
Practical Experiences of Agility in the Telecom
Industry

Jari Vanhanen1, Jouni Jartti2, and Tuomo Kähkönen2

1 Helsinki University of Technology, Software Business and Engineering Institute,
P.O. Box 9600, FIN-02015 HUT, Finland

jari.vanhanen@hut.fi

2 Nokia Research Center, P.O. Box 407, FIN-00045 NOKIA GROUP, Finland
{jouni.jartti, tuomo.kahkonen}@nokia.com

Abstract. This paper discusses the adoption level of and experiences from
using agile practices in three software development projects in a large Telecom
company. The use of agile practices was more emergent than planned. Project
managers and developers simply used practices they considered efficient and
natural. The most widely adopted agile practices were to measure progress by
working code, to have developers estimate task efforts, to use coding standards,
having no continuous overtime, to have the team develop its own processes, to
use limited documentation, and to have the team in one physical location. The
projects used conventional testing approaches. Adoption of agile testing
practices, i.e., test first and automated unit tests, was low. Some agile practices
can just emerge without conscious adoption, because developers find them
useful. However, it seems that an emergent process aiming for agility may also
neglect important agile practices.

1 Introduction

The competitiveness of IT companies is affected by how well their software
development process can react to changing needs set for products [1,2]. We define
agility as the ability to adapt to changing situations appropriately, quickly and
effectively. In other words, agile organizations notice relevant changes early, initiate
action promptly, create a feasible and effective alternative plan quickly, and reorient
work and resources according to the new plan quickly and effectively.

In the Telecom industry software development has traditionally followed rather
rigorous processes, typically using process frameworks such as ISO-15504 [3] or the
SW-CMM [4]. As far as we know, no studies have been published discussing the use
of agile methods in the Telecom industry. Thus, we believe that this paper sheds some
light on the current situation.

 Jari Vanhanen, Jouni Jartti, and Tuomo Kähkönen

1.1 Study Background

This study was made in a large telecom company as part of a research program,
whose goal is to increase and transfer practical knowledge of achieving agility in
software development. Creating a full-fledged methodology and trying to leverage it
in a large organization is not feasible. However, describing a set of process patterns
[5] that promote agility is more feasible. A process pattern describes a practice
considering topics such as which problem it solves, when it is applicable, how to
deploy it etc. McCormick’s [6] ideas for creating a methodology for a project also
support the process patterns approach: “What’s needed is not a single software
methodology, but a rich toolkit of process patterns and ‘methodology components’
(deliverables, techniques, process flows, and so forth) along with guidelines for how
to plug them together to customize a methodology for any given project.” Of course,
the ideal content of an agile toolkit depends on the context, and the limits of agile
practices are still unclear.

Before the study, we had collected a tentative list (Table 3) of agile practices that
could be applicable in the company. Most of the practices are described in XP [7] and
the rest in other literature [8,9]. This specific study aimed at increasing our
understanding of the current level of use of these and potentially some other agile
practices in the company. Based on the results of this study we will evaluate and
improve the practicality and completeness of our tentative agile practice list.

The research questions for this study were:
1. Which agile practices were used in these projects?
2. What experiences were reported on those practices?

1.2 Research Method

Using the company’s intranet and personal relationships, we identified several
projects from the case company in Finland that were either consciously or non-
consciously using agile software development practices. However, we could not
identify any project that was using a complete agile methodology such as XP. From
seven identified candidates we selected three projects, A, B, and C, which seemed to
be most active in using agile practices. All selected projects were developing different
kinds of products in different business units, and for different markets.

We interviewed the project manager and a developer from projects A and B, and
only a developer from project C. The interviews covered all typical software project
areas at a general level in order to identify other agile practices in addition to those we
had already listed.

We quantified the level of use of the agile practices (Table 1) in order to better
answer the first research question. Quantification was difficult because there are
several dimensions that should be considered, e.g., number of people using the
practice, duration of use, discipline of use, and aspects used. The second research
question was answered by a qualitative analysis of the reported experiences.

Practical Experiences of Agility in the Telecom Industry

Table 1. The quantification scale for the use of agile practices

Value Description
3 Considerable use, e.g. it was almost a norm to use it.
2 Moderate use, e.g. several people used it for a long time.
1 Minor use, e.g. someone tried the practice for some time.
0 Practically no use of the practice.

1.3 Overview of the Projects

Project A developed a Unix based application. The mindset of the project’s first two
developers was towards light practices and because the project grew slowly over time,
they had time to find the natural, minimal process. The success of the product and the
small number of developers allowed them to keep the process as they wanted despite
of the external pressure to change it to comply better with the organization’s general
process model. Project B developed low-level embedded software. The project
manager decided the practices used in the project based on his previous experiences.
Project C was a release project in which a small team worked in a larger 70-person
sub-project that was part of the further development of a very large legacy system.
The team tried to improve the current process by deploying some aspects of certain
XP practices. Table 2 summarizes the characteristics of these projects.

Table 2. Project characteristics

 Project A Project B Project C
Project type Development of an

evolving sw product
Integration and porting

of embedded sw
Development of a part

of a larger system
People 1 12 8 4 (of 70)
Distribution Two teams in two

countries
Co-located team Co-located team

Duration 8 years 10 months 1.5 years
Effort ~50 man years ~6 man years ~6 man years
SW Size 590 kLOC 15 kLOC 40 kLOC

2 Results

2.1 Adoption of Agile Practices

The use of agile practices was more emergent than planned. Typically, the process or
the use of individual practices was not formally defined or documented, but rather the
project manager and the developers used practices that they considered efficient and
natural. XP was partially experimented in project C, but others did not use any
documented agile methodology as the basis for their process. The motivation for
using agile practices was either experimenting with something new, e.g. some XP
practices, or just working in a way that felt natural and had worked earlier in other

 Jari Vanhanen, Jouni Jartti, and Tuomo Kähkönen

projects. Table 3 presents the adoption level of agile practices and the following
sections describe the experiences.

Table 3. Adoption level of agile practices

Practice A B C
Incremental delivery 2 0 1
Continuous integration 2 0 2
Measure progress by working code 3 3 2
Interactive planning 2 0 1
Developers estimate task efforts 2 2 3
Visual modeling 1 2 2
Use cases 0 0 3
Design Patterns 2 0 0
Continuously developed architecture 2 1 1
Pair programming 0 0 1
Collective code ownership 2 1 2
Coding standard 3 1 3
Refactoring 2 2 1
Write tests first 0 0 0
Automated unit testing 0 0 0
Customer writes acceptance tests 1 0 0
Limited documentation 3 2 1
Team in one location 0 3 3
Frequent team meetings 1 1 2
Customer always available 2 2 0
Team develops its processes 3 2 1
No continuous overtime 3 2 1

2.2 Use of the Practices

Incremental Delivery. Project A had a release cycle of about 6 months. Later in the
cycle, pre-releases were delivered weekly to the customer. Project B planned the first
release to occur 10 months after the project initiation, but the project was cancelled
due to business reasons before the first release. Project C had a 6-month release cycle.

Continuous Integration. In project A, new code was checked in to the common
repository as often as reasonable, typically after a few days of development. The code
had to work before the check-in. In project B, developers first implemented the
subsystems separately, followed by an integration phase. In project C, developers
integrated their code after a few days of work.

3 considerable use
2 moderate use
1 minor use
0 practically no use

Practical Experiences of Agility in the Telecom Industry

Measure Progress by Working Code. In project A, the current version was
delivered weekly to the customer. Users tried the pre-releases and gave valuable
feedback replacing the need for a detailed requirement specification. Users were
committed thanks to the short feedback loop. The developers also considered it
rewarding to see results soon. Project B was internally split into software milestones
every 1 to 6 weeks.

Interactive Planning. In project A, the project manager continuously discussed the
specifications with the customer. The presence of the relevant developers in the
customer meetings was considered important for gaining a common understanding
and giving a feeling of appreciation for the developers. Prioritization was made
together with the customer at different levels (general direction, features) also
concerning the technical feasibility of the proposals.

Developers Estimate Task Efforts. In project A, the best expert in an area performed
effort estimation. In project B effort estimates originated from the functional
specification phase, but the development team re-estimated them before
implementation. In project C, rough effort estimates were made before the project in
the feasibility study, but the developers refined them later.

Visual Modeling. In project A, the technical documentation contained only a few
diagrams. One reason for avoiding diagrams was the lack of a good drawing tool. In
project B, developers considered a picture of the whole system showing the parts and
their connections being the most important part of architectural documentation. The
developers also drew UML scenario and process diagrams of their subsystems. In
project C scenario and class diagrams were used.

Use Cases. In project B, use case modeling was not used, because the project was
mostly technical, low-level development. In project C, requirements were
documented using use cases.

Design Patterns. Project A began to use design patterns after the first major
refactoring of the product. In project B, design patterns were not considered
applicable due to low-level C coding.

Continuously Developed Architecture. In project A, the architecture was developed
in parallel with new features. Project B made higher-level design early based on an
external specification. The design remained quite stable.

Pair Programming. In project C problems in code were often solved with a pair, but
during programming tasks pairing was scarce. However, even this amount of pairing
when debugging spread the knowledge of the system among developers.

Collective Code Ownership. In project A, any developer was allowed to change any
part of the code if needed, but in practice they focused on their own modules. In
project B, developers mostly worked with their own code. Sometimes they read

 Jari Vanhanen, Jouni Jartti, and Tuomo Kähkönen

others’ code, but the owner made the final changes. In project C, developers were
allowed to change others’ code and even the platform code.

Coding Standard. In project A, a style guide was followed in naming variables,
structuring the code, and organizing the code in files. In project B, instructions
covered only the module interfaces. In project C, a general style guide by the
company was followed.

Refactoring. In project A, architectural decay was always present as new features
were added, and refactoring was exercised all the time. However, not all developers
refactored consistently, causing some parts to decay quite badly. Senior people kept
the code in better shape. Project B changed low-level design quite a lot during coding.
Project C refactored scarcely in order not to break the existing, large code base.

Write Tests First. None of the studied projects wrote unit tests before the real code.

Automated Unit Testing. Project A tried writing unit tests without good results due
to the strong GUI orientation. In project C, writing unit tests was found too difficult
and time-consuming.

Customer Writes Acceptance Tests. In project A, the customer organization
performed system testing. They might have had test cases defined, but the developers
never saw them.

Limited Documentation. In project A, technical documentation contained a short
architecture document and some technical guideline documents. These were not
typically kept up-to-date. They were considered somewhat useful for new people, but
apprenticeship-style hands-on training was most successful for transferring
knowledge. Senior developers did not need the documents at all. Even the
development at two sites did not seem to require more documents.

Project B had a short technical document of each subsystem and a general
architecture description of the system. The need for design documentation was low
because the size of the software was rather small and it had a modular structure. Only
one person developed each subsystem and only the interfaces were of interest to
others. The details and reasons behind the solutions were commented in the source
code. The comments were important even for the author due to the new domain.
Requirements were gathered in a short document. There was only one real user
requirement and others were technical requirements.

Team in One Location. In project A a team that worked in another country was
added to the project. After several months of apprenticeship in Finland, the team
members started to work in their home country. The teams held frequent
teleconferences, some meetings, and yearly workshops. Lead developers had own
rooms and others worked in a landscaped office, which some developers did not like
due to disturbing background noise. Projects B and C had adjacent two-person rooms.

Practical Experiences of Agility in the Telecom Industry

Frequent Team Meetings. In project A, the team ate lunch together, and never
considered it necessary to have official daily meetings. Project B had a weekly status
meeting, where everyone told what he had done since the last meeting. Project C had
meetings when necessary, typically 15-30 minutes once or twice a week.

Customer Always Available. In project A, there was a weekly meeting between the
customer, project manager and some developers. There were also many discussions
with the customer. In project B, the product manager played the customer role. His
room was in another floor, but he answered questions when posed. In project C, the
project manager played the role of the customer. It was difficult to identify a real
customer and have proper customer involvement.

Team Develops Its Processes. In project A, the project manager created the process
together with the team. The team liked the way they worked, and the lack of clear
roles such as managers, designers and coders improved team spirit. In project B, the
project manager created the process and discussed it with the team. The developers
were most interested in developing software, so the proposed, light process did not
meet with resistance. In project C, the team planned experimenting with XP practices,
otherwise the process was defined outside the team.

No Continuous Overtime. In project A people worked overtime only before
important releases. Project B used some overtime to speed up the first release. In
project C overtime increased towards the end of the project, but was not considerable.

3 Discussion

3.1 Adoption Level

The most frequently and thoroughly adopted practices were to measure progress by
working code, having developers estimate task efforts, using a coding standard, not
using continuous overtime, having the team develop its own process, limited
documentation, and having the team in one location.

Some practices such as interactive planning, write tests first, automated unit
testing, customer writes acceptance tests, and pair programming were used almost
nowhere. It may be that the familiarity with these practices was weak among the
interviewees and some practices are quite exotic and difficult to adopt causing that the
practices do not just emerge. It may be that the process must be created based on
some documented agile methodology or a best practice list in order for these practices
to be adopted. As agile testing practices are often considered as a prerequisite for
many other agile practices, the low adoption of these practices suggests that more
education is needed in this area.

 Jari Vanhanen, Jouni Jartti, and Tuomo Kähkönen

3.2 Success Factors

We identified the following success factors in the projects. In project A, the
architects stayed with the project, refactored the architecture continuously and
accomplished the survival and evolution of the architecture. The first developer
became the project manager, so managerial decisions were made quickly by a person
who had the best technical knowledge of the software. The customer representative
remained the same and a mutual trust could be built.

The personnel was one of the strengths of project B. The project manager selected
developers based on their skills and traits in order to form a good team for this
project. The project manager was both managerially and technically competent and
designed the overall architecture.

In project C, frequent team meetings helped designing the details of the initial
high-level specification. Pairing while debugging was a very useful practice and
spread the knowledge of the system among the developers.

3.3 New Practices

The following additional practices were identified. Technical authority, e.g., a
technically competent project manager improves agility because that person is able to
make decisions quickly. The project manager’s understanding of the technical details
increases the likelihood to have the courage to decrease control elements such as
managerial documents and project reviews from the process. Team continuity,
meaning that key persons stay within the project, improves efficiency because the
tacit information is preserved as happened with the architecture in project A.

3.4 Other Findings

Collective ownership improves agility by removing delays in development. If the
system has a modular structure and different parts require different technical skills,
the most efficient way of development may still be to let people specialize in some
parts, and have one or two semi-experts as a backup for each part. Landscaped offices
allow efficient and quick communication, but may disturb work requiring high
concentration. Project A showed that some agile practices are viable even in a
distributed project. Developers typically accepted an agile process well. This was true
even in project B where they were not involved in designing the process.

3.5 Evaluation of the Research

The reported experiences of the advantages and disadvantages of specific practices
were quite scarce. It may be that people have not been very conscious of using
certain, admittedly vague practices that may have emerged instead of being
consciously deployed. In addition, some practices, such as limited documentation and
measure progress with working code actually mean not doing something, e.g., thick

Practical Experiences of Agility in the Telecom Industry

documents or progress reporting. Therefore evaluating the effects of these practices
and discussing about the related experiences may have been hard for the interviewees.

In the interviews, the origin of the adoption of each individual practice was not
explicitly asked for. Therefore, we cannot say for sure for all practices, which were
consciously adopted and which just emerged.

4 Conclusions

This paper presented experiences of the use of agile practices in three projects in
the Telecom industry. The use of agile practices was more emergent than planned.
Typically, processes or individual practices were not formally defined. Instead,
project managers and developers used practices they considered efficient and natural.

Generally speaking both the project managers and developers were satisfied with
their current software development processes compared to their earlier experiences
with heavier, more formal processes. They could do what they consider important
(software) and see concrete results soon through frequent customer deliveries. This
might explain the positive tone of the interviewees when discussing about their
projects.

The adoption level of agile testing practices, i.e., write tests first and automated
unit tests, whose use is typically considered a significant prerequisite for several other
agile practices, was low. More information on these practices is clearly needed among
the projects.

The emergence of agile practices without conscious adoption can be considered a
good sign, indicating that agile practices are considered useful by the developers
themselves. However, it seems that several important practices may be neglected, if a
process, whose goal is to be agile is not consciously created but instead just emerges.
Agile practices presented, e.g., as process patterns could help find and deploy the
most suitable practices more efficiently.

References

1. McCormack, A. et al.: Developing Products on Internet Time: The Anatomy of a
Flexible Development Process. Management Science 47, 1 (2001) 133-150

2. Thomke, S. and Reinertsen, D.: Agile product development: Managing development
flexibility in uncertain environments. California Management Review 41, 1 (1998) 8-30

3. ISO/IEC TR 15504: Information Technology – Software Process Assessment, Parts 1-
9. Type 2 Technical Report (1998).

4. Paulk, M. et al. Capability Maturity Model for Software, Version 1.1. Technical Report
CMU/SEI-93-TR24. Pittsburgh, PA: Carnegie Mellon University, Software
Engineering Institute (1993).

5. Ambler, S.W.: Process Patterns. Building Large-Scale Systems Using Object
Technology. Cambridge University Press, (1998)

6. McCormick, M.: Programming Extremism, Communications of the ACM 44, 6 (2001)
109-111

7. Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley, (2000)

 Jari Vanhanen, Jouni Jartti, and Tuomo Kähkönen

8. Ambler, S.W.: Agile Modeling. John Wiley & Sons, Inc., New York (2002)
9. Gamma, E. et al.: Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley, (1995)

