
Foreword

This report summarises the result from a research project calledSarcouscarried out by Soft-
ware Business and Engineering Institute (SoberIT) of Helsinki University of Technology. The
project was funded by Tekes (National Technology Agency of Finland) and participating in-
dustrial companies.

The Sarcous project was set up to study and formulate methods for managing software
product families and re-usable software assets on the basis of modelling them as configurable
software product families.

The project met its objectives well. A large amount of knowledge about the state-of-
the-art of software product families was collected. Further, modelling concepts and concrete
languages for modelling configurable software product families were developed. A large
number of demonstrations and tools were built, both based on existing tools and techniques
and from scratch. These results were reported in a large number of high-quality publications,
published at the most important forums of the field.

During the course of the project, several individuals have contributed to the results. They
include: Timo Asikainen, Tero Kojo, Varvana Myll̈arniemi, Antti Mattila, Mikko Multimäki,
Tomi Männisẗo, Mikko Raatikainen, Timo Soininen, andKatariina Vuorio (ńee Ylinen).

We thank professorReijo “Shosta” Sulonen, who was the main originator of the project
ideas. Further, we thank all the people who have contributed to build the discipline of product
configuration and product data management, on which the project was built. We also thank
all our colleagues for their support and discussions. Finally, we thank the companies that par-
ticipated in the project for their co-operation.

Espoo, Finland, October 2004

Timo Asikainen and Tomi M̈annisẗo

Contents

1 Introduction to Sarcous 1
1.1 Background . 1
1.2 Goals . 2
1.3 Tasks . 3
1.4 Results . 4

1.4.1 Survey on software product families 4
1.4.2 Modelling concepts and languages 4
1.4.3 Tools and demonstrations . 5
1.4.4 Dissemination and international collaboration 6

1.5 Conclusions and future work . 6
1.6 Outline . 6

2 Software Product Family Survey 7
2.1 Framework for studying software product families 7
2.2 State of the practice . 8
2.3 Characterizing configurable software product families 10

3 Modelling Concepts and Languages 13
3.1 Product configuration and configurable products 13
3.2 Koalish—Software architecture . 14
3.3 Forfamel—Feature modelling . 15
3.4 Kumbang—Features and architecture combined 17
3.5 Modelling evolution . 18

4 Tools and Demonstrations 21
4.1 Demonstrations based on WeCoTin . 21

4.1.1 Modelling and configuring features 22
4.1.2 Configuring Linux Familiar . 23
4.1.3 Configuring Linux Familiar over multiple releases 24

4.2 Tools for Configurable Software Product Families 25
4.2.1 Confuse – Configuration of Compaq iPAQ 25
4.2.2 Comet GCMT modelling tool . 26
4.2.3 Kumbang Configurator . 28

CONTENTS

5 Dissemination and International Collaboration 31
5.1 Conferences . 31

5.1.1 Organising conferences . 31
5.1.2 Participating in conferences . 32

5.2 Talks . 33
5.3 Teaching . 33
5.4 Reviewing . 34
5.5 Other . 35

6 Publications 37

References 41

Chapter 1

Introduction to Sarcous

Tomi Männisẗo, Timo Asikainen, and Timo Soininen

Sarcous is a research project that has been carried out by Software Business and Engineering
Institute (SoberIT) of Helsinki University of Technology. The project was funded by Tekes
(National Technology Agency of Finland) and participating industrial companies. The project
was started in 2000 and ended in 2004, during which time three projects periods were con-
ducted, each lasting slightly over one year.

This chapter introduces the Sarcous project, its background, goals, and summarises the
results of the project.

1.1 Background

Software product families (SPF)(or lines, as they are also known) are a means for increasing
the efficiency of software development and to control the complexity and variability of prod-
ucts. A SPF can be defined to consist of acommon architecture, aset of reusable assetsused
in systematically producing, i.e., deploying, products, and theset of productsthus produced.

The concept of product family has existed for decades (Parnas, 1976), but only recently
have research results shown that a software product family may provide industrially relevant
benefits, such as decreased development effort and time-to-market (Knauberet al., 2002; Co-
hen, 2002), and that the family itself and some of the issues it addresses are important and
predictive for success of reuse (Tracz, 1988; Frakes & Fox, 1995; Morisioet al., 2002). The
constituting assets of a software product family are typically assumed to be specifically de-
veloped for the family, and then shared and reused in the development of individual products.
Figure 1.1 illustrates the main concepts of software product families.

One of the most important benefits of the software product family approach is the increase
in reuse. The reuse needs not to be limited to a single kind of asset, such as program code,
but may cover multiple asset kinds, such as architecture (Clements & Northrop, 2001) or
requirements. Further, in the context of software product families reuse tends to be systematic
(Bosch, 2000). Finally, reuse in the context of software product families is not seen as a
merely technical problem, but to concern other issues as well, such as business, process,

1

2 CHAPTER 1. INTRODUCTION TO SARCOUS

Figure 1.1: Main software product line artefacts and processes

organizational, and architecture (van der Linden, 2002).
Sarcous project was set up to study a new approach to the development of software product

families under the following assumptions:

• The software development consists of systematically developing, modelling, managing
and applying re-usable components using supporting intelligent tools. The components
represent information on functional subsystems rather than single files or atomic classes.

• The software isconfigurable, i.e., it has a common architecture into which (mostly)
pre-defined components can be combined according to the needs of the user, while
respecting the known design constraints.

Hence, the project studied a special class of software product families that we callcon-
figurable software product families (CSPF). A configurable software product family allows
derivation of product individuals without customer-specific design or programming effort; in
this sense, configurable software product families represent an extreme in the ease of pro-
ducing new variants. This can also been graphically in Figure 1.2, which illustrates different
approaches to managing the variability of software product families.

It should be noted that although a configurable software product family provides signifi-
cant benefits, it is not the optimal solution for all companies: building a CSPF requires that
many issues related to the product family must be established in the organisation.

1.2 Goals

The objectives of Sarcous project was tostudy and formulate methods for managing software
families and re-usable software assets on the basis of modelling them as configurable software
product families. The re-usable assets may be requirements, features, designs or pieces of
implementation.

1.3. TASKS 3

Figure 1.2: Approaches to variability management

The overall goal of the project was stated as:To develop methods for managing software
product families on the basis of modelling them as configurable software product families.
This goal was refined into two research questions:

1. How to model and manage SPFs, especially their variability and evolution?

2. What kind of intelligent support for reuse and configuration of SPFs can be offered?

1.3 Tasks

The principal research philosophy applied in the project was that of SoberIT in more general:
finding industrially relevant research problems, solving them, and turning the results achieved
into industrial practices. This philosophy is illustrated in Figure 1.3.

To address the research questions, the work in the project was divided into major tasks as
follows:

1. Gaining an understanding of the existing work in related scientific fields.

2. Gaining an understanding of the real needs companies by investigation of the software
product family problem modelling concepts, especiallyfeatures, components, interfaces
andversioningin case companies

3. Development of a modelling language and method to support SPFs

4. Validation of developed methods in industrial cases and by demonstrating the configu-
ration concept by building prototype tools

The very first task of the project was to gain an understanding of the related work that had
been conducted in related research fields. The next task was to survey the state-of-the-practice
of software product families in the Finnish industry. The goal of the survey was to find out

4 CHAPTER 1. INTRODUCTION TO SARCOUS

Figure 1.3: Sarcous research philosophy

where industrial companies stand with respect to software product families and what are the
challenges they are facing. Experiences from the survey were fed as a feedback to the project
for guiding the remaining tasks towards highly relevant research results.

The main constructional research task was to develop a conceptual foundation for mod-
elling configurable software product families, to devise a modelling language with formal
semantics based on the conceptual foundation, and to demonstrate the language.

1.4 Results

The results of the Sarcous project are divided in the four categories introduced in the following
subsections. Only a brief summary of the main results is given here; more details can be found
from the corresponding chapters of this report.

1.4.1 Survey on software product families

Six companies were surveyed and analysed. The results thus obtained were reported to the
companies and in anonymised form to the scientific community. The reporting work is still
partly in progress and will yield some result after the project has ended. This topic is covered
in Chapter 2.

1.4.2 Modelling concepts and languages

The work done on concepts concepts can be divided in three main categories:

1.4. RESULTS 5

1. Architectural descriptionof the product in terms ofcomponentsthat may contain other
components as theirparts; interfacesof components, andconnectionsbetween them

2. Feature modellingconcepts, which includefeaturesorganised in a hierarchy by the
subfeaturerelation, concepts for variability, such asoptional andalternative features,
andconstraintsthat may be used to express relationships involving features, such as
requiresor incompatibility

3. Evolutionof components

A configuration language calledKumbangwas developed on the basis of Koala software
architecture description language of Philips (van Ommeringet al., 2000), a number offeature
modellingmethods, and lessons leearned from configuration of non-software products.

The modelling methods were validated by applying them in collaboration with industrial
partners to real cases.

This topic is covered in Chapter 3.

1.4.3 Tools and demonstrations

The tool support research in Sarcous had two main lines of activities:

• Applying existing configuration technology designed for non-software products to con-
figurable software product families

• Development of prototype tools that are built on software specific variability modelling
and management concepts

The first category includes the following demonstrations based onWeCoTin, a product
configurator developed at SoberIT:

• Modelling and configuring features

• Configuring Familiar, a Linux distribution for Compaq iPAQs

• (Re)configuration with multiple Linux over multiple releases

In addition, the following prototype tools were developed from scratch:

• A tool for configuring and installing Linux Familiar on Compaq iPAQ

• A prototype modelling tool for creating models of configurable software product fami-
lies combining component- and feature-based aspects

• A prototype configuration tool calledKumbangfor software product families combining
component- and feature-based modelling approaches.

This topic is covered in Chapter 4.

6 CHAPTER 1. INTRODUCTION TO SARCOUS

1.4.4 Dissemination and international collaboration

Active participation of the project in the international community of software product families
is evident from the activities listed in Chapter 5, and from the project publications listed in
Chapter 6.

1.5 Conclusions and future work

A central issue in variability management is understanding of variability in a manner that
allows explicit description of it. The Sarcous project took concrete steps towards making this
happen in realistic and feasible manner.

However, we are not there yet, as many issues are to be resolved in a more systematic
manner. These include but are not limited to the following two main areas:

1. Tool support covering different life cycles, such as requirements, architecture, feature
models, components and product derivation

2. Best practices in SPF adoption, variability management, variability documentation,
traceability

The underlying goal is to provide a company working with or considering moving towards
software product families areadily-applicable, validated set of methods. To achieve this, the
SoberIT research philosophy needs to be applied, see Figure 1.3: gathering the state-of-the-
art practices from the industry, generalising and tailoring these to match the specific needs of
other companies, and bringing the results back into the industry.

1.6 Outline

The remainder of this report is structured as follows. Next, in Chapter 2 we will discuss a
survey carried out within the project. Thereafter, in Chapter 3, we will present the modelling
concepts and languages developed. A discussion of the demonstrations and tools built follows
in Chapter 4. The dissemination of the project results is discussed in Chapter 5. Finally,
Chapter 6 contains a list of the publications of the project.

Chapter 2

Software Product Family Survey

Mikko Raatikainen, Timo Soininen, and Tomi Männisẗo

In this chapter, we discuss the product family survey carried out in Finnish software companies
as a part of the Sarcous project. In more detail, we will first discuss the framework used for
the survey. Thereafter, we will provide some details of the results of the survey. Finally, we
will characterise configurable software product families.

2.1 Framework for studying software product families

The quality of the data gathered in any survey or other empirical study heavily depends on the
methods applied in gathering the data. Therefore, we did not want to usead hocmethods in
our survey. Unfortunately, there seemed not to exist readily-available research instruments for
studying software product families in the industry. Consequently, our first step was to develop
a research instrument for this purpose.

The framework developed follows the qualitative case study strategy described in (Yin,
1994). In more detail, the framework consists of five steps:designing case study, prepar-
ing data collection, collecting evidence, analysing the evidence, andcomposing a case study
report. In the following, we will discuss each of these steps in some detail.

In designing the case study, we formulated theresearch problemin the form of a question
as follows: What kind of a software product family a company develops? Based on our
preliminary understanding of software product families, a number ofstudy propositionswas
made. As an example, it was postulated that the products in the family share a managed set of
features. The cases were selected usingtheoretical sampling: the selection was not random,
but was based on specific criteria. Finally, theunit of analysiswas defined to be either a single
software product family, or many of these, in the case that a company developed many.

In preparing the data collection, the most important issues were to decide thefield pro-
ceduresto be applied, and to prepare thecase study questionsto be used. Concerning the
former, it was decided that at least two investigators participate in each interview, and the
investigators should familiarise themselves with the questions before the interview. The latter
issue, namely case study questions, were prepared based on the BAPO (Business, Architec-

7

8 CHAPTER 2. SOFTWARE PRODUCT FAMILY SURVEY

ture, Process, Organisation) framework (van der Linden, 2002).
The collection of evidence was carried out as interviews in the participating companies.

Each interview was tape recorded; in addition, notes were taken. In order to ensure that
different viewpoints were taken into account, the interview was carried out in three distinct
sessions, each concentrating on slightly different issues.

The analysis methods employed were not fixed in the framework. Similarly, no procedure
was predetermined for composing the case report.

Further details of the framework can be found in (Raatikainen, 2003; Raatikainenet al.,
2004b).

2.2 State of the practice

The software product families of the six companies are summarised in Table 2.1. In the
following, we will discuss a number of topics arising from the table, or otherwise worth
discussion.

A number of reasons for applying the product family approach were mentioned. In most
of the companies, the following issues were brought up in the interview: managing variability,
shortening time-to-market, enhancing quality, increasing the number fo products, smoothen-
ing flow of projects, and more efficient use of resources. In addition, issues such as enhancing
co-operation within the company, price categorisation were mentioned in some of the compa-
nies.

The size of the staff varied across the companies: the software engineering staff was in the
magnitude of scores in most companies, but one company employed 200 software engineers.
Also, the type of software varied, being embedded software in half of the companies, and
software running on a PC in the other half.

The application domain, price of a product, the number of variants, and the number of de-
liveries varied greatly across the companies. This suggests that these attributes do not restrict
the applicability of the software product family approach.

2.2. STATE OF THE PRACTICE 9

Ta
bl

e
2.

1:
S

of
tw

ar
e

pr
od

uc
tf

am
ili

es
in

th
e

co
m

pa
ni

es
st

ud
ie

d

F
ac

to
r

C
om

pa
ny

A
C

om
pa

ny
B

C
om

pa
ny

C
C

om
pa

ny
D

C
om

pa
ny

E
C

om
pa

ny
F

A
p

p
lic

a
tio

n
d

o
m

a
in

C
on

su
m

er
el

ec
tr

on
ic

s
A

ut
om

at
io

n
sy

st
em

s
M

ed
ic

al
de

vi
ce

s
F

ac
to

ry
au

to
m

at
io

n
M

ed
ic

al
in

fo
rm

at
io

n
m

an
ag

em
en

t

C
A

D
/C

A
E

S
ta

ff
20

0
50

00
H

un
dr

ed
s

20
0

13
0

50
0

S
P

F
e

n
g

in
e

e
rs

20
25

20
0

25
35

35
Ty

p
e

o
f

so
ft
w

a
re

E
m

be
dd

ed
E

m
be

dd
ed

E
m

be
dd

ed
P

C
so

ftw
ar

e
P

C
so

ftw
ar

e
P

C
so

ftw
ar

e

Ty
p

e
o

f
p

ro
d

u
ct

E
m

be
dd

ed
so

ftw
ar

e
in

an
el

ec
tr

on
ic

ga
dg

et

M
ec

ha
ni

cs
co

nt
ro

lle
d

by
em

be
dd

ed
so

ftw
ar

e

E
m

be
dd

ed
so

ftw
ar

e
in

an
el

ec
tr

on
ic

ga
dg

et

M
ec

ha
ni

cs
co

nt
ro

lle
d

by
so

ftw
ar

e
on

a
P

C

S
of

tw
ar

e
pr

od
uc

t
S

of
tw

ar
e

pr
od

uc
t

P
ri
ce

10
0-

30
0e

10
00

00
e

+
10

00
-5

00
00
e

50
00

0e
20

00
0e

20
00

0e
S

P
F

co
ve

ra
ge

50
%

70
-9

5%
75

%
+

10
0%

10
0%

10
0%

V
a

ri
a

n
ts

/y
e

a
r

-a
10

-a
50

35
T

ho
us

an
ds

V
a

ri
a

n
ts

20
-a

10
-a

-a
-a

D
e

liv
e

ri
e

s
T

ho
us

an
ds

1
H

un
dr

ed
s

1
1

1

a
T

he
fa

ct
or

is
no

ta
pp

lic
ab

le
b

A
ss

et
de

ve
lo

pe
rs

,n
o

da
ta

ab
ou

tp
ro

du
ct

de
ve

lo
pe

rs
c

T
he

so
ftw

ar
e

en
gi

ne
er

s
de

ve
lo

p
ot

he
r

pr
od

uc
ta

s
w

el
l

d
T

he
nu

m
be

r
in

cl
ud

es
em

pl
oy

ee
s

w
ho

de
ve

lo
p,

fo
r

ex
am

pl
e,

co
m

pl
ex

al
go

rit
hm

s
th

at
pr

od
uc

ti
nc

lu
de

s

10 CHAPTER 2. SOFTWARE PRODUCT FAMILY SURVEY

2.3 Characterizing configurable software product families

In (Raatikainenet al., 2004a), we discuss two of the six companies that participated in the
survey in more detail. These two companies have developed configurable software product
families, from which we can conclude that configurable software product family is applied in
the industry and hence is not a mere theoretical peculiarity. Furthermore, the paper shows that
a configurable software product family is a feasible and efficient way to systematically develop
a family of products and manage its variability: the two companies achieved competitive
advantage through their configurable software product families, compared to companies with
no such a family.

For both companies, the configurable software product family approach was an efficient
way to systemize the software development and enabled an efficient control over variants, and
even reconfiguration of individual products. They even went as far as to state that the approach
is the only reasonable way to do business, regardless of the significant initial investment.

The study also exemplifies the feasibility of developing and using configurators, i.e., in-
formation systems supporting the derivation process: both companies had developed a con-
figurator of their own. Using the configurator, the derivation process was made such that no
software engineering skills were required.

The possible drawbacks of the approach seemed to pertain mainly to the evolution of the
product family: the topic was seen as especially unpromising as far as the ability to meet
customer requirements by configuring was concerned.

We also discovered a number of factors that affect the feasibility of the configurable soft-
ware product family approach:

• Number of deliveries

Supporting a configurable software product family requires a relatively large numbers
of deliveries. However, it seems that a large number of deliveries is not enough to guar-
antee the feasibility of the approach. Further, what is a large enough number depends
on the company: what is large enough for a company may not be enough to another.

• Application domain understanding

A thorough understanding of the targeted application domain has a positive effect on the
feasibility. Further, stable application domains are more likely to support a successful
configurable software product family than emerging or otherwise unstable ones.

• Clear organisational separation of development and deployment

Even for small organisation, it seems to be beneficial, from the configurable software
product family point of view, to separate the development and deployment activities.
The separation should be done at least at the role level, i.e., developing assets and de-
ploying individual products should be considered as different activities.

We also found a number of factors that are seemingly irrelevant for the success of config-
urable software product families.

• Special software engineering skills

2.3. CHARACTERIZING CONFIGURABLE SOFTWARE PRODUCT FAMILIES 11

• Advanced process models, methods, modelling and implementation tools

• Application domain

• Company maturity

In (Raatikainenet al., 2005), we give detailed accounts of the derivation process in the two
configurable software product families; these are the same families that were studied already
in (Raatikainenet al., 2004a). The findings shed new light on the previous characteristics
of configurable software product families, and gave grounds for new ones (Eisenhardt, 1989;
Strauss & Corbin, 1998). These characteristics are the following:

1. Configurable product base

A configurable software product family includes a configurable product base that con-
stitutes at least a significant part of any product individual

2. High- and low-level variability

Variability takes place at ahigh level, which pertains to important characteristics, and
at a textitlow level, pertaining to detailed characteristics. Both forms of variability have
constraints but only the high-level variability is visible to a customer.

3. Light-weight derivation

The derivation process requires only minor effort. Further, derivation activities are
highly flexible both spatially and temporally, and their order may be permuted. Deriva-
tion requires mainly application domain knowledge, understanding of the products, and
system administrator skills; in other words, no significant software engineering skills
are required.

4. Limited tailoring during product derivation

Only certain aspects of a product may be tailored. Further, requirements for tailoring
are carefully analyzed. Finally, tailoring is performed in separation of other activities.

5. Late and flexible binding of variability

Variability is bound in a late point of time, and bindings can be changed.

6. Derivation organisationally independent

There is an organisational unit concentrating on deriving product individuals, and the
unit has no other, significant responsibilities.

12 CHAPTER 2. SOFTWARE PRODUCT FAMILY SURVEY

Chapter 3

Modelling Concepts and Languages

Timo Asikainen, Tomi M̈annisẗo, Tero Kojo, and Timo Soininen

In this chapter, we will discuss the modelling concepts and languages developed during the
Sarcous project. First, we will briefly discuss how research onconfigurable productshas
been used as the basis of our research efforts. Thereafter, we will go into the specific mod-
elling concepts and languages developed for configurable software product families. These
include Koalish, a language for modelling configurable software product families from an
architectural point of view;Forfamel, a language for modelling them based on the common
and variable features provided by the individual product in the product family; andKumbang,
a language that combines the modelling concepts of Koalish and Forfamel into a single lan-
guage.

3.1 Product configuration and configurable products

The work done on modelling concepts and languages is based on earlier work done oncon-
figurable(non-software)products: they have been researched extensively in theproduct con-
figurationdomain, a subfield of artificial intelligence. Our guideline has been to reuse work
done in the product configuration domain at three levels of abstraction. These levels include:

1. Tool level

Tool level is the lowest level of abstractions. Reuse at this level pertains to applying
supporting tools developed for configurable (non-software) products to software prod-
uct families. Reuse of existing tools is discussed in detail in Section 4.1.

2. Language level

Language level is the second lowest level of abstraction on which reuse may occur.
Reuse at the language level pertains to applying existing modelling languages to con-
figurable software product families. The demonstrations discussed in Section 4.1 are
also implicit examples of reuse at the language level.

13

14 CHAPTER 3. MODELLING CONCEPTS AND LANGUAGES

Figure 3.1: An architectural model of a simple client-server system represented in Koala

3. Conceptual level
Reuse at the conceptual level pertains to modelling configurable software product fami-
lies using existing modelling concepts directly, or translating software-specific concepts
to these concepts. Reuse at the conceptual level may be used to provide models of soft-
ware product families formal semantics, given that the reused concepts have been de-
fined one. The modelling methods discussed later in this chapter reuse many concepts
originally defined in the product configuration domain for configurable (non-software)
products.

The similarities between configurable product and configurable software product families
have been studied in (M̈annisẗo et al., 2000; M̈annisẗo et al., 2001a; M̈annisẗo et al., 2001b).

3.2 Koalish—Software architecture

The level of design concerning the overall structure of software systems is commonly referred
to as thesoftware architecturelevel of design. This level includes structural issues such as the
organisation of a system as a composition of components, the protocols for communication,
the assignment of functionality to design elements, the composition of design elements etc.
(Garlan, 2001).

Informally, software architecture is used to refer to the structure of a software system on
a high level of abstraction. Explicitly, software architecture does not concern the fine-grained
structure or the properties of a software system, or the process used to develop it (Medvidovic
& Taylor, 2000).

We considered software architecture to be an important aspect of configurable software
product families. Therefore, it was decided that a method for describing the architectures
of configurable software product lines should be developed. Towards this goal, a number of
architecture description languages(ADLs) were studied.

Loosely defined, ADLs are formal notations with well-defined semantics for describing
software architectures. A large number of ADLs have been proposed. The greatest common
denominator for the class of ADLs is the concept of computational elements, usually termed
components, present in all of them; in other respects, they differ from each other radically.
(Medvidovic & Taylor, 2000)

Figure 3.1 contains an example of an architectural description of a simple client-server
system, the ADL used is Koala (van Ommeringet al., 2000). This is an example of graphical

3.3. FORFAMEL—FEATURE MODELLING 15

architectural description. However, architectural descriptions may also be represented in text:
for instance, Koala includes a textual syntax as well.

The first step in the study of ADLs was a paper (Asikainenet al., 2002). In this paper,
three ADLs, namely Acme (Garlanet al., 1997), Wright (Allen & Garlan, 1997), and Koala
(van Ommeringet al., 2000) were analysed and compared with the configuration ontology of
(Soininenet al., 1998). The same line of work was carried further in (Asikainen, 2002), in
which a more detailed analysis, along with a mapping between the concepts of the ADLs and
the configuration modelling concepts was presented.

The overall outcome from this work was that the configuration modelling concepts are
remarkably similar to those found in ADLs, but nevertheless, the concepts would have to be
modified in order to fully support the modelling primitives of ADLs, especially the interface
mechanism of Koala.

Consequently, concepts for modelling the architecture of configurable software product
families were developed (Asikainenet al., 2003b) . The conceptualisation is termedKoalish.
The same name is used for the language built on the concepts (Asikainenet al., 2003a). The
uses the same basic concepts as Koala, namelycomponent types, their compositional struc-
ture in terms of other components contained in them,interface typesand theinterfacesof
components, andbindings, or connections, as they are also called, between interfaces. In ad-
dition, Koalish includes constructs for expressingoptionalityandalternatives, andconstraints
concerning different aspects of the above-mentioned concepts.

3.3 Forfamel—Feature modelling

Feature modellinghas become has become a popular method for modelling software product
families. featurelacks an agreed-upon definition. Popular definitions include:

1. An end-user visible characteristic of a system

2. A distinguishable characteristic of a concept (e.g., system, component, and so on) that
is relevant to some stakeholder of the concept

3. ”We define feature as a logical unit of behaviour that is specified by a set of functional
and quality requirements. A feature generally captures a considerable set of require-
ments and is, as such, used to group requirements, which simplifies requirements han-
dling. In addition, a feature represents a logical unit of behaviour from the perspective
of one or several stakeholders of the product. For instance, the user of a product gener-
ally considers the product to consist of a number of functional units that are identified
as different. Each such functional unit, we refer to as a feature.” (Bosch, 2000)

We agree with the first definition in that end-user visible characteristics of systems can be
termed features. Further, in the spirit of the second definition, be believe that it may be fruitful
to consider also things that are visible to end-users as features. Further, we agree with the
third definition in that it may be useful to consider features as abstractions from requirements.
However, unlike suggested by the second definition, we believe that it is necessary to make a

16 CHAPTER 3. MODELLING CONCEPTS AND LANGUAGES

Figure 3.2: Forfamel concepts. (a) Forfamel model and its configurations (b) The properties
of feature types (c) Configurations.

3.4. KUMBANG—FEATURES AND ARCHITECTURE COMBINED 17

distinction between architectural concepts and features. Consequently, we believe that entities
such as components, interfaces, subsystems etc. shouldnot be considered features.

Similarly as in the case of ADLs, we conducted a comparative study between a number
of feature modelling methods, and the configuration modelling concepts used in the product
configuration domain. This study has been reported in (Asikainenet al., 2004b). The most
important finding from the study was that the configuration modelling concepts can be used
to capture feature modelling concepts. However, a fundamental difference between feature
modelling methods configuration modelling concepts is that unlike the latter, the former in-
cludes distinct notions for types and instances. This implies that features models represented
using the configuration modelling concepts differ somewhat from the original ones.

We have developed a feature modelling method calledForfamel. The method has been
applied to a software product family of one of our industrial partners. The special require-
ments posed by configurable software product families have been taken into account when
developing the method: a number of modelling concepts not present in existing methods have
been integrated with the feature modelling concepts. In more detail, the feature models are
decorated withbinding information. In addition, the method makes a distinction between fea-
ture types and instances. However, this distinction is made primarily at the conceptual level;
in terms of syntax, the feature models created based on our method may be highly similar to
those creating using existing methods.

The concepts of Forfamel are illustrated in Figure 3.2 as a UML class diagram. Figure 3.3
contains a sample Forfamel model that represents the features of a software product line of
advanced text editors.

Further details about Forfamel can be found in (Asikainenet al., 2004a). However, some
aspects of Forfamel are still work-in-progress.

3.4 Kumbang—Features and architecture combined

Given the two above-described methods for modelling configurable software product family,
it is natural to ask: If both kinds of models are created for a single configurable software
product family, how are they related? Obviously, it needs to be somehow ascertained that the
two models are mutually consistent.

We have chosen the approach that the architectural model captured by the Koalish model,
and the feature model represented using Forfamel isorthogonalin the sense that they describe
the product family from two, different points of view. We will refer to these views as the
architecturalandfeature views.

Above, when discussing features, we imposed a modelling guideline that entities related
to the architecture of the product family should not be modelled as features. At this point,
the utility of this guideline should be clear: by making the feature model free of architectural
issues we will make the two views as independent as possible from each other.

Of course, it is not reasonable for the two views to be completely independent from each
other. The mechanism for relating the two views areimplementation constraints. The locus
of these constraints is features, or more exactly, feature types. Their semantics is that in
order for an individual product to provide a feature of the type, the architecture of the product
must satisfy the conditions stated in the constraint. Intuitively, the dependencies between the

18 CHAPTER 3. MODELLING CONCEPTS AND LANGUAGES

Figure 3.3: A sample Forfamel model representing the features of a software product line of
advanced text editors.

architectural and feature views are directed: features include descriptions what they require
from the architecture, but architectural entities may not pose similar requirements for the
features.

The combination of the concepts of Koalish and Forfamel is calledKumbang. The con-
ceptual basis of Kumbang has not yet been published. However, a configuration tool operating
on Kumbang is described in (Myllärniemiet al., 2004).

3.5 Modelling evolution

Building a configurable software product family is very likely to require significant initial
investment. Consequently, in order to get paid back for the investment, the family must be
long-lived. On the other hand, the requirements for the products are likely to change, as well
as the platform on which it is running etc. Due to this combination of a long life span and
changing requirements, many configurable software product families are bound toevolve.

3.5. MODELLING EVOLUTION 19

Figure 3.4: Modelling concepts for evolution

During the Sarcous project, concepts for modelling the evolution of configurable software
product families were developed. In this section, an overview of these results is presented: a
conceptual foundation for modelling evolution of configurable SPFs with the main concern
being the deployment phase and generation of valid configurations.

The conceptualisation of evolution uses concepts, such ascomponents, their properties,
compositional structureand constraints; these concepts are shared with Koalish, see Sec-
tion 3.2. However the conceptualisation adds a set of concepts that are useful in describing
the evolution of a software product family.

These concepts are described briefly below and illustrated in Figure 3.4.
A component typehas a set ofrevisions, calledcomponent type revisions, which are re-

lated to the component type byis-revision-ofrelation, and ordered byis-successor-ofrelation.
Revisions capture the evolution of a component type in time.

Statusdescribes the life-cycle status of a component type revision. It is a measure of the
maturity of a component type revision, and may have values such asunstable, stable, andend
of life, and can be used to convey additional information in configuration task. Status is a
useful concept, e.g., for expressing user requirements, but has no relevance in determining the
correctness or other properties of a configuration.

Effectivity periodis a time interval stating when an component type revision may legally
appear in a configuration. Effectivity period is thus an additional concept needed in determin-
ing the correctness of a configuration.

In the metamodel, component type revision is defined as a subtype of component type to
indicate that component type revisions have the same properties as component types plus the
additional concepts for representing evolution.

Each component individual is directly an instance of a component type revision, repre-
sented by theis-instance-ofrelation. This basically means that component individuals are
component type instances with additional revision information.

The model is presented in more detail in (Kojoet al., 2003).
The task of configuring Debian Familiar Linux packages over many releases and package

versions was used as an example of the evolution of a software product family. This example

20 CHAPTER 3. MODELLING CONCEPTS AND LANGUAGES

is discussed in Section 4.1.3.

Chapter 4

Tools and Demonstrations

Empirical studies are required to evaluate the feasibility of ideas and validate developed con-
cepts, such as those discussed in the previous chapter. For this reason, we produced several
demonstrations and prototype tools during the project.

The tools developed serve two purposes. First, they provide evidence that the concepts
developed are sensible in the sense that they can be supported by tools. Second, tool support is
essential in showing that the ideas and concepts can be applied in practice: industrial software
product lines are often too complex to be managed simply by using a textual language and
text editors; instead, supporting tools are needed.

As discussed in the introduction to the previous chapter, our guideline has been to reuse
existing tools, languages, and concepts to the maximum possible extent. In more detail, we
have applied an existing product configurator calledWeCoTin, and the modelling language
(Product Configuration Modelling Language, PCMLunderlying it (Tiihonenet al., 2003).
Section 4.1 reports demonstrations implemented using WeCoTin.

However, it turned out that WeCoTin or other existing tools developed for non-software
products do not cover all relevant aspects of software product lines. Consequently, we set out
to implement new tools. These are described in Section 4.2.

4.1 Demonstrations based on WeCoTin

In this section, we study a number of demonstrations that are based on WeCoTin. These
demonstrations prove that tools developed for non-software products are indeed applicable to
configurable software product lines. Further, the fact that none of the demonstrations to be
discussed required significant amounts of coding or other development effort suggests that the
tools provide an efficient way to provide tool support for software product lines.

In the first subsection, we will discuss how WeCoTin can be used to create and manage
feature models, and to configure these models to find individual products. Thereafter, in the
second subsection we will show how WeCoTin can be used to configure Linux Familiar. The
third subsection extends this discussion to cover configuring multiple releases simultaneously.

21

22 CHAPTER 4. TOOLS AND DEMONSTRATIONS

Figure 4.1: WeCoTin Modelling applied to modelling features

4.1.1 Modelling and configuring features

Timo Asikainen, Tomi M̈annisẗo, and Timo Soininen

The idea underlying this demonstration is the assumption that feature models, if provided with
rigorous semantics, can be used as the basis for configuring. Further, the hypothesis was that
the tool support required for efficient configuration could be provided by WeCoTin.

It turned out that the modelling capabilities of WeCoTin were more than sufficient to
match those found in most feature modelling methods: in addition to the standard modelling
primitives found in feature modelling methods, WeCoTin includes a number of constructs
especially suited for modelling configurable software product families. These constructs in-
clude the possibility to define a cardinalities for parts, and a constraint language for imposing
additional rules that must be obeyed by valid individuals. In consequence, it was found that
WeCoTin can be used as a feature modelling tool that enables the configuration of the models,
that is, finding descriptions of individual products in the product family.

However, WeCoTin seems not to be an optimal tool for feature modelling: the distinc-
tion between types and instances made in WeCoTin seems unnecessary in many cases in the

4.1. DEMONSTRATIONS BASED ON WECOTIN 23

Figure 4.2: Configuration features using the WeCoTin configuration interface

context of feature modelling. Instead, the distinction appears to cause overhead in both the
modelling and configuration tasks. A better solution might be to provide the user the option
of defining types and thus reusing feature information.

Figure 4.1 illustrates the user interface of the WeCoTin modelling tool applied to feature
modelling; using this interface, it is possible to create feature models. Further, the configura-
tion interface is illustrated in Figure 4.2.

This demonstration has been reported in more detail in (Asikainenet al., 2004c).

4.1.2 Configuring Linux Familiar

Katariina Vuorio, Tomi M̈annisẗo, and Timo Soininen

Familiar is a distribution of the Linux operating system developed for a line of handheld com-
puters, namely Compaq iPAQ. Software running in handheld devices such as iPAQ is inter-
esting from the configuration point of view for two reasons: first, resources, such as memory,
available in such devices are very limited, which places stringent requirements on the software
running on them. Second, Linux in general represents a challenge from the configuration point
of view: the software is composed of a hundreds ofpackages, of which there may be multiple
versionsand between which there may be different kinds ofdependencies.

In the demonstration, the package descriptions of Linux Familiar were automatically trans-
lated into Product Configuration Modelling Language (PCML), the modelling language un-

24 CHAPTER 4. TOOLS AND DEMONSTRATIONS

Figure 4.3: Configuring software over time using WeCoTin

derlying WeCoTin. Using the translated model, it is possible find valid configurations using
the WeCoTin configurator.

The demonstration has been reported in more detail in (Ylinenet al., 2002).

4.1.3 Configuring Linux Familiar over multiple releases

Tero Kojo, Tomi M̈annisẗo, and Timo Soininen

This is a very large scale configuration demonstration that takes the first steps towards config-
uring software over time. The approach followed relies on the modelling concepts presented in
Section 3.5. However, WeCoTin provides no intrinsic support for versioning. Consequentely,
the version knowledge had to be translated to other concepts available in PCML, the modelling
language underlying WeCoTin. This was seen as a limitation, as versioning is an essential part
of software development.

WeCoTin enables structuring the Familiar packages into categories and provides an intu-
itive web interface. The interface provides a user with intelligent support, such as greying out
packages that may not be selected. These features are illustrated in Figure 4.3

The work was a complete success: it proved that even considerable large software product
families can be efficiently configured over time. It also showed that product configuration is
intimately related to the areas of software deployment and design (van der Hoeket al., 1997),
through the discipline ofsoftware configuration management(Conradi & Westfechtel, 1996).

The details of this work are further elaborated in (Kojoet al., 2003).

4.2. TOOLS FOR CONFIGURABLE SOFTWARE PRODUCT FAMILIES 25

4.2 Tools for Configurable Software Product Families

In the previous section, it was shown that tools developed for non-software products provide a
feasible way to model and configure configurable software products. However, this approach
is not feasible in all situations, due to several conceptual differences between software and
traditional products (M̈annisẗo et al., 2000; M̈annisẗo et al., 2001a; M̈annisẗo et al., 2001b).
For example, traditional product configuration techniques lack means for describing software
architectures: as an example, WeCoTin includes no notion of connection points in components
comparable to interfaces in Koala and Koalish, see Section 3.2 or (Asikainenet al., 2003a).
As interfaces and bindings between them are a fundamental ingredient of Koalish, WeCoTin
is arguably inapplicable to Koalish. Further, WeCoTin and, to the best of our knowledge,
every other product configurator, lacks intrinsic support for versions of, e.g., components.

Consequently, we set out to develop tool support dedicated to configurable software prod-
uct families. This section presents three prototypes. First, we will discuss a configuration tool
developed for configuring Linux Familiar for a line of handheld devices. Thereafter, we will
discuss a modelling tool that enables the creation of models of configurable software product
families. Finally, we will discuss a configurator tool,Kumbang Configuratorthat can be used
to search for configurators of software product family modelled using Kumbang.

4.2.1 Confuse – Configuration of Compaq iPAQ

Katariina Vuorio and Tero Kojo

The Confuse Configurator was implemented to demonstrate the feasibility of configuring the
operating system of a handheld device. In more detail, Confuse showed that Linux Familiar,
the operating system of Compaq iPAQ handheld devices, can be automatically configured,
including reconfiguration, and installed.

The configuration environment consists of a configurator running on a desktop PC, and of
the iPAQ, the software of which is to be configured. The PC and the iPAQ are connected via a
TCP/IP network. The configurator provides an easy-to-used, web based user interface. Both
the PC and the iPAQ run Linux operating systems.

The configuration process follows the following pattern. First, the current configuration
of the iPAQ can be loaded in the configuration. Thereafter, the user can repeatedly modify
the configuration by adding or removing packages. The configurator can be at any point used
to check the current configuration for consistency, i.e., is it valid in the sense that it works
properly. Nothing is installed to the iPAQ until the user explicitly decides to do; when she
decides to install the configuration, only one click is needed. Next, the configurator compares
the current configuration to the new one, and installs and removes the necessary packages
to make the iPAQ’s configuration match the new configuration. A configurator screenshot is
presented in Figure 4.4.

The reason for running the configurator on the PC instead of the iPAQ is that the hand-
held device provides insufficient resources for performing the reasoning tasks necessary to
check that the configuration is consistent; such checks are needed in order to avoid installing
an invalid configuration. Also, a desktop PC enables creating a more easily accessible user
interface.

26 CHAPTER 4. TOOLS AND DEMONSTRATIONS

Figure 4.4: The user interface of Confuse Configurator

4.2.2 Comet GCMT modelling tool

Tero Kojo and Katariina Vuorio

Another important form of tool support for configurable software product families is support
the modelling task. The purpose of a modelling tool is to provide an easy way of creating
configuration models. A configuration model is a description of the whole product family,
and it describes all alternative product individuals. Such a model can be used for designing
and documenting the family, and as the basis for configuring individual products with a con-
figurator tool, see next subsection. Without a modelling tool, all configuration models would
have to be written manually.

The Comet GCMT (Graphical Configuration Modeling Tool) is a tool that provides a
graphical user interface which can be used to create new configuration models, and to edit
existing configuration ones. Comet GCMT was the first prototype of a modelling tool for
configurable software product families.

The Comet GCMT consists of two main parts; a GCMT GUI (Graphical User Interface)
and the GCMT engine. The GCMT is designed so that the GCMT GUI can be easily replaced,
to enable creating different representations of configuration models. To put it in another way,
a graphical user interface plugged in the GCMT engine, only creates a visual representation
of the data stored and manipulated by the engine.

Figure 4.5 illustrates the first GCMT GUI developed.
However, as the ideas related to modelling concepts became more clear, a need to build

another user interface to the configuration modelling tool emerged. Thus a new GUI was
created. This new GUI resembles many UML (Unified Modeling Language) editors, since the

4.2. TOOLS FOR CONFIGURABLE SOFTWARE PRODUCT FAMILIES 27

Figure 4.5: The initial user interface for Comet GCMT

user can draw UML-like diagrams of product families and assign dependencies likerequires
andconflictsin the diagram. The new GUI is illustrated in Figure 4.6.

Comet CGMT showed that it is possible to implemente tool support for creating models
of configurable software product lines.

Figure 4.6: An improved user interface of Comet GCMT

28 CHAPTER 4. TOOLS AND DEMONSTRATIONS

4.2.3 Kumbang Configurator

Varvana Myll̈arniemi, Timo Asikainen, Tomi M̈annisẗo, and Timo Soininen

Kumbang Configurator is a tool intended for deriving product individuals from configurable
software product families. The tool is based on Kumbang (Section 3.4), and concequently
includes both architecture- and feature-based modelling facilities. It is designed specially for
software domain, but it employs techniques established in the product configuration domain.
Figure 4.7 illustrates the user interface of the tool.

The purpose of Kumbang configurator is to support the user in the configuration task, i.e.,
finding a valid product individual matching her specific needs. Towards this goal, Kumbang
Configurator provides a graphical user interface. The need for a configurator tool is motivated
by the fact that the configuration task, especially when configurations are large, is a complex
and error-prone activity. There typically exists complex dependencies between elements that
would be extremely hard to resolve manually.

The tool takes as an input a configuration model, and is able to illustrate it in its graphical
user interface. Next, the user has the possibility to modify the configuration and to select
alternatives that best suite her requirements. For example, the user might reason “I want
componentclientconnected to componentserverthrough interfacecaller” or “I want attribute
bandwidthin featureconnectionto have valuehigh”, and consequently enter these choices

Figure 4.7: A screenshot from the Kumbang configurator tool

4.2. TOOLS FOR CONFIGURABLE SOFTWARE PRODUCT FAMILIES 29

using the graphical user interface. After each choice entered, the tool checks thevalidity
of the configuration. The validity of the configuration includescompleteness(all necessary
elements are in the configuration) andconsistency(no rules of the model have been violated).
In addition, the tool can also deduct some of the consequences of the decisions made so far,
and make changes based on these deductions. The checking and deductions are implemented
by providing the models formal semantics by mapping them to WCRL (Weight Constraint
Rule Language) (Simonset al., 2002), and utilising an existing inference tool operating on
WCRL, smodels(Simonset al., 2002).

After the configuration is completed, the tool produces a description of the corresponding
product individual. This description can then be used for assembling the resulting product
from the existing assets of the family.

The tool follows a distributed client-server architecture: a client includes a graphical user
interface. A server, in turn may be used to store multiple configuration models, and serve
multiple clients. This enables both distributed configuration, and centralized management of
the configuration models; the configuration models need not be distributed to the clients, and
can hence be easily managed.

More details of the Kumbang Configurator can be found in (Myllärniemiet al., 2004).

30 CHAPTER 4. TOOLS AND DEMONSTRATIONS

Chapter 5

Dissemination and International
Collaboration

In this chapter, we discuss how the results of the project have been disseminated.

5.1 Conferences

During the project, the members of the project group have both participated in organising
conferences, and actively participated in other conferences.

5.1.1 Organising conferences

During the project, members of the project group have been engaged in organising the follow-
ing conferences and events.

Software variability management

Tomi Männisẗo was the chair of a workshop titledWorkshop on Software Variability Manage-
ment for Product Derivation—Towards Tool Support, together with Jan Bosch (M̈annisẗo &
Bosch, 2004). He is also a member of the program comittee of the2nd Groningen Workshop
on Software Variability Management. As their names imply, both workshops are devoted to
issues related to software variability, the former especially from the tool support point of view.

Configuration workshop

A workshop devoted issues related to configurable products, both software and non-software,
has been held annually since 2001 in conjunction with the ECAI (European Conference on
Artificial Intelligence, even years) and IJCAI (International Joint Conference on Artificial
Intelligence, odd years) conferences. Timo Soininen was the chair of 2001 workshop. In ad-
dition, he has been a member of the organising and program committees of all four workshops.
Further, Tomi M̈annisẗo was a member of the program committee of the 2003 workshop.

31

32 CHAPTER 5. DISSEMINATION AND INTERNATIONAL COLLABORATION

5.1.2 Participating in conferences

• 23rd International Conference on Software Engineering (ICSE), May 12–19, 2001,
Toronto, Ontario, Canada
Presentation: (M̈annisẗo et al., 2001b) inTenth International Workshop on Software
Configuration Management (SCM-10)held in conjunction with the conference

• 17th International Joint Conference on Artificial Intelligence (IJCAI), August 4–10,
2001, Seattle, Washington, USA
Presentation: (M̈annisẗo et al., 2001a) in theConfiguration workshopof the conference

• 24th International Conference on Software Engineering (ICSE), May 19–25, 2002, Or-
lando, Florida, USA

• 15th European Conference on Artificial Intelligence (ECAI), July 22–26, 2002, Lyon,
France
Presentations: (Asikainenet al., 2002) and (Ylinenet al., 2002) in theConfiguration
workshopof the conference

• 21st International Conference on Conceptual Modelling (ER), October 7–11, 2002,
Tampere, Finland

• Software Variability Management Workshop, February 13–14, 2003, Groningen, The
Netherlands
Presentation: (Asikainenet al., 2003c)

• 25th International Conference on Software Engineering (ICSE), May 3–10, 2003, Port-
land, Oregon, USA
Presentation: (Kojoet al., 2003) inEleventh International Workshop on Software Con-
figuration Management (SCM-11)held in conjunction with the conference

• 18th International Joint Conference on Artificial Intelligence (IJCAI), August 9–15,
2003, Acapulco, Mexico
Presentation: (Asikainenet al., 2003b) inConfiguration workshopof the conference

• Fifth International Workshop on Product Family Engineering (PFE-5), November 4–6,
2003, Siena, Italy
Presentations: (Asikainenet al., 2003a) and (Raatikainenet al., 2004a)

• International Conference on Economic, Technical and Organisational Aspects of Prod-
uct Configuration Systems (PETO), June 28–29, 2004, Copenhagen, Denmark

• 16th European Conference on Artificial Intelligence (ECAI), August 22–27, 2004, Va-
lencia, Spain
Presentation: (Asikainenet al., 2004b) inConfiguration workshopof the conference

• Software Product Line Conference (SPLC), August 30–September 2, 2004, Boston,
Massachusetts, USA
Presentations: (Asikainenet al., 2004c) and (Myll̈arniemiet al., 2004) inWorkshop

5.2. TALKS 33

on Software Variability Management for Product Derivation—Towards Tool Support, a
workshop held in conjunction with the conference

5.2 Talks

The members of the project group have given a number of talks related to the topic of the
project.

• Talk on Configurable software product families, Nokia Research Center (NRC), 2001,
Boston, Massachusetts, USA
Given by Tomi M̈annisẗo.

• Full-day seminar on software architecture and software product families for continuing
education course, 2002, Espoo, Finland
Lectured by Tomi M̈annisẗo

• Full-day seminar on software product families for industrial audience, 2002, Espoo,
Finland
Lectured by Tomi M̈annisẗo

• Half-day seminar on software product families for Nordea (a bank), 2002, Finland
Lectured by Tomi M̈annisẗo

• Lectures on special issues in software product families for industrial audience
Lectured by Tomi M̈annisẗo

• Seminar on latest trends in product configuration, May 22, 2003, Espoo, Finland
In this seminar held in conjunction with WeCoTin project, Tomi Männisẗo gave a lec-
ture on variability management in software product families, Mikko Raatikainen on the
product family survey, and Tero Kojo a presentation and demonstration on configuring
Linux Familiar over multiple releases.

• SoftaProfessional Summit, 2003, Espoo, Finland
Tomi Männisẗo gave a lecture on software product families and architectures.

• Seminar on software product families and reuse for industrial audience, 2004, Espoo,
Finland
Lectured by Tomi M̈annisẗo.

5.3 Teaching

During the project, members in the project group have been engaged in a number of teaching
activities at the Helsinki University of Technology.

34 CHAPTER 5. DISSEMINATION AND INTERNATIONAL COLLABORATION

• T-76.150 Software architecture (3 cr)
Full-term undergraduate course concentrating on various aspects related to software
architecture and software product families. Lectured by Tomi Männisẗo during fall
terms 2001-2004. Timo Asikainen and Mikko Raatikainen have given guest lectures
at the course. Katariina Vuorio and Varvana Myllärniemi have been assistants for the
course.

• T-76.650 Special seminar on designing software architectures /
T-76.270 Special seminar on mastering quality attributes in software architectures
Full-term undergraduate seminar that purports to provide the participants with a clear
and concrete understanding of the design process for software architectures. The semi-
nar was held during fall 2002 and spring 2004. Tomi Männisẗo has been the responsible
teacher of the seminar at both times, and Varvana Myllärniemi was the assistant during
spring 2004.

• T-76.611 Software design and specification methods (2 cr)
Full-term undergraduate course that covers methods related to specifying the require-
ments for software systems, and designing them; mainly concentrated on the Unified
Modelling Language (UML). Timo Asikainen has been the assistant for the course dur-
ing spring terms 2002-2004. In addition, during the 2004 course he gave a guest lecture
on version 2.0 of the UML.

• T-76.614 Software configuration management (2cr)
Full-term undergraduate course focusing on software configuration management (SCM).
Tero Kojo lectured the course during spring terms 2003 and 2004, and was assistant for
the course during spring 2002. The responsible teacher of the course is Tomi Männisẗo.

• T-86.150 Special Assignment in Information Technology (2-6 cr)
During the Sarcous project, Timo Soininen has supervised a number of individual as-
signments written related to software product families.

• T-86.165 Seminar in Product Data Technology (2-6 cr)
Full-term undergraduate seminar concentrating on various aspects of product data man-
agement. The topic of the seminar varies. Spring 2003 the topic of the seminar was
product families from information technology point of view, and spring 2004software
product families and tool support for product families. The responsible teacher of the
seminar are Timo Soininen and Mikko Raatikainen.

5.4 Reviewing

The members of the project group have acted as reviewers in a number of international jour-
nals and conferences related to the topic of project.

Tomi Männisẗo has reviewed articles for the following journals:Journal of Computing
and Information Science in Engineering, Science of Computer Programming, andSoftware
Practice and Experience; and for the4th Product Family Engineering Workshop (PFE-4).

5.5. OTHER 35

Timo Soininen has acted as a referee for the following journals:Science of Computer
ProgrammingandConcurrent Engineering: Research and Applications Journal; and for the
workshop onSoftware Variability Managementheld in Groningen, The Netherlands, 2003.

Timo Asikainen has acted as a reviewer for the journalSoftware Practice and Experi-
ence, and as a peer reviewer for the workshop onSoftware Variability Managementheld in
Groningen, The Netherlands, 2003.

Mikko Raatikainen was a peer reviewer for the special issue onSoftware Variability:
Process and Managementof International Journal of Software Process: Improvement and
Practice (SPIP).

5.5 Other

Tomi Männisẗo is a member of the IFIP (International Federation for Information Processing)
WG-2.10 Software Architecture working group, and has actively participated in its meetings.

36 CHAPTER 5. DISSEMINATION AND INTERNATIONAL COLLABORATION

Chapter 6

Publications

Asikainen Timo. 2002.Representing Software Product Line Architectures Using a Configu-
ration Ontology. M.Sc.Tech. thesis, Helsinki University of Technology, Department of
Industrial Engineering and Management.

Asikainen Timo, Soininen Timo, & M̈annisẗo Tomi. 2002. Representing Software Product
Family Architecture Using a Configuration Ontology.In: Configuration workshop of the
15th European Conference on Artificial Intelligence (ECAI 2002).

Asikainen Timo, Soininen Timo, & M̈annisẗo Tomi. 2003a. A Koala-Based Approach for
Modelling and Deploying Configurable Software Product Families.In: Proceedings of
the 5th International Workshop on Product Family Engineering (PFE-5). Lecture Notes
in Computer Science 3014.

Asikainen Timo, Soininen Timo, & M̈annisẗo Tomi. 2003b. A Koala-Based Ontology fro Con-
figurable Software Product Families.In: Configuration Workshop of 18th International
Conference on Artificial Intelligence (IJCAI-03).

Asikainen Timo, Soininen Timo, & M̈annisẗo Tomi. 2003c. Towards Managing Variability
Using Software Product Family Architecture Models and Product Configurators.In:
Proceedings of Software Variability Management Workshop. IWI preprint 2003-7-01.

Asikainen Timo, M̈annisẗo Tomi, & Soininen Timo. 2004a. Forfamel: Feature Modelling
for Configurable Software Product Families.In: 2nd Groningen Workshop on Software
Variability Management (submitted).

Asikainen Timo, M̈annisẗo Tomi, & Soininen Timo. 2004b. Representing Feature Models of
Software Product Families Using a Configuration Ontology.In: Configuration workshop
of the 16th European Conference on Artificial Intelligence (ECAI 2004).

Asikainen Timo, M̈annisẗo Tomi, & Soininen Timo. 2004c. Using a Configurator for Mod-
elling and Configuring Software Product Lines Based on Feature Models.In: Proceed-
ings of Software Variability Management for Product Derivation – Towards Tool Support,
a workshop in SPLC 2004.

37

38 CHAPTER 6. PUBLICATIONS

Kojo Tero, Soininen Timo, & M̈annisẗo Tomi. 2003. Towards Intelligent Support for Manag-
ing Evolution of Configurable Software Product Families.Pages 86–101 of: Proceedings
of the 11th International Workshop on Software Configuration Management (SCM-11).
Lecture Notes in Computer Science 2469.

Männisẗo Tomi, Soininen Timo, & Sulonen Reijo. 2000. Configurable Software Product Fam-
ilies. In: Configuration workshop of the 14th European Conference on Artificial Intelli-
gence (ECAI 2000).

Männisẗo Tomi, Soininen Timo, & Sulonen Reijo. 2001a. Modelling Configurable Products
and Software Product Families.In: Configuration Workshop of 17th International Joint
Conference on Artificial Intelligence (IJCAI-01).

Männisẗo Tomi, Soininen Timo, & Sulonen Reijo. 2001b. Product Configuration View to
Software Product Families.In: Proceedings of the Tenth International Workshop on
Software Configuration Management (SCM-10) of ICSE 2001.

Männisẗo Tomi, & Bosch Jan (eds). 2004.Software Variability Management for Product
Derivation—Towards Tool Support. SoberIT Technical Reports.

Myll ärniemi Varvana, Asikainen Timo, M̈annisẗo Tomi, & Soininen Timo. 2004. Tool for
Configuring Product Individuals from Configurable Software Product Families.In: Pro-
ceedings of Software Variability Management for Product Derivation - Towards Tool
Support, a workshop in SPLC 2004.

Raatikainen Mikko. 2003.A Research Instrument for an Empirical Study of Software Product
Families. M.Sc.Tech. thesis, Helsinki University of Technology.

Raatikainen Mikko, Soininen Timo, M̈annisẗo Tomi, & Mattila Antti. 2004a. A Case Study of
Two Configurable Software Product Families.In: Proceedings of the 5th International
Workshop on Product Family Engineering (PFE-5). Lecture Notes in Computer Science
3014.

Raatikainen Mikko, M̈annisẗo Tomi, & Soininen Timo. 2004b. Towards a Scientific Approach
to Study Software Product Families in Industry.In: 2nd Groningen Workshop on Soft-
ware Variability Management (submitted).

Raatikainen Mikko, Soininen Timo, & M̈annisẗo Tomi. 2005. Characterizing Product Deriva-
tion in the Configurable Software Product Family.Software Process: Improvement and
Practices, to appear.

Simons Patrik, Niemelä Ilkka, & Soininen Timo. 2002. Extending and Implementing the
Stable Model Semantics.Artificial Intelligence, 138(1-2), 181–234.

Tiihonen Juha, Soininen Timo, Niemelä Ilkka, & Sulonen Reijo. 2003. A Practical Tool for
Mass-Customising Configurable Products.In: Proceedings of the International Confer-
ence on Engineering Design (ICED’03).

39

Ylinen Katariina, M̈annisẗo Tomi, & Soininen Timo. 2002. Configuring Software Product
with Traditional Methods - Case Linux Familiar.In: Configuration workshop of the 15th
European Conference on Artificial Intelligence (ECAI 2002).

40 CHAPTER 6. PUBLICATIONS

References

Allen Robert, & Garlan David. 1997. A Formal Basis for Architectural Connection.ACM
Transactions on Software Engineering and Methodology, 6(3), 213–249.

Asikainen Timo. 2002.Representing Software Product Line Architectures Using a Configu-
ration Ontology. M.Sc.Tech. thesis, Helsinki University of Technology, Department of
Industrial Engineering and Management.

Asikainen Timo, Soininen Timo, & M̈annisẗo Tomi. 2002. Representing Software Product
Family Architectures Using a Configuration Ontology.In: Configuration workshop of
the 15th European Conference on Artificial Intelligence (ECAI 2002).

Asikainen Timo, Soininen Timo, & M̈annisẗo Tomi. 2003a. A Koala-Based Approach for
Modelling and Deploying Configurable Software Product Families.In: Proceedings of
the 5th International Workshop on Product Family Engineering (PFE-5). Lecture Notes
in Computer Science 3014.

Asikainen Timo, Soininen Timo, & M̈annisẗo Tomi. 2003b. A Koala-Based Ontology fro Con-
figurable Software Product Families.In: Configuration Workshop of 18th International
Conference on Artificial Intelligence (IJCAI-03).

Asikainen Timo, Soininen Timo, & M̈annisẗo Tomi. 2003c. Towards Managing Variability
Using Software Product Family Architecture Models and Product Configurators.In:
Proceedings of Software Variability Management Workshop. IWI preprint 2003-7-01.

Asikainen Timo, M̈annisẗo Tomi, & Soininen Timo. 2004a. Forfamel: Feature Modelling
for Configurable Software Product Families.In: 2nd Groningen Workshop on Software
Variability Management (submitted).

Asikainen Timo, M̈annisẗo Tomi, & Soininen Timo. 2004b. Representing Feature Models of
Software Product Families Using a Configuration Ontology.In: Configuration workshop
of the 16th European Conference on Artificial Intelligence (ECAI 2004).

Asikainen Timo, M̈annisẗo Tomi, & Soininen Timo. 2004c. Using a Configurator for Mod-
elling and Configuring Software Product Lines Based on Feature Models.In: Proceed-
ings of Software Variability Management for Product Derivation—Towards Tool Support,
a workshop in SPLC 2004.

Bosch Jan. 2000.Design and Use of Software Architecture. Addison-Wesley.

Clements Paul, & Northrop Linda M. 2001.Software Product Lines: Practices and Patterns.
Addison-Wesley.

Cohen Sholom. 2002.Product Line State of the Practice Report. Tech. rept. CMU/SEI-2002-
TN-017. Software Engineering Institute (SEI), Carnegie Mellon University.

41

42 REFERENCES

Conradi R., & Westfechtel B. 1996. Configuring Versioned Software Products.Pages 88–109
of: Proceedings of the International Conference on Software Engineering (ICSE-18).

Eisenhardt Kathleen M. 1989. Building Theories from Case Study Research.Academy of
Management Review, 14(4), 532–550.

Frakes William B., & Fox Christopher J. 1995. Sixteen Questions About Software Reuse.
Communications of the ACM, 38(7), 75–87.

Garlan David. 2001. Software Architecture.In: Encyclopedia of Software Engineering. Wiley
& Sons.

Garlan David, Monroe Robert T., & Wile David. 1997. Acme: An Architecture Description
Interchange Language.In: Proceedings of CASCON’97.

Knauber Peter, Bermejo Jesus, Böckle G̈unter, do Prado Leite Julio Cesar Sampaio, van der
Linden Frank, Northrop Linda M., Stark Michael, & Weiss David. 2002. Quantifying
Product Line Benefits.Pages 155–163 of: Proceedings of the 4th International Workshop
on Product Family Engineering (PFE-4). Lecture Notes in Computer Science 2290.

Kojo Tero, Soininen Timo, & M̈annisẗo Tomi. 2003. Towards Intelligent Support for Manag-
ing Evolution of Configurable Software Product Families.Pages 86–101 of: Proceedings
of the 11th International Workshop on Software Configuration Management (SCM-11).
Lecture Notes in Computer Science 2469.

Männisẗo Tomi, & Bosch Jan (eds). 2004.Software Variability Management for Product
Derivation—Towards Tool Support. SoberIT Technical Reports.

Männisẗo Tomi, Soininen Timo, & Sulonen Reijo. 2000. Configurable Software Product Fam-
ilies. In: Configuration workshop of the 14th European Conference on Artificial Intelli-
gence (ECAI 2000).

Männisẗo Tomi, Soininen Timo, & Sulonen Reijo. 2001a. Modelling Configurable Products
and Software Product Families.In: Configuration Workshop of 17th International Joint
Conference on Artificial Intelligence (IJCAI-01).

Männisẗo Tomi, Soininen Timo, & Sulonen Reijo. 2001b. Product Configuration View to
Software Product Families.In: Proceedings of the Tenth International Workshop on
Software Configuration Management (SCM-10) of ICSE 2001.

Medvidovic Nenad, & Taylor Richard M. 2000. A Classification and Comparison Frame-
work for Software Architecture Description Languages.IEEE Transactions on Software
Engineering, 26(1), 70–93.

Morisio Maurizio, Ezran Michel, & Tully Colin. 2002. Success and Failure Factors in Soft-
ware Reuse.IEEE Transactions on Software Engineering, 28(4), 340–357.

Myll ärniemi Varvana, Asikainen Timo, M̈annisẗo Tomi, & Soininen Timo. 2004. Tool for
Configuring Product Individuals from Configurable Software Product Families.In: Pro-
ceedings of Software Variability Management for Product Derivation—Towards Tool
Support, a workshop in SPLC 2004.

Parnas David L. 1976. On the Design and Development of Program Families.IEEE Transac-
tions on Software Engineering, 17(4), 40–52.

REFERENCES 43

Raatikainen Mikko. 2003.A Research Instrument for an Empirical Study of Software Product
Families. M.Sc.Tech. thesis, Helsinki University of Technology.

Raatikainen Mikko, Soininen Timo, M̈annisẗo Tomi, & Mattila Antti. 2004a. A Case Study of
Two Configurable Software Product Families.In: Proceedings of the 5th International
Workshop on Product Family Engineering (PFE-5). Lecture Notes in Computer Science
3014.

Raatikainen Mikko, M̈annisẗo Tomi, & Soininen Timo. 2004b. CASFIS—Approach for study-
ing software product families in industry.In: 2nd Groningen Workshop on Software
Variability Management (submitted).

Raatikainen Mikko, Soininen Timo, & M̈annisẗo Tomi. 2005. Characterizing Product Deriva-
tion in the Configurable Software Product Family.Software Process: Improvement and
Practices, to appear.

Simons Patrik, Niemelä Ilkka, & Soininen Timo. 2002. Extending and Implementing the
Stable Model Semantics.Artificial Intelligence, 138(1-2), 181–234.

Soininen Timo, Tiihonen Juha, M̈annisẗo Tomi, & Sulonen Reijo. 1998. Towards a General
Ontology of Configuration.Artificial Intelligence for Engineering Design, Analysis and
Manufacturing (AIEDAM), 12(4), 357–372.

Strauss Anselm, & Corbin Juliet. 1998.Basics of Qualitative Research. 2 edn. Sage.

Tiihonen Juha, Soininen Timo, Niemelä Ilkka, & Sulonen Reijo. 2003. A Practical Tool for
Mass-Customising Configurable Products.In: Proceedings of the International Confer-
ence on Engineering Design (ICED’03).

Tracz Will. 1988. Software Reuse Myths.ACM SIGSOFT Software Engineering Notes, 13(1),
17–21.

van der Hoek A, Hall R. S., Heimbigner D., & Wolf A. L. 1997. Software Release Manage-
ment.Pages 159–175 of: Proceedings of the European Software Engineering Conference
ESEC/FSE 1997.

van der Linden Frank. 2002. Software Product Families in Europe: The Esaps and Cafe
projects.IEEE Software, 19(4), 41–49.

van Ommering Rob, van der Linden Frank, Kramer Jeff, & Magee Jeff. 2000. The Koala
Component Model for Consumer Electronics Software.IEEE Computer, 33(3), 78–85.

Yin Robert K. 1994.Case study Research. 2nd edn. Sage.

Ylinen Katariina, M̈annisẗo Tomi, & Soininen Timo. 2002. Configuring Software Product
with Traditional Methods - Case Linux Familiar.In: Configuration workshop of the 15th
European Conference on Artificial Intelligence (ECAI 2002).

