Foreword

This report summarises the result from a research project cadezbuscarried out by Soft-
ware Business and Engineering Institute (SoberIT) of Helsinki University of Technology. The
project was funded by Tekes (National Technology Agency of Finland) and participating in-
dustrial companies.

The Sarcous project was set up to study and formulate methods for managing software
product families and re-usable software assets on the basis of modelling them as configurable
software product families.

The project met its objectives well. A large amount of knowledge about the state-of-
the-art of software product families was collected. Further, modelling concepts and concrete
languages for modelling configurable software product families were developed. A large
number of demonstrations and tools were built, both based on existing tools and techniques
and from scratch. These results were reported in a large number of high-quality publications,
published at the most important forums of the field.

During the course of the project, several individuals have contributed to the results. They
include: Timo AsikainenTero Kojg Varvana Mylarniemi, Antti Mattila, Mikko Multimaki,

Tomi Mannisb, Mikko RaatikainenTimo SoininenandKatariina Vuorio (ree Ylinen)

We thank professaReijo “Shosta” Sulonenwho was the main originator of the project
ideas. Further, we thank all the people who have contributed to build the discipline of product
configuration and product data management, on which the project was built. We also thank
all our colleagues for their support and discussions. Finally, we thank the companies that par-
ticipated in the project for their co-operation.

Espoo, Finland, October 2004

Timo Asikainen and Tomi Mnnisb

Contents

Introduction to Sarcous 1
1.1 Background 1
1.2 Goals e 2
1.3 Tasks e 3
1.4 Results. 4
1.4.1 Survey on software product families 4
1.4.2 Modellingconceptsandlanguages 4
1.43 Toolsand demonstrations 5
1.4.4 Dissemination and international collaboration 6
1.5 Conclusions and futurework L Lo 6
1.6 Outline e 6
Software Product Family Survey 7
2.1 Framework for studying software product families 7
2.2 Stateofthepractice 8
2.3 Characterizing configurable software product families 10
Modelling Concepts and Languages 13
3.1 Product configuration and configurable products 13
3.2 Koalish—Software architecture 14
3.3 Forfamel—Featuremodelling. 15
3.4 Kumbang—~Features and architecture combined 17
3.5 Modellingevolution. 18
Tools and Demonstrations 21
4.1 Demonstrations basedonWeCoTin. 21
4.1.1 Modelling and configuring features 22
4.1.2 Configuring Linux Familiar 23
4.1.3 Configuring Linux Familiar over multiple releases 24
4.2 Tools for Configurable Software Product Families 25
4.2.1 Confuse — Configuration of CompaqiPAQ. 25
4.2.2 Comet GCMT modellingtool 26
4.2.3 Kumbang Configurator 28

5 Dissemination and International Collaboration
5.1 Conferences
5.1.1 Organising conferences

5.1.2 Participating in conferences

5.2 Talks

5.5 Other
6 Publications

References

5.3 Teaching
5.4 Reviewing

CONTENTS

Chapter 1

Introduction to Sarcous

Tomi Mannist, Timo Asikainen, and Timo Soininen

Sarcous is a research project that has been carried out by Software Business and Engineering
Institute (SoberIT) of Helsinki University of Technology. The project was funded by Tekes
(National Technology Agency of Finland) and participating industrial companies. The project
was started in 2000 and ended in 2004, during which time three projects periods were con-
ducted, each lasting slightly over one year.

This chapter introduces the Sarcous project, its background, goals, and summarises the
results of the project.

1.1 Background

Software product families (SPK9Qr lines as they are also known) are a means for increasing
the efficiency of software development and to control the complexity and variability of prod-
ucts. A SPF can be defined to consist afoenmon architecturea set of reusable assetsed
in systematically producing, i.e., deploying, products, andstef productshus produced.

The concept of product family has existed for decades (Parnas, 1976), but only recently
have research results shown that a software product family may provide industrially relevant
benefits, such as decreased development effort and time-to-market (Keaahbe2002; Co-
hen, 2002), and that the family itself and some of the issues it addresses are important and
predictive for success of reuse (Tracz, 1988; Frakes & Fox, 1995; Matsib 2002). The
constituting assets of a software product family are typically assumed to be specifically de-
veloped for the family, and then shared and reused in the development of individual products.
Figure 1.1 illustrates the main concepts of software product families.

One of the most important benefits of the software product family approach is the increase
in reuse. The reuse needs not to be limited to a single kind of asset, such as program code,
but may cover multiple asset kinds, such as architecture (Clements & Northrop, 2001) or
requirements. Further, in the context of software product families reuse tends to be systematic
(Bosch, 2000). Finally, reuse in the context of software product families is not seen as a
merely technical problem, but to concern other issues as well, such as business, process,

1

2 CHAPTER 1. INTRODUCTION TO SARCOUS

Product family architecture Shared assets
PF development % E‘%
i i []
.
Product individuals deployment

'
EIE?CF[%

Figure 1.1: Main software product line artefacts and processes

organizational, and architecture (van der Linden, 2002).
Sarcous project was set up to study a new approach to the development of software product
families under the following assumptions:

e The software development consists of systematically developing, modelling, managing
and applying re-usable components using supporting intelligent tools. The components
represent information on functional subsystems rather than single files or atomic classes.

e The software isconfigurable i.e., it has a common architecture into which (mostly)
pre-defined components can be combined according to the needs of the user, while
respecting the known design constraints.

Hence, the project studied a special class of software product families that wicall
figurable software product families (CSPH configurable software product family allows
derivation of product individuals without customer-specific design or programming effort; in
this sense, configurable software product families represent an extreme in the ease of pro-
ducing new variants. This can also been graphically in Figure 1.2, which illustrates different
approaches to managing the variability of software product families.

It should be noted that although a configurable software product family provides signifi-
cant benefits, it is not the optimal solution for all companies: building a CSPF requires that
many issues related to the product family must be established in the organisation.

1.2 Goals

The objectives of Sarcous project wasstady and formulate methods for managing software
families and re-usable software assets on the basis of modelling them as configurable software
product families The re-usable assets may be requirements, features, designs or pieces of
implementation.

1.3. TASKS 3

Repeating Product family

projects Common approach Configurable SW
Single system/ infrastructure/ product family
platform
product
I
Single system PF architecture Configuration
architecture Platform rules / model
Shared assets
Copy-paste (components etc.) .
scavenging Routlnet_
Systematic reuse ~ 9&neration
of variants
Glue code
Configurator

Figure 1.2: Approaches to variability management

The overall goal of the project was stated &s:develop methods for managing software
product families on the basis of modelling them as configurable software product families
This goal was refined into two research questions:

1. How to model and manage SPFs, especially their variability and evolution?

2. What kind of intelligent support for reuse and configuration of SPFs can be offered?

1.3 Tasks

The principal research philosophy applied in the project was that of SoberIT in more general:
finding industrially relevant research problems, solving them, and turning the results achieved
into industrial practices. This philosophy is illustrated in Figure 1.3.

To address the research questions, the work in the project was divided into major tasks as

follows:

1. Gaining an understanding of the existing work in related scientific fields.

2. Gaining an understanding of the real needs companies by investigation of the software
product family problem modelling concepts, especitdgturescomponentdnterfaces
andversioningin case companies

3. Development of a modelling language and method to support SPFs

4. Validation of developed methods in industrial cases and by demonstrating the configu-
ration concept by building prototype tools

The very first task of the project was to gain an understanding of the related work that had
been conducted in related research fields. The next task was to survey the state-of-the-practice
of software product families in the Finnish industry. The goal of the survey was to find out

4 CHAPTER 1. INTRODUCTION TO SARCOUS

Level
of abstraction

ction
" const™V
2
2 Concepts Modelling language
2 2
c & 3
> S c Method for managing
V_?,: °/7% software product
&, .
<&, lines
Problems
Issues Sandb
. andbox
" Questions
[

7'?‘ Validation

C

<
o
I Literature Modelling case products
g Survey Applying method to companies
] Cases
)

>
Time

Figure 1.3: Sarcous research philosophy

where industrial companies stand with respect to software product families and what are the
challenges they are facing. Experiences from the survey were fed as a feedback to the project
for guiding the remaining tasks towards highly relevant research results.

The main constructional research task was to develop a conceptual foundation for mod-
elling configurable software product families, to devise a modelling language with formal
semantics based on the conceptual foundation, and to demonstrate the language.

1.4 Results

The results of the Sarcous project are divided in the four categories introduced in the following
subsections. Only a brief summary of the main results is given here; more details can be found
from the corresponding chapters of this report.

1.4.1 Survey on software product families

Six companies were surveyed and analysed. The results thus obtained were reported to the
companies and in anonymised form to the scientific community. The reporting work is still
partly in progress and will yield some result after the project has ended. This topic is covered
in Chapter 2.

1.4.2 Modelling concepts and languages

The work done on concepts concepts can be divided in three main categories:

1.4. RESULTS 5

1. Architectural descriptiorof the product in terms afomponentshat may contain other
components as theparts interfacesof components, andonnectiondetween them

2. Feature modellingconcepts, which includéeaturesorganised in a hierarchy by the
subfeaturerelation, concepts for variability, such aptional andalternative features
and constraintsthat may be used to express relationships involving features, such as
requiresor incompatibility

3. Evolutionof components

A configuration language callddumbangwas developed on the basis of Koala software
architecture description language of Philips (van Ommeeirag., 2000), a number deature
modellingmethods, and lessons leearned from configuration of non-software products.

The modelling methods were validated by applying them in collaboration with industrial
partners to real cases.

This topic is covered in Chapter 3.

1.4.3 Tools and demonstrations

The tool support research in Sarcous had two main lines of activities:

e Applying existing configuration technology designed for non-software products to con-
figurable software product families

e Development of prototype tools that are built on software specific variability modelling
and management concepts

The first category includes the following demonstrations basete€oTin a product
configurator developed at SoberlIT:

e Modelling and configuring features
e Configuring Familiar, a Linux distribution for Compaq iPAQs

¢ (Re)configuration with multiple Linux over multiple releases
In addition, the following prototype tools were developed from scratch:

e Atool for configuring and installing Linux Familiar on Compaq iPAQ

¢ A prototype modelling tool for creating models of configurable software product fami-
lies combining component- and feature-based aspects

e A prototype configuration tool calldumbangor software product families combining
component- and feature-based modelling approaches.

This topic is covered in Chapter 4.

6 CHAPTER 1. INTRODUCTION TO SARCOUS

1.4.4 Dissemination and international collaboration

Active participation of the project in the international community of software product families
is evident from the activities listed in Chapter 5, and from the project publications listed in
Chapter 6.

1.5 Conclusions and future work

A central issue in variability management is understanding of variability in a manner that
allows explicit description of it. The Sarcous project took concrete steps towards making this
happen in realistic and feasible manner.

However, we are not there yet, as many issues are to be resolved in a more systematic
manner. These include but are not limited to the following two main areas:

1. Tool support covering different life cycles, such as requirements, architecture, feature
models, components and product derivation

2. Best practices in SPF adoption, variability management, variability documentation,
traceability

The underlying goal is to provide a company working with or considering moving towards
software product families eeadily-applicable, validated set of method® achieve this, the
SoberlT research philosophy needs to be applied, see Figure 1.3: gathering the state-of-the-
art practices from the industry, generalising and tailoring these to match the specific needs of
other companies, and bringing the results back into the industry.

1.6 Outline

The remainder of this report is structured as follows. Next, in Chapter 2 we will discuss a
survey carried out within the project. Thereafter, in Chapter 3, we will present the modelling
concepts and languages developed. A discussion of the demonstrations and tools built follows
in Chapter 4. The dissemination of the project results is discussed in Chapter 5. Finally,
Chapter 6 contains a list of the publications of the project.

Chapter 2

Software Product Family Survey

Mikko Raatikainen, Timo Soininen, and TontMhhisd

In this chapter, we discuss the product family survey carried out in Finnish software companies
as a part of the Sarcous project. In more detail, we will first discuss the framework used for
the survey. Thereafter, we will provide some details of the results of the survey. Finally, we

will characterise configurable software product families.

2.1 Framework for studying software product families

The quality of the data gathered in any survey or other empirical study heavily depends on the
methods applied in gathering the data. Therefore, we did not want tadusecmethods in

our survey. Unfortunately, there seemed not to exist readily-available research instruments for
studying software product families in the industry. Consequently, our first step was to develop

a research instrument for this purpose.

The framework developed follows the qualitative case study strategy described in (Yin,
1994). In more detail, the framework consists of five stegssigning case studyprepar-
ing data collectioncollecting evidenceanalysing the evidengcandcomposing a case study
report. In the following, we will discuss each of these steps in some detail.

In designing the case study, we formulatedsearch problenm the form of a question
as follows: What kind of a software product family a company develops? Based on our
preliminary understanding of software product families, a numbetuafy propositionsvas
made. As an example, it was postulated that the products in the family share a managed set of
features. The cases were selected usiregretical samplingthe selection was not random,
but was based on specific criteria. Finally, tiret of analysisvas defined to be either a single
software product family, or many of these, in the case that a company developed many.

In preparing the data collection, the most important issues were to decidielthpro-
ceduresto be applied, and to prepare thase study questiorte be used. Concerning the
former, it was decided that at least two investigators participate in each interview, and the
investigators should familiarise themselves with the questions before the interview. The latter
issue, namely case study questions, were prepared based on the BAPO (Business, Architec-

7

8 CHAPTER 2. SOFTWARE PRODUCT FAMILY SURVEY

ture, Process, Organisation) framework (van der Linden, 2002).

The collection of evidence was carried out as interviews in the participating companies.
Each interview was tape recorded; in addition, notes were taken. In order to ensure that
different viewpoints were taken into account, the interview was carried out in three distinct
sessions, each concentrating on slightly different issues.

The analysis methods employed were not fixed in the framework. Similarly, no procedure
was predetermined for composing the case report.

Further details of the framework can be found in (Raatikainen, 2003; Raatikeiran
2004b).

2.2 State of the practice

The software product families of the six companies are summarised in Table 2.1. In the
following, we will discuss a number of topics arising from the table, or otherwise worth
discussion.

A number of reasons for applying the product family approach were mentioned. In most
of the companies, the following issues were brought up in the interview: managing variability,
shortening time-to-market, enhancing quality, increasing the number fo products, smoothen-
ing flow of projects, and more efficient use of resources. In addition, issues such as enhancing
co-operation within the company, price categorisation were mentioned in some of the compa-
nies.

The size of the staff varied across the companies: the software engineering staff was in the
magnitude of scores in most companies, but one company employed 200 software engineers.
Also, the type of software varied, being embedded software in half of the companies, and
software running on a PC in the other half.

The application domain, price of a product, the number of variants, and the number of de-
liveries varied greatly across the companies. This suggests that these attributes do not restrict
the applicability of the software product family approach.

2.2. STATE OF THE PRACTICE

sapnjoul 1onpoJd eyl swyiiobe xajdwoo ‘sidwexs 1oy ‘dojansp oym saakojdws sapnjoul ;squuinu ay L ,
[lom se 19npoud 1aylo dojanap siaaulbua aremyos ayJ ,
siadojansp 1onpoud 1node erep ou ‘s1adojansp 18SsY

a|qealjdde 10u sI J010R) By »

T T T Spalpuny T spuesnoyl salaARg
e e e 0T v 0¢ SiueLe/\
spuesnoy | Ge 0S e 0T e Jedh/siuenrep
%00T %00T %00T +%G. %S6-02 %0G 8beIanod 4dS
30000¢ 30000¢ 30000S B000S-000T +30000T FP0E-00T 9dld
Od 106pebh alemyjos 196peb
B UOo 81em)os J1U0J109|8 Ue pappaqwa J1U0J}09|8 Ue
1onpo.d 1onpoud AQ pajjonuod ul alemyos AQ pajjonuod ul 81emyos 1onpoud
aIem)yos aIemyos Solueyd9aN pappaqw3 SoluURyI9aN pappaqw3 J0 adAL
aIemyyos
aI1emyos Dd aIemyos Dd aIemyos Dd pappaqw3 pappaqw3 pappaqw3 10 adAL
Ge Ge Ge 002 G¢ 0z sJoaulbus 4ds
00s 0€T 00¢ SpalpunH 000s 00¢ yels
Juswabeuew
uolnewojul uoljewolne SERINETY SWIv)SAs S2I1U0.1193|3 urewop
IvO/Avd [ed1palN Ai010e4 [ed1paN uonewony Jawnsuo) uoneolddy
4 Auedwo) 3 Auedwo) a Auedwo) D Auedwo) g Auedwo) v Auedwo) l010€e4

paipnis saluedwod ay) ul saljiwe) 19npoid alemyos :T°Z a|gel

10 CHAPTER 2. SOFTWARE PRODUCT FAMILY SURVEY

2.3 Characterizing configurable software product families

In (Raatikaineret al., 2004a), we discuss two of the six companies that participated in the
survey in more detail. These two companies have developed configurable software product
families, from which we can conclude that configurable software product family is applied in
the industry and hence is not a mere theoretical peculiarity. Furthermore, the paper shows that
a configurable software product family is a feasible and efficient way to systematically develop
a family of products and manage its variability: the two companies achieved competitive
advantage through their configurable software product families, compared to companies with
no such a family.

For both companies, the configurable software product family approach was an efficient
way to systemize the software development and enabled an efficient control over variants, and
even reconfiguration of individual products. They even went as far as to state that the approach
is the only reasonable way to do business, regardless of the significant initial investment.

The study also exemplifies the feasibility of developing and using configurators, i.e., in-
formation systems supporting the derivation process: both companies had developed a con-
figurator of their own. Using the configurator, the derivation process was made such that no
software engineering skills were required.

The possible drawbacks of the approach seemed to pertain mainly to the evolution of the
product family: the topic was seen as especially unpromising as far as the ability to meet
customer requirements by configuring was concerned.

We also discovered a number of factors that affect the feasibility of the configurable soft-
ware product family approach:

e Number of deliveries

Supporting a configurable software product family requires a relatively large numbers
of deliveries. However, it seems that a large number of deliveries is not enough to guar-
antee the feasibility of the approach. Further, what is a large enough number depends
on the company: what is large enough for a company may not be enough to another.

e Application domain understanding

A thorough understanding of the targeted application domain has a positive effect on the
feasibility. Further, stable application domains are more likely to support a successful
configurable software product family than emerging or otherwise unstable ones.

e Clear organisational separation of development and deployment

Even for small organisation, it seems to be beneficial, from the configurable software
product family point of view, to separate the development and deployment activities.
The separation should be done at least at the role level, i.e., developing assets and de-
ploying individual products should be considered as different activities.

We also found a number of factors that are seemingly irrelevant for the success of config-
urable software product families.

e Special software engineering skills

2.3. CHARACTERIZING CONFIGURABLE SOFTWARE PRODUCT FAMILIES 11

e Advanced process models, methods, modelling and implementation tools
e Application domain

e Company maturity

In (Raatikaineret al., 2005), we give detailed accounts of the derivation process in the two
configurable software product families; these are the same families that were studied already
in (Raatikaineret al, 2004a). The findings shed new light on the previous characteristics
of configurable software product families, and gave grounds for new ones (Eisenhardt, 1989;
Strauss & Corbin, 1998). These characteristics are the following:

1. Configurable product base
A configurable software product family includes a configurable product base that con-
stitutes at least a significant part of any product individual

2. High- and low-level variability

Variability takes place at high leve] which pertains to important characteristics, and
at a textitlow level, pertaining to detailed characteristics. Both forms of variability have
constraints but only the high-level variability is visible to a customer.

3. Light-weight derivation

The derivation process requires only minor effort. Further, derivation activities are
highly flexible both spatially and temporally, and their order may be permuted. Deriva-
tion requires mainly application domain knowledge, understanding of the products, and
system administrator skills; in other words, no significant software engineering skills
are required.

4. Limited tailoring during product derivation
Only certain aspects of a product may be tailored. Further, requirements for tailoring
are carefully analyzed. Finally, tailoring is performed in separation of other activities.

5. Late and flexible binding of variability

Variability is bound in a late point of time, and bindings can be changed.

6. Derivation organisationally independent

There is an organisational unit concentrating on deriving product individuals, and the
unit has no other, significant responsibilities.

12

CHAPTER 2. SOFTWARE PRODUCT FAMILY SURVEY

Chapter 3

Modelling Concepts and Languages

Timo Asikainen, Tomi Ehnisb, Tero Kojo, and Timo Soininen

In this chapter, we will discuss the modelling concepts and languages developed during the
Sarcous project. First, we will briefly discuss how researctcamfigurable producthas

been used as the basis of our research efforts. Thereafter, we will go into the specific mod-
elling concepts and languages developed for configurable software product families. These
include Koalish a language for modelling configurable software product families from an
architectural point of viewForfamel| a language for modelling them based on the common
and variable features provided by the individual product in the product familyKanmbang

a language that combines the modelling concepts of Koalish and Forfamel into a single lan-
guage.

3.1 Product configuration and configurable products

The work done on modelling concepts and languages is based on earlier work dooe- on
figurable(non-softwareproducts they have been researched extensively irptleeluct con-
figurationdomain, a subfield of artificial intelligence. Our guideline has been to reuse work
done in the product configuration domain at three levels of abstraction. These levels include:

1. Tool level

Tool level is the lowest level of abstractions. Reuse at this level pertains to applying
supporting tools developed for configurable (non-software) products to software prod-
uct families. Reuse of existing tools is discussed in detail in Section 4.1.

2. Language level

Language level is the second lowest level of abstraction on which reuse may occur.
Reuse at the language level pertains to applying existing modelling languages to con-
figurable software product families. The demonstrations discussed in Section 4.1 are
also implicit examples of reuse at the language level.

13

14 CHAPTER 3. MODELLING CONCEPTS AND LANGUAGES

CSystem
sendreq : revreq : query : .
IRpc IRpc2 IRpc2 dbase : CDb
client :) | N m
CClient [id LE 3
server : CServer

Figure 3.1: An architectural model of a simple client-server system represented in Koala

3. Conceptual level
Reuse at the conceptual level pertains to modelling configurable software product fami-
lies using existing modelling concepts directly, or translating software-specific concepts
to these concepts. Reuse at the conceptual level may be used to provide models of soft-
ware product families formal semantics, given that the reused concepts have been de-
fined one. The modelling methods discussed later in this chapter reuse many concepts
originally defined in the product configuration domain for configurable (non-software)
products.

The similarities between configurable product and configurable software product families
have been studied in (dhnisb et al, 2000; Mannisb et al, 2001a; Mannist et al,, 2001b).

3.2 Koalish—Software architecture

The level of design concerning the overall structure of software systems is commonly referred
to as thesoftware architecturéevel of design. This level includes structural issues such as the
organisation of a system as a composition of components, the protocols for communication,
the assignment of functionality to design elements, the composition of design elements etc.
(Garlan, 2001).

Informally, software architecture is used to refer to the structure of a software system on
a high level of abstraction. Explicitly, software architecture does not concern the fine-grained
structure or the properties of a software system, or the process used to develop it (Medvidovic
& Taylor, 2000).

We considered software architecture to be an important aspect of configurable software
product families. Therefore, it was decided that a method for describing the architectures
of configurable software product lines should be developed. Towards this goal, a number of
architecture description languag€aDLs) were studied.

Loosely defined, ADLs are formal notations with well-defined semantics for describing
software architectures. A large number of ADLs have been proposed. The greatest common
denominator for the class of ADLs is the concept of computational elements, usually termed
componentspresent in all of them; in other respects, they differ from each other radically.
(Medvidovic & Taylor, 2000)

Figure 3.1 contains an example of an architectural description of a simple client-server
system, the ADL used is Koala (van Ommeriigal., 2000). This is an example of graphical

3.3. FORFAMEL—FEATURE MODELLING 15

architectural description. However, architectural descriptions may also be represented in text:
for instance, Koala includes a textual syntax as well.

The first step in the study of ADLs was a paper (Asikaie¢ral, 2002). In this paper,
three ADLs, namely Acme (Garlaet al,, 1997), Wright (Allen & Garlan, 1997), and Koala
(van Ommeringet al, 2000) were analysed and compared with the configuration ontology of
(Soininenet al, 1998). The same line of work was carried further in (Asikainen, 2002), in
which a more detailed analysis, along with a mapping between the concepts of the ADLs and
the configuration modelling concepts was presented.

The overall outcome from this work was that the configuration modelling concepts are
remarkably similar to those found in ADLs, but nevertheless, the concepts would have to be
modified in order to fully support the modelling primitives of ADLs, especially the interface
mechanism of Koala.

Consequently, concepts for modelling the architecture of configurable software product
families were developed (Asikaine al,, 2003b) . The conceptualisation is terni&ahlish
The same name is used for the language built on the concepts (Asikdinbr2003a). The
uses the same basic concepts as Koala, naooehponent typesheir compositional struc-
ture in terms of other components contained in themerface typesand theinterfacesof
components, andindings or connectionsas they are also called, between interfaces. In ad-
dition, Koalish includes constructs for expressamgionalityandalternatives andconstraints
concerning different aspects of the above-mentioned concepts.

3.3 Forfamel—Feature modelling

Feature modellindnas become has become a popular method for modelling software product
families. featurelacks an agreed-upon definition. Popular definitions include:

1. An end-user visible characteristic of a system

2. A distinguishable characteristic of a concept (e.g., system, component, and so on) that
Is relevant to some stakeholder of the concept

3. "We define feature as a logical unit of behaviour that is specified by a set of functional
and quality requirements. A feature generally captures a considerable set of require-
ments and is, as such, used to group requirements, which simplifies requirements han-
dling. In addition, a feature represents a logical unit of behaviour from the perspective
of one or several stakeholders of the product. For instance, the user of a product gener-
ally considers the product to consist of a number of functional units that are identified
as different. Each such functional unit, we refer to as a feature.” (Bosch, 2000)

We agree with the first definition in that end-user visible characteristics of systems can be
termed features. Further, in the spirit of the second definition, be believe that it may be fruitful
to consider also things that are visible to end-users as features. Further, we agree with the
third definition in that it may be useful to consider features as abstractions from requirements.
However, unlike suggested by the second definition, we believe that it is necessary to make a

16 CHAPTER 3. MODELLING CONCEPTS AND LANGUAGES

contains
* N 1.%

- {subset} = [———- }—
Attribute value type |+ |, .ontaing * | FOrfamel model |+ | 1 | Feature type
name name root type name

B isAbstract

possible value
1.

Enumerated value

value

» supertype

isa a

name
isAbstract

“““““ * subtype
{1..*
possible type » con?ta*ins
‘ Property definition ‘
7
| | |
*]

Subfeature definition

Constraint

Attribute definition

name

‘1
contains
1

Cardinality definition

lowerBound
upperBound

Subfeature

name

(b)

Configuration

1
contains

name

‘ *
type
1

\ Attribute value type

‘name

Attribute

name

. Enumerated value

| Feature ‘*

F--{subset}->~
direct

. instance a
instance

1 1.*
Feature type

name
isAbstract

(c)

value

Figure 3.2: Forfamel concepts. (a) Forfamel model and its configurations (b) The properties
of feature types (c) Configurations.

3.4. KUMBANG—FEATURES AND ARCHITECTURE COMBINED 17

distinction between architectural concepts and features. Consequently, we believe that entities
such as components, interfaces, subsystems etc. shoildeé considered features.

Similarly as in the case of ADLs, we conducted a comparative study between a number
of feature modelling methods, and the configuration modelling concepts used in the product
configuration domain. This study has been reported in (Asika@text, 2004b). The most
important finding from the study was that the configuration modelling concepts can be used
to capture feature modelling concepts. However, a fundamental difference between feature
modelling methods configuration modelling concepts is that unlike the latter, the former in-
cludes distinct notions for types and instances. This implies that features models represented
using the configuration modelling concepts differ somewhat from the original ones.

We have developed a feature modelling method caf@diamel The method has been
applied to a software product family of one of our industrial partners. The special require-
ments posed by configurable software product families have been taken into account when
developing the method: a number of modelling concepts not present in existing methods have
been integrated with the feature modelling concepts. In more detail, the feature models are
decorated wittbinding information In addition, the method makes a distinction between fea-
ture types and instances. However, this distinction is made primarily at the conceptual level;
in terms of syntax, the feature models created based on our method may be highly similar to
those creating using existing methods.

The concepts of Forfamel are illustrated in Figure 3.2 as a UML class diagram. Figure 3.3
contains a sample Forfamel model that represents the features of a software product line of
advanced text editors.

Further details about Forfamel can be found in (Asikaieeal, 2004a). However, some
aspects of Forfamel are still work-in-progress.

3.4 Kumbang—Features and architecture combined

Given the two above-described methods for modelling configurable software product family,
it is natural to ask: If both kinds of models are created for a single configurable software
product family, how are they related? Obviously, it needs to be somehow ascertained that the
two models are mutually consistent.

We have chosen the approach that the architectural model captured by the Koalish model,
and the feature model represented using Forfanmtiegonalin the sense that they describe
the product family from two, different points of view. We will refer to these views as the
architecturalandfeature views

Above, when discussing features, we imposed a modelling guideline that entities related
to the architecture of the product family should not be modelled as features. At this point,
the utility of this guideline should be clear: by making the feature model free of architectural
issues we will make the two views as independent as possible from each other.

Of course, it is not reasonable for the two views to be completely independent from each
other. The mechanism for relating the two views @n@lementation constraintslhe locus
of these constraints is features, or more exactly, feature types. Their semantics is that in
order for an individual product to provide a feature of the type, the architecture of the product
must satisfy the conditions stated in the constraint. Intuitively, the dependencies between the

18 CHAPTER 3. MODELLING CONCEPTS AND LANGUAGES

Forfamel model TE
root component TextEditor

feature type TextEditor {

subfeatures
Language uilLanguage;
EquationEditor primaryEquationEditor;
EquationEditor secondaryEquationEditor[0-1];
SpellChecker spellChecking[0-1];
Clipboard copyPaste;
(OCI, JDBC) sglImport[0-1];

constraints
instance of (uiLanguage, English) => present (spellChecking);
not present (sglImport) or not present (secondaryEquationEditor);

}

abstract feature type Language {}

feature type English extends Language {}
feature type Finnish extends Language {}
feature type Swedish extends Language {}

abstract feature type EquationEditor {}
feature type EqEdit extends EquationEditor {}
feature type MathPal extends EquationEditor {}

feature type Clipboard {}
feature type MultiItemClipboard extends Clipboard ({
attributes
Cap capacity;
}

feature type OCI {}
feature type JDBC {}

feature type SpellChecker {
Language language;

}

attribute type Cap = { 3, 5, 9 }

Figure 3.3: A sample Forfamel model representing the features of a software product line of
advanced text editors.

architectural and feature views are directed: features include descriptions what they require
from the architecture, but architectural entities may not pose similar requirements for the
features.

The combination of the concepts of Koalish and Forfamel is cd{l@thbang The con-
ceptual basis of Kumbang has not yet been published. However, a configuration tool operating
on Kumbang is described in (Mginiemiet al., 2004).

3.5 Modelling evolution

Building a configurable software product family is very likely to require significant initial
investment. Consequently, in order to get paid back for the investment, the family must be
long-lived. On the other hand, the requirements for the products are likely to change, as well
as the platform on which it is running etc. Due to this combination of a long life span and
changing requirements, many configurable software product families are boevolve

3.5. MODELLING EVOLUTION 19

< is-configuration-of

‘ configuration model }— configuration

1

has-part

is-a » supertype

part name
y

1

< is-revision-of . ﬁ
component individual ‘
*

ponent type

name 1
concreteness

subtype

|

‘ property definition

<« is-instance-of

J; 1
part definition l constraint ||component type revision property

part name revision name name
cardinality status value
part types effectivity period ‘

name
type

’ is-successor-of
|

Figure 3.4: Modelling concepts for evolution

During the Sarcous project, concepts for modelling the evolution of configurable software
product families were developed. In this section, an overview of these results is presented: a
conceptual foundation for modelling evolution of configurable SPFs with the main concern
being the deployment phase and generation of valid configurations.

The conceptualisation of evolution uses concepts, sudo@ponentstheir properties
compositional structur@and constraints these concepts are shared with Koalish, see Sec-
tion 3.2. However the conceptualisation adds a set of concepts that are useful in describing
the evolution of a software product family.

These concepts are described briefly below and illustrated in Figure 3.4.

A component typéas a set ofevisions calledcomponent type revisiong/hich are re-
lated to the component type strevision-ofrelation, and ordered kg-successor-atklation.
Revisions capture the evolution of a component type in time.

Statusdescribes the life-cycle status of a component type revision. It is a measure of the
maturity of a component type revision, and may have values sughstable stable andend
of life, and can be used to convey additional information in configuration task. Status is a
useful concept, e.qg., for expressing user requirements, but has no relevance in determining the
correctness or other properties of a configuration.

Effectivity periodis a time interval stating when an component type revision may legally
appear in a configuration. Effectivity period is thus an additional concept needed in determin-
ing the correctness of a configuration.

In the metamodel, component type revision is defined as a subtype of component type to
indicate that component type revisions have the same properties as component types plus the
additional concepts for representing evolution.

Each component individual is directly an instance of a component type revision, repre-
sented by thes-instance-ofrelation. This basically means that component individuals are
component type instances with additional revision information.

The model is presented in more detail in (Kejoal,, 2003).

The task of configuring Debian Familiar Linux packages over many releases and package
versions was used as an example of the evolution of a software product family. This example

20 CHAPTER 3. MODELLING CONCEPTS AND LANGUAGES

is discussed in Section 4.1.3.

Chapter 4

Tools and Demonstrations

Empirical studies are required to evaluate the feasibility of ideas and validate developed con-
cepts, such as those discussed in the previous chapter. For this reason, we produced several
demonstrations and prototype tools during the project.

The tools developed serve two purposes. First, they provide evidence that the concepts
developed are sensible in the sense that they can be supported by tools. Second, tool support is
essential in showing that the ideas and concepts can be applied in practice: industrial software
product lines are often too complex to be managed simply by using a textual language and
text editors; instead, supporting tools are needed.

As discussed in the introduction to the previous chapter, our guideline has been to reuse
existing tools, languages, and concepts to the maximum possible extent. In more detail, we
have applied an existing product configurator caNgeCoTin and the modelling language
(Product Configuration Modelling Language, PCMinderlying it (Tiihonenet al,, 2003).
Section 4.1 reports demonstrations implemented using WeCoTin.

However, it turned out that WeCoTin or other existing tools developed for non-software
products do not cover all relevant aspects of software product lines. Consequently, we set out
to implement new tools. These are described in Section 4.2.

4.1 Demonstrations based on WeCoTin

In this section, we study a number of demonstrations that are based on WeCoTin. These
demonstrations prove that tools developed for non-software products are indeed applicable to
configurable software product lines. Further, the fact that none of the demonstrations to be
discussed required significant amounts of coding or other development effort suggests that the
tools provide an efficient way to provide tool support for software product lines.

In the first subsection, we will discuss how WeCoTin can be used to create and manage
feature models, and to configure these models to find individual products. Thereafter, in the
second subsection we will show how WeCoTin can be used to configure Linux Familiar. The
third subsection extends this discussion to cover configuring multiple releases simultaneously.

21

22 CHAPTER 4. TOOLS AND DEMONSTRATIONS

T~ WeCoTin.me.ModellingTool - C:iWeCoTin'Models'Elem' Elem.cpm = I [m] Iil
File Edit View Model Test

[afala[#] []e][c)

@ 08 Elem : Choice
[constants

@ (] value Types | B English E
@ W Feature 3
& Texd_editor | Subfeature Of: = Language
@ @ Multi_itern_clipboard 3
B Capacity | subfeature Definition: [Choice |
B Single_item_clipboard

@ Language Similarity: Any - Cardinality: @
@ English :

& Finnish]
B Swedish

& Equation_editor
B EqEdit

I MathFal

B SaL_import

B ocl :
= DEC . @ Swedish
B User_interface : B English

.@ — 5 <Add Allowed Feature..>
B Text_editor :

@[3 Cliphoard
B Multi_itern_clipboard
& Single_item_cliphoard
@ [User_interface
@ @ User_interface :
@ [E Language || Default:) No Default) Proper Default ' Tentative Default) Fixed
@ B Language :
@ [F&[choice :

@ English

& Finnish | walue:
B Swedish |[: @
% [Equation_editor :
@ @ Equation_editar H
¢ B Choice
B EqEdit

Allowed Features: & Finnish

B MathPal
@ [B 3eL import
@ @ SAl_import
@ B Chaice
@ ool
B JDEC

:| Description:

Figure 4.1: WeCoTin Modelling applied to modelling features

4.1.1 Modelling and configuring features

Timo Asikainen, Tomi Ehnisb, and Timo Soininen

The idea underlying this demonstration is the assumption that feature models, if provided with
rigorous semantics, can be used as the basis for configuring. Further, the hypothesis was that
the tool support required for efficient configuration could be provided by WeCoTin.

It turned out that the modelling capabilities of WeCoTin were more than sufficient to
match those found in most feature modelling methods: in addition to the standard modelling
primitives found in feature modelling methods, WeCoTin includes a number of constructs
especially suited for modelling configurable software product families. These constructs in-
clude the possibility to define a cardinalities for parts, and a constraint language for imposing
additional rules that must be obeyed by valid individuals. In consequence, it was found that
WeCoTin can be used as a feature modelling tool that enables the configuration of the models,
that is, finding descriptions of individual products in the product family.

However, WeCoTin seems not to be an optimal tool for feature modelling: the distinc-
tion between types and instances made in WeCoTin seems unnecessary in many cases in the

4.1. DEMONSTRATIONS BASED ON WECOTIN 23

a Elem - Microsoft Internet Explorer provided by SoberlT - TE - |EI|5|

File Edit “iew Favoites Toolz Help |¢ > mp v @ @ |.-’-‘n.gldress Iiﬂ http:ﬂ ﬁ

=@ Text editor Equation editor
B & Clipboard .
=148 hulti itern cliphoard Choice
& Capacity: 9 = EgEdit
B & User interface O et
=& User interface

2@ Language MNext >> | Undu:ul Savel F’ieadyl C!uitl

B8 Language
@ Choice: Finnish
= & Eguation editor
=148 Equation editor
& Choice: EqEdit
B & SOL import
B8 SO import
@ Choice: JDBC

@ Price 0.00 euro
|ﬂi| Chaice l_ l_ l_ |ﬂ Intemst v

Figure 4.2: Configuration features using the WeCoTin configuration interface

context of feature modelling. Instead, the distinction appears to cause overhead in both the
modelling and configuration tasks. A better solution might be to provide the user the option
of defining types and thus reusing feature information.

Figure 4.1 illustrates the user interface of the WeCoTin modelling tool applied to feature
modelling; using this interface, it is possible to create feature models. Further, the configura-
tion interface is illustrated in Figure 4.2.

This demonstration has been reported in more detail in (Asikahah, 2004c).

4.1.2 Configuring Linux Familiar

Katariina Vuorio, Tomi MinnisD, and Timo Soininen

Familiar is a distribution of the Linux operating system developed for a line of handheld com-
puters, namely Compaq iPAQ. Software running in handheld devices such as iPAQ is inter-
esting from the configuration point of view for two reasons: first, resources, such as memory,
available in such devices are very limited, which places stringent requirements on the software
running on them. Second, Linux in general represents a challenge from the configuration point
of view: the software is composed of a hundredpadkagesof which there may be multiple
versionsand between which there may be different kindslependencies

In the demonstration, the package descriptions of Linux Familiar were automatically trans-
lated into Product Configuration Modelling Language (PCML), the modelling language un-

24 CHAPTER 4. TOOLS AND DEMONSTRATIONS

/} TestModel - Microsoft Internet Explorer o] 4|
J File Edit ‘“ew Favarites Tools Help ﬁ
.| Tlibxrenderpart |
=& OEystem i
© currentfime: 20020601 libxrender [
gg;sszpi?f modules J 4 16 rmkt cramfs modules 2 4 16 rmk1part
@ fleutiispart [eramfs-modutes 2-4-6-rmid-
@ |ibreadlinedpart
@ uschedulepart nls is08859 4 modules 2 4 18 rmk2part
@ nls cp1251 rodules 2 4 18 rmk)
@ sysvinitpart: None M bl S e 2
@ nlsis08859 14 modules 2418 heart
@ nls koig r modules 2 4 16 rmkl; ashpa
@ matchboxpart ¥ ash

@ nls 08859 2 modules 2 4 18 1

@ nls cpBE0 modules 34 18 tmkd nls cp874 modules 2 4 7 rmk3 np1 devfspart
@ p3c589 modules 2 4 16 rmklps

& libipegsZpart I e e R
@ gpsdpart

@ nls euc kr modules 2 4 16 rmki nls gh2312 modules 2 4 18 rmiZpart

@ netkit pingpart -
@ thitndpart eIt e 2 B 2

& mipvk modules 2 4 16 rmklpar

libgladeDpart
@ nls utfs modules 2 4 7 rmk3 np° thgladetpa
& stowaway h3600part I libgladen -
@ nls 508859 4 modules 24 161 2 J
181 riteefelislivart h ‘
<I I .3
|@ current time ’_’_ Local inkranet v

Figure 4.3: Configuring software over time using WeCoTin

derlying WeCoTin. Using the translated model, it is possible find valid configurations using
the WeCoTin configurator.

The demonstration has been reported in more detail in (Ylateh, 2002).

4.1.3 Configuring Linux Familiar over multiple releases

Tero Kojo, Tomi Minnist, and Timo Soininen

This is a very large scale configuration demonstration that takes the first steps towards config-
uring software over time. The approach followed relies on the modelling concepts presented in
Section 3.5. However, WeCoTin provides no intrinsic support for versioning. Consequentely,
the version knowledge had to be translated to other concepts available in PCML, the modelling
language underlying WeCoTin. This was seen as a limitation, as versioning is an essential part
of software development.

WeCoTin enables structuring the Familiar packages into categories and provides an intu-
itive web interface. The interface provides a user with intelligent support, such as greying out
packages that may not be selected. These features are illustrated in Figure 4.3

The work was a complete success: it proved that even considerable large software product
families can be efficiently configured over time. It also showed that product configuration is
intimately related to the areas of software deployment and design (van dereHalgkl997),
through the discipline asoftware configuration managemdé@onradi & Westfechtel, 1996).

The details of this work are further elaborated in (Kejal., 2003).

4.2. TOOLS FOR CONFIGURABLE SOFTWARE PRODUCT FAMILIES 25

4.2 Tools for Configurable Software Product Families

In the previous section, it was shown that tools developed for non-software products provide a
feasible way to model and configure configurable software products. However, this approach
is not feasible in all situations, due to several conceptual differences between software and
traditional products (Mnnist et al, 2000; Mannisb et al., 2001a; Mannisb et al,, 2001b).
For example, traditional product configuration techniques lack means for describing software
architectures: as an example, WeCoTin includes no notion of connection points in components
comparable to interfaces in Koala and Koalish, see Section 3.2 or (Asiketran 2003a).
As interfaces and bindings between them are a fundamental ingredient of Koalish, WeCoTin
is arguably inapplicable to Koalish. Further, WeCoTin and, to the best of our knowledge,
every other product configurator, lacks intrinsic support for versions of, e.g., components.
Consequently, we set out to develop tool support dedicated to configurable software prod-
uct families. This section presents three prototypes. First, we will discuss a configuration tool
developed for configuring Linux Familiar for a line of handheld devices. Thereafter, we will
discuss a modelling tool that enables the creation of models of configurable software product
families. Finally, we will discuss a configurator to&lumbang Configuratothat can be used
to search for configurators of software product family modelled using Kumbang.

4.2.1 Confuse — Configuration of Compaq iPAQ

Katariina Vuorio and Tero Kojo

The Confuse Configurator was implemented to demonstrate the feasibility of configuring the
operating system of a handheld device. In more detail, Confuse showed that Linux Familiar,
the operating system of Compaq iPAQ handheld devices, can be automatically configured,
including reconfiguration, and installed.

The configuration environment consists of a configurator running on a desktop PC, and of
the IPAQ, the software of which is to be configured. The PC and the iPAQ are connected via a
TCP/IP network. The configurator provides an easy-to-used, web based user interface. Both
the PC and the iPAQ run Linux operating systems.

The configuration process follows the following pattern. First, the current configuration
of the IPAQ can be loaded in the configuration. Thereafter, the user can repeatedly modify
the configuration by adding or removing packages. The configurator can be at any point used
to check the current configuration for consistency, i.e., is it valid in the sense that it works
properly. Nothing is installed to the iPAQ until the user explicitly decides to do; when she
decides to install the configuration, only one click is needed. Next, the configurator compares
the current configuration to the new one, and installs and removes the necessary packages
to make the iPAQ’s configuration match the new configuration. A configurator screenshot is
presented in Figure 4.4.

The reason for running the configurator on the PC instead of the iPAQ is that the hand-
held device provides insufficient resources for performing the reasoning tasks necessary to
check that the configuration is consistent; such checks are needed in order to avoid installing
an invalid configuration. Also, a desktop PC enables creating a more easily accessible user
interface.

26

CHAPTER 4.

TOOLS AND DEMONSTRATIONS

BRCEMGE LISTONG: o

4 [LEERH]

sl Edr v oes a0 A dow Helpp I

| CETDaskenes & e Tz (e, oTecelhezt 0000sREIS. - 7 I
Yaur 1 roodel Ins & pack 1

Takags 7T beanription
ErA7d noddles 347 kL T A
Sosdnodiles-2 4 T-emlSE-rn - do
Todiles:

|

Fidiler o i (ull seen ediler

uIez b oo) 2 d Tarr i Ser -3

el MelBEL ivih
T Dl sl 3ereire

Cgelipag-casdilos-: L7 omaletaal-dovle baekper modules Jee kool 24 T-mekE-npl-dovls
saa T N Jears Again s el

vl T Bels e 511 200l o 1t J:ul.dunm.;:, o

) arlham

tn:ovhe

skl Felp rncr fam
3 AoterBeenzend meten b Snee Zng o, bt francne ez udiane e d- e
Zhibls CRLLETSFELN LI - Dudloe
Itz Certus ot Checx T andgarezon Fare Cenficvoation Liad 2 ondmaratien Lomect Cenfiguration J
A
o s

Figure 4.4: The user interface of Confuse Configurator

4.2.2 Comet GCMT modelling tool

Tero Kojo and Katariina Vuorio

Another important form of tool support for configurable software product families is support
the modelling task The purpose of a modelling tool is to provide an easy way of creating
configuration models A configuration model is a description of the whole product family,
and it describes all alternative product individuals. Such a model can be used for designing
and documenting the family, and as the basis for configuring individual products with a con-
figurator tool, see next subsection. Without a modelling tool, all configuration models would
have to be written manually.

The Comet GCMT (Graphical Configuration Modeling Tool) is a tool that provides a
graphical user interface which can be used to create new configuration models, and to edit
existing configuration ones. Comet GCMT was the first prototype of a modelling tool for
configurable software product families.

The Comet GCMT consists of two main parts; a GCMT GUI (Graphical User Interface)
and the GCMT engine. The GCMT is designed so that the GCMT GUI can be easily replaced,
to enable creating different representations of configuration models. To put it in another way,
a graphical user interface plugged in the GCMT engine, only creates a visual representation
of the data stored and manipulated by the engine.

Figure 4.5 illustrates the first GCMT GUI developed.

However, as the ideas related to modelling concepts became more clear, a need to build
another user interface to the configuration modelling tool emerged. Thus a new GUI was
created. This new GUI resembles many UML (Unified Modeling Language) editors, since the

4.2. TOOLS FOR CONFIGURABLE SOFTWARE PRODUCT FAMILIES 27

i]

File Help
bode| Mame

@ E {l H m H % Q Mew hodel |

li x ; Root Component Type X

Fort Type = 5
Part name:
|New Part |

Object cardinality:

o Jifa |
Select a Component Type Ok Cancel

Componert Yiew | Featire v

Figure 4.5: The initial user interface for Comet GCMT

user can draw UML-like diagrams of product families and assign dependenciesdikiees
andconflictsin the diagram. The new GUI is illustrated in Figure 4.6.

Comet CGMT showed that it is possible to implemente tool support for creating models
of configurable software product lines.

4. Configuration Modelling Tool =]]
File Edit View Filter Help

D& 2[C| ¥

Visible in this view {Com...

[¥] Inheritance structure
[vl Part structure

[v] Component types
[¥] Ports

[¥l Feature types

[v] Constraints

Show entire model

Serverd Ohjects in the model:

Server

=<=feature=>

Langnage

Client ET]

=SSN EER

3 Mame Type |

i Server T [a
A Sererz cT
4 calles PT
A calleez PT
v ¢ Language FT
SessinnHandler | DataBaze cT
| BessionHandler cT
| Client cT
i caller PT
;5 caller? FT

-
DataBase

il

Figure 4.6: An improved user interface of Comet GCMT

28 CHAPTER 4. TOOLS AND DEMONSTRATIONS

4.2.3 Kumbang Configurator

Varvana Mylarniemi, Timo Asikainen, Tomi&hnisb, and Timo Soininen

Kumbang Configurator is a tool intended for deriving product individuals from configurable
software product families. The tool is based on Kumbang (Section 3.4), and concequently
includes both architecture- and feature-based modelling facilities. It is designed specially for
software domain, but it employs techniques established in the product configuration domain.
Figure 4.7 illustrates the user interface of the tool.

The purpose of Kumbang configurator is to support the user in the configuration task, i.e.,
finding a valid product individual matching her specific needs. Towards this goal, Kumbang
Configurator provides a graphical user interface. The need for a configurator tool is motivated
by the fact that the configuration task, especially when configurations are large, is a complex
and error-prone activity. There typically exists complex dependencies between elements that
would be extremely hard to resolve manually.

The tool takes as an input a configuration model, and is able to illustrate it in its graphical
user interface. Next, the user has the possibility to modify the configuration and to select
alternatives that best suite her requirements. For example, the user might reason “I want
componentlientconnected to componesgrverthrough interfacealler” or “I want attribute
bandwidthin featureconnectionto have valuenhigh’, and consequently enter these choices

- Kumbang Configuration Client - Ellll
File “iew Configuration
@ components r Features | f @ component diagram r Feature diagram |
%(E;mpmemconﬂguratlon @@ @@ @@
root System |

@ [B client|2,3] 1 rootsystem
@ B clientD]:ExtendedcCl... g
§- [callerIRpc2

sl b

= caller|Rpe2-~
@ B client[]:BasicClient
@ [callerIRpe

client[0:ExendedClient

chlleriRpe?
[v]

& caller|Rpe-=
@[3 servert 2]
@ [senverSener2

<& encryption = difieheliman|| |

9 [callee:Rpc2 8
= callee |Rpe2-=

& calles IRpcZ-=

B calleelRpe2-=

% (13 dbase(l,1]]
¢ [® dhase:Dh : 1012

@ [gueryIRpcz 8

B guensiRpe2-= ||

calleellRpc2

O

3
z : B ziz-s ||
B FERChEs o e e e e e e e
MName - clientserver ; & component infa
Modified -yes .
Mame server Subcomponents Interfaces Attributes
Type Server2 ‘| - iah =
TR 5 TS, 5 0] dbaseDh [#] callee’lRpe2 [»] encryption = cifienel| | <&|
@ Export configuration | @ D}
i (@]]
 [EEEa] | v

Figure 4.7: A screenshot from the Kumbang configurator tool

4.2. TOOLS FOR CONFIGURABLE SOFTWARE PRODUCT FAMILIES 29

using the graphical user interface. After each choice entered, the tool checkalithty

of the configuration. The validity of the configuration includssnpletenesg&ll necessary
elements are in the configuration) atmhsistencyno rules of the model have been violated).

In addition, the tool can also deduct some of the consequences of the decisions made so far,
and make changes based on these deductions. The checking and deductions are implemented
by providing the models formal semantics by mapping them to WCRL (Weight Constraint
Rule Language) (Simonst al, 2002), and utilising an existing inference tool operating on
WCRL, smodelgSimonset al., 2002).

After the configuration is completed, the tool produces a description of the corresponding
product individual. This description can then be used for assembling the resulting product
from the existing assets of the family.

The tool follows a distributed client-server architecture: a client includes a graphical user
interface. A server, in turn may be used to store multiple configuration models, and serve
multiple clients. This enables both distributed configuration, and centralized management of
the configuration models; the configuration models need not be distributed to the clients, and
can hence be easily managed.

More details of the Kumbang Configurator can be found in (ktyllemiet al., 2004).

30

CHAPTER 4. TOOLS AND DEMONSTRATIONS

Chapter 5

Dissemination and International
Collaboration

In this chapter, we discuss how the results of the project have been disseminated.

5.1 Conferences

During the project, the members of the project group have both participated in organising
conferences, and actively participated in other conferences.

5.1.1 Organising conferences

During the project, members of the project group have been engaged in organising the follow-
ing conferences and events.

Software variability management

Tomi Mannist was the chair of a workshop titlélorkshop on Software Variability Manage-
ment for Product Derivation—Towards Tool Suppaagether with Jan Bosch (@hnist &
Bosch, 2004). He is also a member of the program comittee dridgsroningen Workshop

on Software Variability Managemenfs their names imply, both workshops are devoted to
issues related to software variability, the former especially from the tool support point of view.

Configuration workshop

A workshop devoted issues related to configurable products, both software and non-software,
has been held annually since 2001 in conjunction with the ECAI (European Conference on
Artificial Intelligence, even years) and IJCAI (International Joint Conference on Atrtificial
Intelligence, odd years) conferences. Timo Soininen was the chair of 2001 workshop. In ad-
dition, he has been a member of the organising and program committees of all four workshops.
Further, Tomi Mannisb was a member of the program committee of the 2003 workshop.

31

32

CHAPTER 5. DISSEMINATION AND INTERNATIONAL COLLABORATION

5.1.2 Participating in conferences

23rd International Conference on Software Engineering (ICSE), May 12-19, 2001,
Toronto, Ontario, Canada

Presentation: (Mnnisb et al, 2001b) inTenth International Workshop on Software
Configuration Management (SCM-182Id in conjunction with the conference

17th International Joint Conference on Artificial Intelligence (IJCAI), August 4-10,
2001, Seattle, Washington, USA
Presentation: (Mnnisb et al., 2001a) in theConfiguration workshopf the conference

24th International Conference on Software Engineering (ICSE), May 19-25, 2002, Or-
lando, Florida, USA

15th European Conference on Artificial Intelligence (ECAI), July 22—-26, 2002, Lyon,
France

Presentations: (Asikainest al., 2002) and (Ylineret al, 2002) in theConfiguration
workshopof the conference

21st International Conference on Conceptual Modelling (ER), October 7-11, 2002,
Tampere, Finland

Software Variability Management Workshop, February 13-14, 2003, Groningen, The
Netherlands
Presentation: (Asikainegt al., 2003c)

25th International Conference on Software Engineering (ICSE), May 3—-10, 2003, Port-
land, Oregon, USA

Presentation: (Kojet al,, 2003) inEleventh International Workshop on Software Con-
figuration Management (SCM-1kgld in conjunction with the conference

18th International Joint Conference on Artificial Intelligence (IJCAI), August 9-15,
2003, Acapulco, Mexico
Presentation: (Asikainegt al., 2003b) inConfiguration workshopf the conference

Fifth International Workshop on Product Family Engineering (PFE-5), November 4—6,
2003, Siena, Italy
Presentations: (Asikainest al,, 2003a) and (Raatikainest al., 2004a)

International Conference on Economic, Technical and Organisational Aspects of Prod-
uct Configuration Systems (PETO), June 28-29, 2004, Copenhagen, Denmark

16th European Conference on Artificial Intelligence (ECAI), August 22—-27, 2004, Va-
lencia, Spain
Presentation: (Asikaineet al., 2004b) inConfiguration workshopf the conference

Software Product Line Conference (SPLC), August 30-September 2, 2004, Boston,
Massachusetts, USA
Presentations: (Asikaineet al, 2004c) and (Mykrniemiet al, 2004) inWorkshop

5.2. TALKS 33

on Software Variability Management for Product Derivation—Towards Tool Supgort
workshop held in conjunction with the conference

5.2 Talks

The members of the project group have given a number of talks related to the topic of the
project.

e Talk on Configurable software product families, Nokia Research Center (NRC), 2001,
Boston, Massachusetts, USA
Given by Tomi Mannisb.

¢ Full-day seminar on software architecture and software product families for continuing
education course, 2002, Espoo, Finland
Lectured by Tomi Minnisd

e Full-day seminar on software product families for industrial audience, 2002, Espoo,
Finland
Lectured by Tomi Minnisb

e Half-day seminar on software product families for Nordea (a bank), 2002, Finland
Lectured by Tomi Minnisd

e Lectures on special issues in software product families for industrial audience
Lectured by Tomi Minnisd

e Seminar on latest trends in product configuration, May 22, 2003, Espoo, Finland
In this seminar held in conjunction with WeCoTin project, Tomaivhist gave a lec-
ture on variability management in software product families, Mikko Raatikainen on the
product family survey, and Tero Kojo a presentation and demonstration on configuring
Linux Familiar over multiple releases.

e SoftaProfessional Summit, 2003, Espoo, Finland
Tomi Mannist gave a lecture on software product families and architectures.

e Seminar on software product families and reuse for industrial audience, 2004, Espoo,

Finland
Lectured by Tomi Mannisb.

5.3 Teaching

During the project, members in the project group have been engaged in a number of teaching
activities at the Helsinki University of Technology.

34

CHAPTER 5. DISSEMINATION AND INTERNATIONAL COLLABORATION

T-76.150 Software architecture (3 cr)

Full-term undergraduate course concentrating on various aspects related to software
architecture and software product families. Lectured by ToranMst during fall

terms 2001-2004. Timo Asikainen and Mikko Raatikainen have given guest lectures
at the course. Katariina Vuorio and Varvana Myhiemi have been assistants for the
course.

T-76.650 Special seminar on designing software architectures /

T-76.270 Special seminar on mastering quality attributes in software architectures
Full-term undergraduate seminar that purports to provide the participants with a clear
and concrete understanding of the design process for software architectures. The semi-
nar was held during fall 2002 and spring 2004. Ton@misb has been the responsible
teacher of the seminar at both times, and Varvana aMgilemi was the assistant during
spring 2004.

T-76.611 Software design and specification methods (2 cr)

Full-term undergraduate course that covers methods related to specifying the require-
ments for software systems, and designing them; mainly concentrated on the Unified
Modelling Language (UML). Timo Asikainen has been the assistant for the course dur-
ing spring terms 2002-2004. In addition, during the 2004 course he gave a guest lecture
on version 2.0 of the UML.

T-76.614 Software configuration management (2cr)

Full-term undergraduate course focusing on software configuration management (SCM).
Tero Kojo lectured the course during spring terms 2003 and 2004, and was assistant for
the course during spring 2002. The responsible teacher of the course is Bomidd.

T-86.150 Special Assignment in Information Technology (2-6 cr)
During the Sarcous project, Timo Soininen has supervised a number of individual as-
signments written related to software product families.

T-86.165 Seminar in Product Data Technology (2-6 cr)

Full-term undergraduate seminar concentrating on various aspects of product data man-
agement. The topic of the seminar varies. Spring 2003 the topic of the seminar was
product families from information technology point of vjeamd spring 2004oftware
product families and tool support for product familieBhe responsible teacher of the
seminar are Timo Soininen and Mikko Raatikainen.

5.4 Reviewing

The members of the project group have acted as reviewers in a number of international jour-
nals and conferences related to the topic of project.

Tomi Mannist has reviewed articles for the following journaldournal of Computing

and Information Science in Engineerin§cience of Computer Programmingnd Software
Practice and Experien¢and for thedth Product Family Engineering Workshop (PFE-4)

5.5. OTHER 35

Timo Soininen has acted as a referee for the following journ8lsence of Computer
Programmingand Concurrent Engineering: Research and Applications JouraaH for the
workshop orSoftware Variability Managemehteld in Groningen, The Netherlands, 2003.

Timo Asikainen has acted as a reviewer for the jour®aftware Practice and Experi-
ence and as a peer reviewer for the workshopSwftware Variability Managemeteld in
Groningen, The Netherlands, 2003.

Mikko Raatikainen was a peer reviewer for the special issué&oitware Variability:
Process and Managemeat International Journal of Software Process: Improvement and
Practice (SPIP)

55 Other

Tomi Mannist is a member of the IFIP (International Federation for Information Processing)
WG-2.10 Software Architecture working group, and has actively participated in its meetings.

36 CHAPTER 5. DISSEMINATION AND INTERNATIONAL COLLABORATION

Chapter 6

Publications

Asikainen Timo. 2002 Representing Software Product Line Architectures Using a Configu-
ration Ontology M.Sc.Tech. thesis, Helsinki University of Technology, Department of
Industrial Engineering and Management.

Asikainen Timo, Soininen Timo, & Mnnisd Tomi. 2002. Representing Software Product
Family Architecture Using a Configuration Ontolodg: Configuration workshop of the
15th European Conference on Atrtificial Intelligence (ECAI 2002)

Asikainen Timo, Soininen Timo, & Mnnist Tomi. 2003a. A Koala-Based Approach for
Modelling and Deploying Configurable Software Product Families.Proceedings of
the 5th International Workshop on Product Family Engineering (PFE-5). Lecture Notes
in Computer Science 3014.

Asikainen Timo, Soininen Timo, & Knnisb Tomi. 2003b. A Koala-Based Ontology fro Con-
figurable Software Product FamilieB1: Configuration Workshop of 18th International
Conference on Artificial Intelligence (IJCAI-Q3)

Asikainen Timo, Soininen Timo, & Mnnist Tomi. 2003c. Towards Managing Variability
Using Software Product Family Architecture Models and Product Configurators.
Proceedings of Software Variability Management Workshop. IWI preprint 2003-7-01

Asikainen Timo, Mannist Tomi, & Soininen Timo. 2004a. Forfamel: Feature Modelling
for Configurable Software Product Familids.: 2nd Groningen Workshop on Software
Variability Management (submitted)

Asikainen Timo, Mannisb Tomi, & Soininen Timo. 2004b. Representing Feature Models of
Software Product Families Using a Configuration OntoldgyConfiguration workshop
of the 16th European Conference on Artificial Intelligence (ECAI 2004)

Asikainen Timo, Mannisb Tomi, & Soininen Timo. 2004c. Using a Configurator for Mod-
elling and Configuring Software Product Lines Based on Feature Mobrel®roceed-
ings of Software Variability Management for Product Derivation — Towards Tool Support,
a workshop in SPLC 2004

37

38 CHAPTER 6. PUBLICATIONS

Kojo Tero, Soininen Timo, & Minnisb Tomi. 2003. Towards Intelligent Support for Manag-
ing Evolution of Configurable Software Product FamiliBages 86—101 of. Proceedings
of the 11th International Workshop on Software Configuration Management (SCM-11).
Lecture Notes in Computer Science 2469

Mannisb Tomi, Soininen Timo, & Sulonen Reijo. 2000. Configurable Software Product Fam-
ilies. In: Configuration workshop of the 14th European Conference on Artificial Intelli-
gence (ECAI 2000)

Mannist Tomi, Soininen Timo, & Sulonen Reijo. 2001a. Modelling Configurable Products
and Software Product Familieg: Configuration Workshop of 17th International Joint
Conference on Atrtificial Intelligence (IJCAI-Q1)

Mannisb Tomi, Soininen Timo, & Sulonen Reijo. 2001b. Product Configuration View to
Software Product Familiesin: Proceedings of the Tenth International Workshop on
Software Configuration Management (SCM-10) of ICSE 2001

Mannisb Tomi, & Bosch Jan (eds). 2004Software Variability Management for Product
Derivation—Towards Tool SupporBoberIT Technical Reports.

Myll arniemi Varvana, Asikainen Timo, &hnist Tomi, & Soininen Timo. 2004. Tool for
Configuring Product Individuals from Configurable Software Product Famiie$2ro-
ceedings of Software Variability Management for Product Derivation - Towards Tool
Support, a workshop in SPLC 2004

Raatikainen Mikko. 2003A Research Instrument for an Empirical Study of Software Product
Families M.Sc.Tech. thesis, Helsinki University of Technology.

Raatikainen Mikko, Soininen Timo, &Bhnist Tomi, & Mattila Antti. 2004a. A Case Study of
Two Configurable Software Product Familids. Proceedings of the 5th International
Workshop on Product Family Engineering (PFE-5). Lecture Notes in Computer Science
3014.

Raatikainen Mikko, Minnisb Tomi, & Soininen Timo. 2004b. Towards a Scientific Approach
to Study Software Product Families in Industin: 2nd Groningen Workshop on Soft-
ware Variability Management (submitted)

Raatikainen Mikko, Soininen Timo, & Bhnisb Tomi. 2005. Characterizing Product Deriva-
tion in the Configurable Software Product Fami§oftware Process: Improvement and
Practices to appear.

Simons Patrik, Niemél llkka, & Soininen Timo. 2002. Extending and Implementing the
Stable Model Semanticértificial Intelligence 1381-2), 181-234.

Tiihonen Juha, Soininen Timo, Niengellkka, & Sulonen Reijo. 2003. A Practical Tool for
Mass-Customising Configurable Produdts. Proceedings of the International Confer-
ence on Engineering Design (ICED’Q3)

39

Ylinen Katariina, Mannisb Tomi, & Soininen Timo. 2002. Configuring Software Product
with Traditional Methods - Case Linux Familidn: Configuration workshop of the 15th
European Conference on Atrtificial Intelligence (ECAI 2002)

40

CHAPTER 6. PUBLICATIONS

References

Allen Robert, & Garlan David. 1997. A Formal Basis for Architectural Connectia@M
Transactions on Software Engineering and Methodal6¢3), 213—249.

Asikainen Timo. 2002 Representing Software Product Line Architectures Using a Configu-
ration Ontology M.Sc.Tech. thesis, Helsinki University of Technology, Department of
Industrial Engineering and Management.

Asikainen Timo, Soininen Timo, & Mnnisd Tomi. 2002. Representing Software Product
Family Architectures Using a Configuration Ontology: Configuration workshop of
the 15th European Conference on Atrtificial Intelligence (ECAI 2002)

Asikainen Timo, Soininen Timo, & Mnnisd Tomi. 2003a. A Koala-Based Approach for
Modelling and Deploying Configurable Software Product Families.Proceedings of
the 5th International Workshop on Product Family Engineering (PFE-5). Lecture Notes
in Computer Science 3014.

Asikainen Timo, Soininen Timo, & nnisb Tomi. 2003b. A Koala-Based Ontology fro Con-
figurable Software Product FamilieB1: Configuration Workshop of 18th International
Conference on Atrtificial Intelligence (IJCAI-Q3)

Asikainen Timo, Soininen Timo, & Mnnist Tomi. 2003c. Towards Managing Variability
Using Software Product Family Architecture Models and Product Configurators.
Proceedings of Software Variability Management Workshop. IWI preprint 2003-7-01

Asikainen Timo, Mannisb Tomi, & Soininen Timo. 2004a. Forfamel: Feature Modelling
for Configurable Software Product Familids. 2nd Groningen Workshop on Software
Variability Management (submitted)

Asikainen Timo, Mannisb Tomi, & Soininen Timo. 2004b. Representing Feature Models of
Software Product Families Using a Configuration OntoldgyConfiguration workshop
of the 16th European Conference on Artificial Intelligence (ECAI 2004)

Asikainen Timo, Mannisb Tomi, & Soininen Timo. 2004c. Using a Configurator for Mod-
elling and Configuring Software Product Lines Based on Feature Mohtel®roceed-
ings of Software Variability Management for Product Derivation—Towards Tool Support,
a workshop in SPLC 2004

Bosch Jan. 200Mesign and Use of Software Architectuseddison-Wesley.

Clements Paul, & Northrop Linda M. 2008oftware Product Lines: Practices and Patterns
Addison-Wesley.

Cohen Sholom. 2002Product Line State of the Practice Repofech. rept. CMU/SEI-2002-
TN-017. Software Engineering Institute (SEI), Carnegie Mellon University.

41

42 REFERENCES

Conradi R., & Westfechtel B. 1996. Configuring Versioned Software ProdBatges 88—109
of: Proceedings of the International Conference on Software Engineering (ICSE-18)

Eisenhardt Kathleen M. 1989. Building Theories from Case Study Rese&wddemy of
Management RevieWw4(4), 532-550.

Frakes William B., & Fox Christopher J. 1995. Sixteen Questions About Software Reuse.
Communications of the ACN38(7), 75-87.

Garlan David. 2001. Software Architectuta: Encyclopedia of Software Engineeringiley
& Sons.

Garlan David, Monroe Robert T., & Wile David. 1997. Acme: An Architecture Description
Interchange Languagén: Proceedings of CASCON’'97

Knauber Peter, Bermejo Jesu)d&le Qinter, do Prado Leite Julio Cesar Sampaio, van der
Linden Frank, Northrop Linda M., Stark Michael, & Weiss David. 2002. Quantifying
Product Line Benefitd?ages 155-163 of: Proceedings of the 4th International Workshop
on Product Family Engineering (PFE-4). Lecture Notes in Computer Science 2290

Kojo Tero, Soininen Timo, & Minnisb Tomi. 2003. Towards Intelligent Support for Manag-
ing Evolution of Configurable Software Product FamiliBages 86—101 of: Proceedings
of the 11th International Workshop on Software Configuration Management (SCM-11).
Lecture Notes in Computer Science 2469

Mannisb Tomi, & Bosch Jan (eds). 2004Software Variability Management for Product
Derivation—Towards Tool SupporSoberIT Technical Reports.

Mannisbt Tomi, Soininen Timo, & Sulonen Reijo. 2000. Configurable Software Product Fam-
ilies. In: Configuration workshop of the 14th European Conference on Atrtificial Intelli-
gence (ECAI 2000)

Mannist Tomi, Soininen Timo, & Sulonen Reijo. 2001a. Modelling Configurable Products
and Software Product Familiel: Configuration Workshop of 17th International Joint
Conference on Atrtificial Intelligence (IJCAI-Q1)

Mannist Tomi, Soininen Timo, & Sulonen Reijo. 2001b. Product Configuration View to
Software Product Familiesin: Proceedings of the Tenth International Workshop on
Software Configuration Management (SCM-10) of ICSE 2001

Medvidovic Nenad, & Taylor Richard M. 2000. A Classification and Comparison Frame-
work for Software Architecture Description LanguagHsEE Transactions on Software
Engineering26(1), 70-93.

Morisio Maurizio, Ezran Michel, & Tully Colin. 2002. Success and Failure Factors in Soft-
ware ReuselEEE Transactions on Software Engineeri2(4), 340-357.

Myll arniemi Varvana, Asikainen Timo, &hnisd Tomi, & Soininen Timo. 2004. Tool for
Configuring Product Individuals from Configurable Software Product Famiied2ro-
ceedings of Software Variability Management for Product Derivation—Towards Tool
Support, a workshop in SPLC 2004

Parnas David L. 1976. On the Design and Development of Program FanHEEE. Transac-
tions on Software Engineering7(4), 40-52.

REFERENCES 43

Raatikainen Mikko. 2003A Research Instrument for an Empirical Study of Software Product
Families M.Sc.Tech. thesis, Helsinki University of Technology.

Raatikainen Mikko, Soininen Timo, Bhnist Tomi, & Mattila Antti. 2004a. A Case Study of
Two Configurable Software Product Familids. Proceedings of the 5th International
Workshop on Product Family Engineering (PFE-5). Lecture Notes in Computer Science
3014.

Raatikainen Mikko, Minnist Tomi, & Soininen Timo. 2004b. CASFIS—Approach for study-
ing software product families in industryin: 2nd Groningen Workshop on Software
Variability Management (submitted)

Raatikainen Mikko, Soininen Timo, & Bhnisb Tomi. 2005. Characterizing Product Deriva-
tion in the Configurable Software Product Famioftware Process: Improvement and
Practices to appear.

Simons Patrik, Niemél Ilkka, & Soininen Timo. 2002. Extending and Implementing the
Stable Model Semanticétrtificial Intelligence 1381-2), 181-234.

Soininen Timo, Tiihonen Juha, &hnisd Tomi, & Sulonen Reijo. 1998. Towards a General
Ontology of ConfigurationArtificial Intelligence for Engineering Design, Analysis and
Manufacturing (AIEDAM)12(4), 357-372.

Strauss Anselm, & Corbin Juliet. 199Basics of Qualitative Research edn. Sage.

Tiihonen Juha, Soininen Timo, Niendellkka, & Sulonen Reijo. 2003. A Practical Tool for
Mass-Customising Configurable Produdts. Proceedings of the International Confer-
ence on Engineering Design (ICED’Q3)

Tracz Will. 1988. Software Reuse MythrSCM SIGSOFT Software Engineering NotEX(1),
17-21.

van der Hoek A, Hall R. S., Heimbigner D., & Wolf A. L. 1997. Software Release Manage-
ment.Pages 159-175 of: Proceedings of the European Software Engineering Conference
ESEC/FSE 1997

van der Linden Frank. 2002. Software Product Families in Europe: The Esaps and Cafe
projects.|IEEE Software19(4), 41-49.

van Ommering Rob, van der Linden Frank, Kramer Jeff, & Magee Jeff. 2000. The Koala
Component Model for Consumer Electronics SoftwdEEE Computer33(3), 78-85.

Yin Robert K. 1994 .Case study Researchnd edn. Sage.

Ylinen Katariina, Mannisb Tomi, & Soininen Timo. 2002. Configuring Software Product
with Traditional Methods - Case Linux Familidn: Configuration workshop of the 15th
European Conference on Artificial Intelligence (ECAI 2002)

