hierarchical and modularized softwacelpets. Therefore, we need to be
able to present our models in a layered fashion.

An important criterion for layering is the naturietioe variability. For example, a
typical pattern we have found within the produchiiges is to have a language based

on behavioral computational model (like state maehto handle the low-level func-

tional aspects of the family members and to coverhigh-level configuration issues
with a language based on a static model (like dathcomponent models). Another
aspect affecting the layer structure is reuse. itlea of reuse-based layering is to
treat each model as a reusable component for titelsion the higher level. In this

type of solution, the reusable element has a caabdgefinition that is stored some-
where and referenced where needed.

4 Variant Derivation with Code Generator

In previous chapter we discussed how variationccdad handled from within the

DSM language. In this chapter we continue to feamidie ourselves how to derive
the actual product variants from the models witdecgenerator. Again, we use the
wristwatch product line as an example.

4.1 Developing the Code Gener ator

To enable the code generator to produce complietebtional and executable output
code, the models should capture all static and\betzd variation of the target prod-
uct while the framework should provide the requited-level interface with the
target platform. This and nothing less should leag$ the goal for the DSM envi-
ronment and its code generator. This ambitious diognobjective can be achieved
easier when the sub-domains and related languagesie formal and well-bounded
starting point.

As the translation process itself is complex enoubjh generator should be kept
as simple and straightforward as possible. Fos#me reason, maintaining variabil-
ity factors within the generator structure has bfsemd difficult — especially when
the family domain and architecture evolves contisly Instead of generator-
centric approach we have detected that before dirgjuany variability aspect into
the code generator, the nature of the variationt loeicarefully evaluated: if some-
thing seems difficult to support with generatomsider raising it up to the modeling
language or pushing down to the framework. Thi® aeans that the developer
should do all basic decision-making (like choosihg type of the target platform, if
there are many) on the model level.

According to our experiences, the generator isapgr place for approximately
only two kinds of variation. As each target planfoor programming language re-
quires, at least partially, a unique generator @m@ntation anyway, it is widely
acceptable to handle the target variation withie glenerator. Another suitable way
to use the generator for managing variability idtdld higher-level primitives by
combining low-level primitives during generation.

Listing 1 shows an example of code generated fercirrent time application
shown in Fig. 2. The product derivation is complietéhe manner that full code is
generated from the modeler’s point of view and nsdmewriting of the code is not

needed. This completeness is crucial for modelebaseduct development — it has
been the cornerstone of other successful shiftsemath programming languages.
Moreover, domain-specific models describing theliappon functionality in code-
independent manner gives possibility to use theesamdels to generate code for
multiple platforms. As the example in Listing 2 slsp C code can be generated
from the same designs: only the generator is @iffernot the product designs.

/1 Al this code is generated directly fromthe nodel.
/1 Since no manual coding or editing is needed, it is
/1 not intended to be particularly human-readabl e

public class SinpleTinme extends AbstractWatchApplication {

/1 define unique numbers for each Action (a...) and DisplayFn (d...)
static final int a22_1405 +1; //+1+1
static final int a22_2926 +1+1; //+1
static final int d22_977 +1+1+1; //

public SinpleTi me(Master master) {
super (naster);
/1 Transitions and their triggering buttons and actions
/1 Argunents: From State, Button, Action, To State
addTransition ("Start [Watch]", "", 0, "Show');
addTransition ("Show', "Mode", 0, "EditHours");
addTransition ("EditHours", "Set", a22_2926, "EditHours");
addTransition ("EditHours", "Mde", 0, "EditMnutes");
addTransition ("EditMnutes", "Set", a22_1405, "EditM nutes");
addTransition ("EditM nutes", "Mde", 0, "Show');

/1 What to display in each state
/1 Argunents: State, blinking unit, central unit, DisplayFn
addSt ateDi spl ay("Show', -1, METime. M NUTE, d22_977);

addSt ateDi spl ay("Edi t Hours", METI me. HOUR_OF_DAY, METi me. M NUTE,
d22_977);

addSt ateDi spl ay("Edi t M nut es”, METi me. M NUTE, METi me. M NUTE,
d22_977);

/1 Actions (return null) and DisplayFns (return time)
public Object perforn(int methodld)
{

switch (nmethodld) {

case a22_2926:
getcl ockOf fset (). rol |l (METI ne. HOUR_OF_DAY, true, displayTine());
return null;

case a22_1405:
getclockOf fset().roll (METIi me. M NUTE, true, displayTine());
return null;

case d22_977:
return getcl ockTine();

return null;
}
}

Listing 1. Java code generated for current timdiegigon.

typedef enum { Start, EditHours, EditM nutes, Show, Stop } States;
typedef enum { None, Mode, Set } Buttons;

int state = Start;
int button = None; /* pseudo-button for buttonless transitions */

voi d runWatch()
while (state != Stop)

handl eEvent () ;
button = getButton(); /* waits and returns next button press */

}
voi d handl eEvent ()

switch (state)

{
case Start:
switch (button)
{
case None:
state = Show,
br eak;
defaul t:
br eak;

case EditHours:
swi tch (button)

case Set:
state = EditHours;
br eak;

case Mde:
icon (O f,editHours);
icon (On,editMnutes);
state = EditM nutes;
br eak;

defaul t:
br eak;

case EditM nutes:
swi tch (button)

case Mde:
clockO fset = tenmpOffset;
icon (OFf,editMnutes);
state = Show,
br eak;
case Set:
state = EditM nutes;
br eak;
defaul t:
br eak;

case Show:
swi tch (button)

case Mdde:
tenpOffset = clockOf fset;
icon (On, editHours);
state = EditHours;
br eak;

defaul t:
br eak;

defaul t:
br eak;

}

button = None;

handl eEvent (); /* follow transitions that do not require buttons */
}

Listing 2. C code generated for current time ajgpian.

4.2 Building Domain-Framewor k

In many cases the demarcation between the targdgomh and the domain-specific
framework remains unclear. We have learned to oelythe following definition:
target platform includes general hardware, opegasgstem, programming lan-
guages and software tools, libraries and componenbe found on target system.
The domain framework consists of any additional gonent or code that is required
to support code generation on top of them. It istrhe noted that in some cases
additional framework is not needed but the codeegor can interface directly with
the target platform.

We have found that, architecturally, frameworkssisinof three layers. The com-
ponents and services required to interface withtaihget platform are on the lowest
level. The middle level is the core of the framekvand it is responsible for imple-
menting the counterparts for the logical structysessented by the models as tem-
plates and components for higher-level variabilitire top-level of the framework
provides an interface with models by defining tixpested code generation output,
which complies with the code and templates provigethe other framework layers.

5 Conclusions

The lack of appropriate product specification amdigh languages has hindered a
wider adoption of the product family developmenpiagach. Domain-specific model-
ing languages provide major benefits for produntifa development. They make a
product family explicit, leverage the knowledgetbe family to help developers,
substantially increase the speed of variant creadiod ensure that the family ap-
proach is followed de facto. It is also worth tdio® that experience reports on ap-
plying generators with languages targeted to sipesdmains have shown remarka-
bly fewer errors (e.g. [7] reports 50% less). Theerefits are not easily, if at all,
available for developers in other current prodachify approaches: reading textual
manuals about the product family, mapping familyexss to code or code visualiza-
tion notations, browsing components in a libranytrging to follow a (hopefully)
shared understanding of a common architectureaondivork.

In this paper we have presented architecture apdriences for designing lan-
guages and generators for product family developnig®M implementation seems

to require the extension of pure domain analysisdsking computational models
for describing variation with design models. Metaging is a viable technique to
this kind of design of modeling languages that makeroduct family explicit: the
family concepts and variation are captured in aamedel that forms a modeling
language. By instantiating the metamodel with sutpg tools, models can specify
legal product variants within the family. The naveal focus provided by the do-
main-specific languages makes it easier to autortteevariant production with
purpose-built code generators. Generators can pocare some variant handling,
but the possibility to bring it in front, into thmodeling language, appears to be a
better choice. Generally, the 3-level DSM environinarchitecture provides a wide
variety of options for handling the variation, ggposed to approaches where varia-
tion can be handled in one place only. This is atgurtant when supporting family
evolution and reflecting the changes to the speifoins under development.

Implementation of DSM is not an extra investmentpioduct family develop-
ment. Rather, it saves development resourcestitadily all developers work with
the family and variation concepts and map themh# itmplementation concepts
manually. And among developers, there are big rdiffees. Some do it better, but
many not so well. So let the experienced develogefiae the concepts and mapping
once, and others need not do it again. If an exgetifies the code generator, it
produces applications with better quality than ddeg achieved by normal develop-
ers by hand. This approach also scales from semafhs to large globally distributed
companies. Interestingly, the amount of expertuesgs needed to build and main-
tain a language and generators does not grow tvtsize of product family and/or
number of developers.

References

1. Arango, G., Domain Analysis Methods, Boftware Reusability. Chichester, England:
Ellis Horwood, (1994)

2. Batory, D., Chen, G., Robertson, E., Wang, Tesibn Wizards and Visual Programming
Environments for GenVoca GeneratdiSEE Transactions on Software Engineering, Vol.
26, No. 5 (2000)

3. Brinkkemper, S., Lyytinen, K., Welke, RMethod Engineering - Principles of method
construction and tool support, Chapman & Hall (1996)

4. Czarnecki, K., Eisenecker, Uzenerative Programming, Methods, Tools, and Applica-
tions, Addison-Wesley (2000)

5. Greenfield, J., Short, K., Software Factoriessémbling Applications with Patterns,
Frameworks, Models & Tools, John Wiley & Sons, ppear (2004).

6. Kelly, S., Tolvanen, J.-P., Visual domain-spiecihodeling: Benefits and experiences of
using metaCASE tooldnternational workshop on Model Engineering, ECOOP 2000, (ed.
J. Bezivin, J. Ernst) (2000)

7. Kieburtz, R. et al., A Software Engineering BExpent in Software Component Genera-
tion, Proceedings of 18th International ConferemeeSoftware Engineering, Berlin, IEEE
Computer Society Press (1996)

8. Kyo C. Kang, Sholom G. Cohen, James A. HessljaWilE. Novak, and A. Spencer Peter-
son, Feature-Oriented Domain Analysis (FODA) FalsibStudy. Technical report
CMU/SEI-90-TR-21, Software Engineering Institutgr@egie Mellon University (1990)

9. Pohjonen, R., Kelly, SDomain-Specific Modeling, Dr. Dobb’s Journal, Vol. 27, 8 (2002)

10.Weiss, D., Lai, C. T. RSoftware Product-line Engineering, Addison Wesley Longman
(1999)

11.White, S., Software Architecture Design Domanoceedings of Second Integrated De-
sign and Process Technology Conf., Austin, TX.,.[0e4, 1: 283-90 (1996)

