
HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Electrical and Communications Engineering

Lauri Vuornos

Software Process Improvement in a Small

High-Tech Company: Case Smartner Information

Systems Ltd.

Master's Thesis

26.5.2002

Supervisor: Professor Casper Lassenius
Instructor: M.Sc. Kristian Rautiainen

Abstract

Author and name of the thesis:

Lauri Vuornos:
Software Process Improvement in a Small High-Tech Company: Case Smartner
Information Systems Ltd.
Date: 26.5.2002 Number of pages: 105

Departement: Professorship:

Electrical and Communications Engineering T-76

Supervisor:

Professor Casper Lassenius
Instructor:

M.Sc. Kristian Rautiainen, Helsinki University of Technology

The objective of this thesis is to help the case organization, Smartner Infor-
mation Systems Ltd., to improve its software development process. The main
focus is on de�ning a new software process model for the case organization
and a suggestion for deployment steps of the new model.

The thesis begins with de�ninition of the research problem and goals, and
with presenting motivations and background for the work. It is followed by
an introduction of the case organization and its current software process.

Requirements for the new process model are worked out with professionals
from the case organization based on current needs and challenges in the soft-
ware development. Based on a literature study, four existing software process
models are evaluated against the requirements.

The central part of the thesis presents the new software process model for the
case organization. The new model is based on the requirements and the eval-
uated existing models. The new model takes selected practices from existing
software process models and combines them into a new model.

The last part of the thesis compares the current practices of the case orga-
nization to the new model and introduces a suggestion for deploing the new
model. The suggestion consists of improvement steps that aim to solve spe-
ci�c problems in the current practices of the case organization by deploying
practices of the new model.

Keywords: software development process, software engineering, software pro-
cess improvement, agile software process

Tiivistelm�a

Tekij�a ja ty�on nimi:

Lauri Vuornos:
Software Process Improvement in a Small High-Tech Company: Case Smartner
Information Systems Ltd.
P�aiv�am�a�ar�a: 26.5.2002 Sivum�a�ar�a: 105

Osasto: Professuuri:
S�ahk�o- ja tietoliikennetekniikan osasto T-76

Ty�on valvoja:

Professori Casper Lassenius
Ty�on ohjaaja:
DI Kristian Rautiainen, Teknillinen korkeakoulu

T�am�an diplomity�on tavoitteena on auttaa case-yrityst�a, Smartner Information
Systems Ltd., parantamaan ohjelmistoprosessiaan. Ty�on p�a�apaino on uuden
ohjelmistoprosessimallin kehitt�amisess�a case-yritykselle, sek�a ohjelmistopros-
essin kehitysehdotuksen laatimisessa perustuen uuteen malliin.

T�am�a ty�o alkaa tutkimusongelman ja tavoitteiden m�a�arittelyll�a, ty�on tarpeel-
lisuuden perustelulla, sek�a ty�on taustan kuvaamisella. T�am�an j�alkeen case-
yritys ja sen nykyinen ohjelmistokehitystoprosessi esitell�a�an.

Vaatimukset uudelle ohjelmistoprosessille selvitet�an yhdess�a case-yrityksen
asiantuntijoiden kanssa. Vaatimukset pohjautuvat case-yrityksen ohjelmis-
tokehityksen nykyisille haasteille ja ongelmille. Kirjallisuustutkimuksen pe-
rusteella nelj�a olemassa olevaa ohjelmistoprosessimallia arvioidaan vaatimuk-
sia vasten.

Keskeisimm�ass�a osassa ty�ot�a esitell�a�an uusi ohjelmistoprosessimalli case-
yritykselle. Uusi malli pohjautuu m�a�aritellyille vaatimuksille, sek�a olemassa
olevien mallien arvioinneille. Uuteen malliin yhdistet�a�an valitut k�ayt�ann�ot ja
periaatteet arvioiduista ohjelmistoprosessimalleista.

Ty�on viimeisess�a osassa verrataan case-yrityksen ohjelmistokehitysk�ayt�ant�oj�a
uuteen malliin, sek�a esitet�a�an ehdotus mallin k�aytt�o�onotosta. Ehdotus koostuu
parannuskokonaisuuksista, jotka pyrkiv�at ratkaisemaan tiettyj�a ongelmia case-
yrityksen nykyisess�a ohjelmistokehityksess�a uuden mallin avulla.

Avainsanat: ohjelmistoprosessi, ohjelmistotuotanto, ketter�a ohjelmistoprosessi

Preface

This thesis has been written for Smartner Information Systems Ltd.
I am very grateful to Smartner Information Systems Ltd., especially my

superior Ari Backholm, for providing me the time and resources to write
this thesis.

I would like to thank my supervisor, Professor Casper Lassenius for
his valuable comments and interest in the work. My instructor Kristian
Rautiainen has been very helpful in providing feedback and thoughts about
software development process in small companies.

I would also like to thank Miira Heini�o for helping me with the English
grammar and linguistics.

Special thanks to Hanna Salakari for patience at home and for encour-
aging me to �nish this thesis.

Helsinki, 26.5.2002

Lauri Vuornos

i

Contents

1 Introduction 1

1.1 Background . 1
1.2 Research Problem . 3
1.3 Goals and Objectives . 4
1.4 Research Scope . 5
1.5 Research Structure . 7
1.6 Research Methodology . 7

2 Requirements for the Software Process 9

2.1 Case Organization . 9
2.1.1 Customers and Products 10
2.1.2 Units and Teams . 10

2.2 Current Software Process . 11
2.2.1 Background in Software Process Development 11
2.2.2 Current Software Process 12

2.3 Workshop for De�ning Requirements 15
2.3.1 Workshop Setup . 15
2.3.2 Overview of the Workshop Results 16
2.3.3 Description of the Environment 17
2.3.4 Needs for the Product Development 21
2.3.5 Comparing Needs to Literature 27

2.4 Summary of the Requirements 31

3 Evaluating Existing Process Models 34

3.1 Choosing Models to Evaluate 34
3.1.1 Rational Uni�ed Process 35
3.1.2 Extreme Programming 36
3.1.3 Scrum . 38
3.1.4 Synchronize and Stabilize 40

3.2 Evaluation of the Software Process Models 41
3.2.1 Architecture Centric 42
3.2.2 Time Oriented . 42
3.2.3 Fast Reactions to Changes 44

ii

3.2.4 Customer Oriented . 44
3.2.5 Managed Requirements 45
3.2.6 Visible Development 46
3.2.7 End-user Oriented . 47
3.2.8 Focus on the Product 47
3.2.9 Extensive Testing . 47
3.2.10 Learning Organization 48
3.2.11 Research for the Future 48

3.3 Summary of the Evaluation 49

4 The New Software Process Model 51

4.1 Overview . 52
4.1.1 Leadership and Management 52
4.1.2 Periodical Approach 53
4.1.3 Main Concepts and Alignment 54

4.2 Strategic Release Management 57
4.2.1 Roadmapping . 58
4.2.2 Resource allocation . 60

4.3 Release Project Cycle . 61
4.3.1 Scheduling the Sprints 62
4.3.2 Re�ning the Release Content 62

4.4 Sprints . 64
4.4.1 Sprint Planning . 65
4.4.2 Managing the Sprint 66
4.4.3 Sprint Review . 67

4.5 Daily Rhythm . 68
4.5.1 Design . 68
4.5.2 Code . 70
4.5.3 Test . 71
4.5.4 Synchronize . 73
4.5.5 Demonstrate . 74
4.5.6 Adjust . 75

4.6 Supporting Actions . 76
4.6.1 Con�guration Management 76
4.6.2 Requirements Management 77
4.6.3 Defect Tracking . 78
4.6.4 Daily Builds . 79
4.6.5 Automated Testing . 79
4.6.6 Maintaining Environments 80

4.7 Summary of the New Model 80

iii

5 Steps for Improvement 84

5.1 Current Situation and the New Model 84
5.1.1 Current Practices . 84
5.1.2 Summary of the Comparison 87

5.2 Improvements in the Case Organization 89
5.2.1 Improvement Steps . 89
5.2.2 Summary of the Improvement Steps 94

6 Conclusions 95

6.1 The Research Results . 95
6.2 Reliability of the Results . 96
6.3 Suggestion for Further Research 98

A Workshop Material 100

A.1 Invitation to the Workshop 100

B Citations from the Literature 102
B.1 Reasons for death march projects 102
B.2 Project Burndown Graph in Scrum 102

iv

List of Terms

.NET is Microsoft's platform for XML Web services, the next generation
of software that connects our world of information, devices and people
in a uni�ed, personalized way.

4CC stands for four cycles of control. It is a tentative software process
management framework developed in SEMS research project.

Ant is tool for building software written in Java.

Application server is a platform for running web applications (for exam-
ple BEA Weblogic or IBM WebShere).

Brainstroming is a technic for creating innovative ideas and solutions to
problems with a small group of people in a very informal meeting.

Bugzilla is a widely used open source defect tracking system.

CEO or Chief Executive OÆcer directs the whole company and is usually
reports to the board of directors.

CMM or Capability Maturity Model for Software developed by Software
Engineering Institute (SEI) at Carnegie Mellon University in 1991.

CVS or Concurrent Versions System is a widely used version control system
for source code and documents.

Coding standard is a set of rules that developers follow when implement-
ing software.

Core product is a product that has been chosen to be strategically the
most important product for the company.

IDE or Integrated Development Environment is an environment supporting
software development.

J2EE or Java 2 Enterprises Edition is a standard for developing multitier
enterprise applications.

JUnit is a testing framework for unit testing with Java especially ment for
XP style development.

Javadoc is a document generated from Java source code. It is a standard
way to document implementation done with Java.

LDAP or Ligh-weight Directory Access Protocol is widely used for access-
ing contact information.

PDA or personal digital assistant is a pocket size personal computer.

v

PKI or Public Key Infrastructure is a term generally used to describe the
laws, policies, standards, and software that regulate or manipulate
certi�cates and public and private keys.

Peer review is a technic where a colleague reviews the work of someone
else from the team.

Planning game is a meeting where a customer and a development team
de�ne the content of an XP project.

Platform is a software application that o�ers services to other applications.

Product roadmap is a high-level release project plan for all the products
of the company.

Quality gate is checkpoint where some quality attribute is measured.

RUP or Rational Uni�ed Process is a software process framework based on
the USDP. RUP is described in more detail in section 3.1.1.

Roadmapping is an interactive process for producing a roadmap. It pro-
vides a way to evaluate di�erent strategic alternatives to produce the
best possible plan to reach the business objectives of the company.

SEMS research project develops a Software Engineering Management Sys-
tem for small and medium-sized software enterprises. The SEMS
project is planned to span over three years (2001-2003) and it is part
of the TEKES technology programme SPIN.

SPICE is a major international initiative to support the development of
an International Standard for Software Process Assessment (ISO/IEC
TR 15504:1998)

Scrum is an agile software process model. Scrum is described in more detail
in section 3.1.3.

Synchronize and Stabilize is software process model used in the Mi-
crosoft. Synch and stabilize is described in more detail in section
3.1.4.

TLS or Transport Layer Security is a protocol that provides security to
application protocols.

Triage is a concept de�ned by: 1) A process for sorting injured people into
groups based on their need for likely to beni�t from immediate medical
treatment. 2) A system used to allocate a scarce commodity, such as
food, only those capable of deriving the greatest beni�t from it.

vi

UML is an industry-standard language that allows us to clearly communi-
cate requirements, architectures and designs.

UMTS or Universal Mobile Telecommunications System is a part of the
International Telecommunications Union vision of a global family of
'third-generation' (3G) mobile communications systems.

USDP or Uni�ed Software Development Process is a process framework
taking advantage of visul modeling with UML.

VP or Vice President of the company.

WAP or Wireless Application Protocol is used in mobile devices mostly in
Europe.

WLAN or Wireless Local Area Network is a wireless equivalent of widely
used local area network.

Workshop is a interactive and rather informal meeting where a group of
people work for a common goal.

XP or Extreme Programming is an agile software process model. XP is
described in more detail in section 3.1.2.

vii

Chapter 1

Introduction

In this chapter background for the research is presented. The research prob-
lem and goals are de�ned as well as the scope of the research.

1.1 Background

It is widely understood that an appropriate software development process
can considerably improve the e�ectiveness of software engineering. However,
�nding an appropriate software process might not be easy. Small high-tech
software companies developing software products for new markets often face
problems when adapting traditional software process methodologies such as
CMM1. Judith Brodman (Brodman and Johnson, 1994) argues that small
software businesses often face a situation where they try to fund costly
software process improvement programs without substantially raising their
overhead rates. Needs and requirements that those companies have for an
eÆcient software development process vary considerably from those of big-
ger companies. On the other hand, continuous lack of resources makes it
diÆcult to maintain and improve the software development process. Small
software businesses often end up balancing between an ad-hoc process and
a formal software process model. This can easily lead to ine�ective software
engineering.

The majority of companies developing software are small. According to
the US Bureau of Census 1995 County Business patterns, almost 90% of
the software companies in the United States have fewer than 50 employ-
ees (Laitinen et al., 2000). Respectively, in Finland TAI Research Center
reports (J�arvenp�a�a and Aalto, 2000) that in the year 1999 approximately
70% of the software companies had twenty or less employees. Studying
the software development process in small businesses is a fairly recent phe-
nomenon. Most of the studies on that topic have been done in the past few

1Capability Maturity Model for Software developed by Software Engineering Institute
(SEI) at Carnegie Mellon University in 1991.

1

years. The perspective in those studies is most often tailoring an existing
and widely accepted model for small software development companies. For
example, Judith Brodman has studied how CMM �ts for small businesses
(Brodman and Johnson, 1994) and Timo Varkoi has studied software process
improvement in small software companies based on the SPICE2 framework
(Varkoi and Jaakkola, 1999). However, most of the studies, including the
ones mentioned, concentrate more on contract based software development
which di�ers considerably from software product business. The problems
caused by combination of smallness and focusing on new software product
markets with new and partly unstable technology have not been studied
almost at all.

When a small software product company, like the case organization,
looks for improvement in its software development process it easily faces a
diÆcult situation. There are many di�erent process models that promise
improvements in software engineering but none of them seems a good �t
for the company. The impression could be that those models have been
developed for larger organizations or for a completely di�erent business en-
vironment. Developing software products for new and unstable markets
with latest technology raises many challenges for a suitable software devel-
opment process. Requirements of the software product change continuously
during the product development process, which has not been the case in the
well-established application domains where the used technology is mature.
Also, the �rst mover advantage is considered even more valuable in the new
highly competed markets. In the book Microsoft Secrets (Cusumano and
Selby, 1998) Michael Cusumano and Richard Selby point out that continuous
change and competition has made Microsoft create new software develop-
ment methods that take changes for granted rather than as exceptional.
This software development methodology is called synchronize-and-stabilize,
and it has proven its eÆciency in Microsoft. Another perspective to the
problem are the methodologies that have been developed for small groups
and companies developing software with vague or rapidly changing require-
ments. Maybe the best known of these so called agile process models is
extreme programming (XP) developed by Kent Beck (Beck, 2000).

Research Background

The combination of smallness and focus in the new markets with latest
technology raises the motivation for this research. Uncertain and dynamic
describe well the environment of the case organization. Alan MacCormack
de�nes this in a very suitable way in his article Developing Products on 'In-
ternet Time' (MacCormack, 2001): \By uncertain, we mean environments
in which future evolutions in markets and/or technologies are hard to pre-

2SPICE is a major international initiative to support the development of an Interna-
tional Standard for Software Process Assessment (ISO/IEC TR 15504:1998)

2

dicts. By dynamic, we mean environments in which these evolutions occur
rapidly". This research aims to solve problems that the case company has
with its software development process. Basically, the most important chal-
lenge in the case organization is to make the software development process
more e�ective, maximizing the value produced for customers. Challenges
that the uncertain and dynamic environment of the case organization in-
troduces, need to be answered. The software process should provide more
predictability, visibility to product development and have a better connec-
tion to the business strategy of the company. These challenges are the reason
why the case organization is looking for improvement in its software process.

Research is done in a very problem centric manner. Literature is studied
and analyzed from the viewpoint of the research problem which is de�ned
in detail with the case organization. Knowledge gathered from literature is
combined with �ndings from a case and synthesized into a process model
and a improvement plan for the case organization.

Case organization Smartner Information Systems Ltd. is a software
product and professional services company enabling mobile business ser-
vices. Smartner o�ers its mobile technology for operators and application
service providers who need tools for building mobile services and solutions
for enterprises. At present, the Smartner team consists of about 30 profes-
sionals working in the �elds of mobile solutions, software development and
business management. Smartner is based in Helsinki, Finland.

1.2 Research Problem

The research problem can be stated as a question: How can the software
development process be improved in the case organization, a small software
product company?

Terminology used in the �eld of software process development is not well-
established. The same terms may have di�erent de�nitions depending on the
focus of the research or even depending on the author of the paper. Software
development process has many de�nitions in literature such as de�nitions
by CMM (Paulk et al., 1991), SPICE (Dorling et al., 1996) and USDP (Ja-
cobson et al., 1999), just to mention a few. Fortunately, the key issues seem
to be quite similar in all of them. A software development process de�nes
who is doing what, when and how to reach the goal: a new software product
or a change in an existing one. In this research, a widely accepted de�nition
is adopted from Capability Maturity Model (Paulk et al., 1991): \Software
process is a set of activities, methods, practices and transformations that
people use to develop and maintain software and the associated products".

To be able to answer the research question both the organizational fac-
tors and existing software process models need to be understood. Existing
software development process models need to be evaluated against the needs

3

and requirements of the organization. This information is the basis for de�n-
ing the new software development process model for the case organization.
For making concrete suggestions for the improvement, the current state of
the software development process must be known in the case organization
and it needs to be compared to the new model. Studying these aspects
provides the essential information for answering the research question. In
short we need to know:

� What are the requirements for the software development process con-
sidering the needs of the case organization?

� How do existing process models and software development methodolo-
gies support these requirements?

� What is an adequate software development process for the case orga-
nization?

� What is the current situation of the software process in the case orga-
nization compared to the new model?

� What steps should the case organization take to deploy the new soft-
ware development process model?

These questions also de�ne the phases of the research and the structure
of this document. The research is done in close cooperation with the case
organization to ensure concrete results.

1.3 Goals and Objectives

The main objective of this research is to help the case organization improve
its software development process.

The e�ectiveness of a software development process depends on various
factors. It is not well understood which factors actually help to improve
software engineering in di�erent situations. This emphasizes that under-
standing the requirements for the software development process in a certain
situation is essential. It also makes it hard to �nd one process model that
provides answers to all questions. The solution could be in using a set of
practices from di�erent methodologies rather than just one process model.
McCormack summarizes this idea in his article Programming Extremism
(McCormick, 2001): \What's needed is not a single software methodology,
but a rich toolkit of process patterns and 'methodology components' (deliver-
ables, techniques, process ows, and so forth) along with guidelines for how
to plug them together to customize a methodology for any given project".

Considering McCormack's citation it is obvious that information about
the case organization and understanding existing software process models
are vital issues for the research. To reach a more concrete level in research

4

goals the research objective must be divided to goals that turn the research
questions into actions. In order to achieve the objective we need to:

� Recognize the requirements for the software development process in
the case organization.

� Evaluate existing software process models against the requirements.

� De�ne software development process model for the case organization.

� Recognise the similarities and di�erences between the current state of
the software process in the case organization and the new model.

� De�ne steps that case organization should take to improve its software
development process.

These goals de�ne the milestones of the research and form a structured
way to answer the research problem. Relations between research problems
and goals are visualized in �gure 1.1.

1.4 Research Scope

This research concentrates on the software development process of the case
organization. Business processes are not discussed from an improvement
point of view but are taken as given border conditions. This includes de�ning
the business and technology strategy of the company.

The delivery process of di�erent software products to various customers
is a research area of its own. Providing customers with product customiza-
tion, integration to existing systems and other professional services have
di�erent characteristics than product development. It is remarkably closer
to traditional contract based software engineering than product develop-
ment. In this research, focus is on the product development process hence
the delivery process is not studied in detail. Only the aspects relevant to
software product development are discussed.

Deployment of the new process model in terms of the methodology used
to communicate the process to the organization and how process information
is managed is not examined in detail in this research. These activities are
commonly referred to as software process support, which forms a research
area of its own and it is not in the scope of this research. The importance
of software process support is considerable but deploying it requires the
software process to be de�ned at least to some extent. Importance of the
software process support is described well by Timo Kaltio and Atte Kin-
nula in their study Deploying the De�ned Software Process about process
deployment and process asset management at Nokia Mobile Phones (Kaltio
and Kinnula, 1998). They stress the importance of a well organized support

5

How can the software development process be improved in the case organization, a small software product company?

What steps the case organisation
should take to deploy the new

software development process model?

What is the current situation of
the software process in the

case organization compared
to new model?

How do existing process models
and software development

methodologies support these
requirements?

What is an adequate software
development process for the

case organization?

What are the requirements for the
software development process
considering the needs of the

organization?

To help the case organization to improve its software development process

Define steps that case organization
should take to improve its software

development process.

Reconise the similarities and
differences between the current state
of the software process in the case
organisation and the new model.

Evaluate existing software
process models against the

requirements.

Define software development
process model for the case

organisation.

Recognize the requirements for
the software development

process in the case organization

O
bj

ec
tiv

es
 a

nd
 g

oa
ls

P
ro

bl
em

s
an

d
qu

es
tio

ns

Figure 1.1: Research problems and goals

6

infrastructure, having the right product (for accessing process assets) and
e�ective promotion. Studying these aspects would be a natural follow-up
for this research.

Research does not produce lessons learned from implementing the im-
provement plan since deploying a new process model is a time consuming
activity and does not �t in to the time frame of this research.

This research is focused on software development process in the case
organization. However, generalization of the research results is briey dis-
cussed in the last chapter 6.

1.5 Research Structure

The research problems and goals form the structure of the research. The
chapters of this document are structured respectively:

Chapter 1 Introduces the research by de�ning the research problem and
goal.

Chapter 2 De�nes the requirements for the new process model.

Chapter 3 Evaluates existing process models.

Chapter 4 Presents the new software process model.

Chapter 5 Compares the current situation in the case organization to the
new model and introducing improvement steps for the case organiza-
tion.

Chapter 6 Conclusions about the results.

How each chapter relates to the others is described together with the
research methodology in section 1.6.

1.6 Research Methodology

A literature study is used to gather relevant information about existing soft-
ware development processes and previous research results in the same �eld.
Workshops are used when information is gathered from the case organi-
zation. Some of the information about the case organization comes from
personal experiences, since the author of this research is part of the case
organization. Information from the case organization was gathered in two
phases: when de�ning the requirements and when describing the current
state of the software process in the case organization. The author's expe-
rience was used in the later phase, and other professionals from the case
organization were heard in the �rst phase.

7

The basis for the whole research is the �rst goal of recognizing the re-
quirements for the software development process. The case organization's
needs for the product development and its current challenges were worked
out in a workshop with professionals from the case organization. Experiences
from the same kind of situations found from the literature were combined
with the results. Finally requirements for the software development process
were produced from the needs found in the workshop and the literature.

Selected existing software development process models were evaluated
against the requirements to form a compact picture how they support each
of the requirements.

Suitable elements from di�erent models are combined with practical
knowledge to form a new software development process model that supports
the de�ned requirements as well as possible.

The new software process model was compared to the current practises
of the case organization using author's experiences as a source for informa-
tion. The reason for this approach was that author has been participating in
product development of the case organization at all the levels from roadmap-
ping to coding and testing the products. The goal of this comparison was
to point out the shortcomings of the current software development practices
in the case organization compared to the new model.

A suggestion for improvement steps for the case organization is intro-
duced. The improvement steps are based on the di�erences found from
comparing the current practices in the case organization and the new model.
Since deploying a new software process is not a trivial thing to do, and de-
ployment not being within the scope of this research, the improvement steps
form a loose framework rather than a detailed project plan for improvements.

Contribution and reliability of the research results are discussed briey
in the last chapter with suggestions for further research.

8

Chapter 2

Requirements for the

Software Process

In this chapter the requirements for the software development process in
the case organization are de�ned. To give background for the study, the
case organization, Smartner Information Systems Ltd., is briey introduced
and the current software process of the case organization is presented. A
workshop for de�ning the needs for the product development is described
and the results are analyzed against the literature. Finally, requirements
for the software development process are de�ned based on workshop results
and literature.

2.1 Case Organization

The case organization, Smartner Information Systems Ltd is a software
product and professional services company enabling mobile business ser-
vices. Smartner o�ers its mobile technology competence to operators and
application service providers who need tools for building mobile services
and solutions for enterprises. Smartner is developing its business towards
international software markets. At the moment, Smartner targets European
markets.

At present, the Smartner team consists of about 30 relatively young
professionals having expertise in the �elds of mobile solutions, software de-
velopment and business management. Smartner was founded in 1999 and
is based in Helsinki, Finland. Smartner is privately owned by personnel,
four partners and three investors: EQVITEC Partners Oy1, Sitra2 and IT

1EQVITEC Partners Oy is a leading Finnish venture capital �rm focusing on technol-
ogy investments (http://www.eqvitec.com).

2Sitra, Finnish National Fund for Research and Development, is a leading governmental
fund dedicated to promising early stage technology investments (http://www.sitra.�).

9

Provider Adviser 1 AB3. Smartner's second �nancing round was completed
in fall of 2001.

2.1.1 Customers and Products

Smartner o�ers products to wireless application service providers, who need
tools and applications to enable wireless services targeted for business users.
The leading idea in Smartner's product development is to provide technology
that integrates mobility into existing enterprise information systems. With
Smartner's solution wireless service provides, Smartner's target customers
can provide their enterprise customers with value-added wireless services.

Smartner products are divided into wireless technology and wireless
applications. Wireless technology enables rapid application development.
Wireless applications are ready-to-use solutions taking advantage of the
Smartner's wireless technology. Smartner's currently shipping products are
Smartner Engine 2.1, which is a wireless application platform, Smartner
Messaging Server 2.0, which is a multi-network messaging platform, Smart-
ner Enterprise Gateway 1.2, which enables a secure connection to enterprise
systems and Smartner OÆce Extender 1.2 bringing oÆce solutions into end
users WAP, PDA and SMS enabled devices.

The business environment where Smartner operates is a highly competed
emerging market. Many big players such as Microsoft have just released their
competing solution for mobile oÆce market as well as some smaller players
like LPG Innovations Oy from Finland and Fenestrae from Netherlands.
According to Goldman Sachs 2000 (Sachs, 2001) this market is going to
grow extremely fast: the number of mobile internet users will increase from
the present 5 million to 49 million by year 2002. It is estimated that by year
2004, companies have spent a total of 154 billion dollars on mobile services.

2.1.2 Units and Teams

Smartner's organization is divided into three units: Sales, Research and
Development (R&D) and Administration. Sales and R&D both have about
45% of the personnel and administration copes with remaining 10%. The
management team consists of persons that are members of some operational
unit as well, except for the CEO who leads the management team.

R&D forms a single operational team whereas sales is split up into three
teams with slightly di�erent functions: sales, professional services, and mar-
keting. The cooperation between teams and units is considerable. Delivery
projects consists of people from R&D, professional services and sales. Espe-
cially R&D and Professional Services work closely together in delivery and

3IT Provider Adviser 1 AB is a leading Swedish venture capital advisory �rm ad-
vising three di�erent investment funds focusing on technology investments (www at
http://www.itprovider.com).

10

integration projects. Responsibilities of the teams are in short:

Sales is responsible for negotiating and closing the deals and customer re-
lations.

Marketing is responsible for public relations and communicating Smart-
ner's message to the partners and customers.

Professional Services is responsible for consultation, product support and
management of delivery and integration projects.

Research and Development is responsible for developing and maintain-
ing the software products and implementing customer speci�c product
tailoring.

Administration is responsible for the infrastructure of the company and
company well being in general.

Implementing the software development process is mainly done by the
R&D team who gets the product requirements and customer feedback mostly
from Professional Services, Sales and Marketing. The head of the R&D, VP
of business development, is the most important link between R&D, sales
and customers.

2.2 Current Software Process

In this section, the current software development process of the case organi-
zation is presented. The software process is described as it is de�ned in the
case organization. How well the current model relates to the reality is not
discussed here but is left for chapter 5, where current practices are compared
to the new software process model.

2.2.1 Background in Software Process Development

Software process development has been considered important since the start
of the company. Management has seen it as a way of creating competitive
advantage for the company. In practice, the young professionals have been
open to developing their way of working towards more eÆcient software
engineering.

Smartner has participated in SEMS4 research project led by researchers
from SoberIT (Software Business and Engineering Institute), during the year
2001. The goal of the research is to develop software engineering manage-
ment system for small and medium-sized software enterprices.

4SEMS research project develops a Software Engineering Management System for
small and medium-sized software enterprises. The SEMS project is planned to span
over three years (2001-2003) and it is part of the TEKES technology programme SPIN
(http://www.soberit.hut.�/sems/english).

11

2.2.2 Current Software Process

The software development process has evolved signi�cantly from the start
of the company. The direction has been towards a light-weight and exible
but deadline oriented process. The key factors of the process have been:

� Flexibility

� Fixed deadlines

� Customer orientation

� Minimizing overhead

The current software process model5 in the case organization is based on
the �rst draft of the 4CC model (Rautiainen et al., 2002) and practices that
have evolved during the years of existence of the company. Some e�ects
of this research can also be found from the model such as the approach of
combining existing process models.

The structure of the current model is based on the concepts of the 4CC
model (see �gure 2.1). It is a relatively high-level description of how software
development is done in the company and lacks details about concrete de-
velopment work. The introduction to the current software process model is
based on the case organization's document \Smartner Product Development
Process in Short" (Backholm and Vuornos, 2001), that is directed to cus-
tomers and partners. There is no other process documentation in the case
organization, but the common development methods are still used based on
verbal agreements.

Figure 2.1: Overview of the 4CC model (Rautiainen et al, 2002)

5The situation at the end of the year 2001

12

The �ve corner stones of the current model are: time pacing, prioritiza-
tion, ability to react to changes, iterative development and daily builds.

Strategic Release Management

Strategic release management has a one-year time horizon. It consists of
setting a release schedule, roadmapping the high-level product visions, and
continuous collection of requirements.

The roadmap is reviewed quarterly to ensure that needed changes in
technological and business environment are taken into account. It sets the
strategic vision of product development.

The requirements are collected by Product Managers. Customers, part-
ners, other stakeholders, reports, and internal sources are inputs to the
requirements collection.

All parts of the organization, especially the professionals at the customer
interface, contribute to this phase, which is lead by the acting Head of
Product Management.

The outputs of strategic release management are the roadmap document
one year forward including the release schedule, and preprocessed require-
ments and ideas for forthcoming product releases. The release cycle is three
months.

Release Project Management

The release project runs for each product release. A release project starts
every three months to match the release cycle. The process consists of �ve
phases:

Feature prioritization: In an internal workshop, the Smartner Product
Management team will go through the preprocessed requirements and
ideas, project them against the roadmap to come up with an initial
prioritized list of features for the next release. This workshop considers
the input gathered from various sources during the previous release
project. The workshop is held two weeks before the date of Initial
Feature Prioritization Freeze.

Feature iteration: The acting Head of Product Management will arrange
workshops with customers and partners to go through the initial prior-
itized list of features for the next release. The iteration takes place to
ensure that the releases respond to the needs of the customers. Cus-
tomers and partners can separately agree on features that Smartner
would guarantee to be implemented. Without a separate agreement,
Smartner does not guarantee the implementation of any feature.

Initial feature prioritization freeze: The Smartner Product Management
team will set the prioritization of features for the �rst implementation

13

iteration in an internal workshop, based on the input from the iteration
round. Reprioritization of features is done during the implementation
iterations to ensure fast reactions to changes.

Scheduling iterations: All iterations that are to be implemented are sched-
uled. Iteration end products are alpha, beta and full releases.

Setting up early access: For the interests of Smartner, customers, part-
ners, and other stakeholders, schemas are set up for early access to
information about new releases, including trialing, joint testing, and
early customization. The output of the release project is a fully func-
tional release, which matches the customer needs and is deployable to
customers as early as possible. The acting Head of Product Manage-
ment has the overall responsibility over the release project.

Iteration Management

Iteration management has a time-frame of about one month. In this phase,
one phase of the release project is planned, designed, implemented and
tested. With three iterations for (1) alpha, (2) beta, and (3) full releases,
the rounds sum up to the three-month release project cycle.

Each iteration starts with reprioritizing the features. This is done in
cooperation with product management and project teams. This XP-style
'planning game' de�nes which features are implemented �rst and estimations
for needed development time is made.

From the technical point of view, the high-level design is made to lay
down a common starting point for the development. The �rst features to
be developed need to de�ne the architecture for the whole release.

The beta release is available for key customers to have early access to
new features and for ability to further inuence the development decisions.

The full release iteration of the release project is devoted to testing. New
features are generally not added to the product. Testing in the last iteration
concentrates on functional, usability and load testing.

The output of each iteration is a new version of the software. The new
version of the software is always an installable package including the latest
features. Product and project managers are in charge of iteration manage-
ment.

Mini-milestones

The mini milestones have a time-frame of one week. In these mini-iterations
the product is designed, implemented and tested. Mini-milestones de�ne
very concrete goals and tasks for individual developers at the weekly level.
In this phase, visibility of the progress plays a key role.

14

Implementation and unit testing are done simultaneously in an XP type
style. Also component level load testing is done side by side with implemen-
tation. Informal code reviews are used for critical components.

The concept of daily build has an important role throughout the whole
release project. The product is built and tested with automated unit testers
daily, using automated scripts. This ensures that modi�cations and new
features do not break previously implemented components.

The output of each mini-milestone is a new version of the software. Mini-
milestones are validated in weekly project meetings and new goals are set.
The project manager is in charge of the mini-milestones.

2.3 Workshop for De�ning Requirements

In this section de�nitions of the requirements for the software development
process are presented. Initial needs and requirements for product develop-
ment are worked out in a workshop with the professionals from the case
organization. The results are compared to �ndings from literature and re-
quirements for the software development process are introduced based on
the workshop results and literature.

2.3.1 Workshop Setup

The Workshop was held as one two hour session with three professionals
from the case organization. The participants in the workshop were:

The head of product development, VP of Business Development

who has an important role in de�ning the strategy for the company,
he is responsible for scheduling and de�ning new product releases and
his viewpoint to the product is considerably non-technical.

Team leader of the R&D, Director of Product Development who is
responsible of software engineering and process improvement in prod-
uct development and he has good knowledge about the products in a
technical sense.

Director of Business Development, Central Europe who has worked
extensively in the customer interface and represents customers' and
sales people's point of view.

The agenda and workshop goals were sent to the participants before the
actual workshop (see the appendix A.1). The objective of the workshop
was to work out the factors in the product development that are important
especially for the sales and company's strategy. The goal of the workshop
was to de�ne needs for the product development in the case organization. In
order to �nd those requirements we were seeking answers to the questions:

15

� What are the essential things that de�ne Smartner's operational envi-
ronment?

� What needs for product development do these factors generate?

� What are the reasons behind the current practices? Are there more
needs related to those reasons? And what are the current challenges?

The operational environment was analyzed to get the right context and to
outline reasons behind the needs. Needs were derived from the environment
to ensure trace between need and the reason. Current practices and challeges
were reverse engineered to make sure that important needs from the current
situation would not be forgotten. Also new needs that might arise from the
same reasons were thought over.

The agenda for the workshop was simple. The problem at hand and the
workshop goals were �rst presented to everyone. The approach that needs
from the company's strategy and sales should guide software development
process improvement was explained. The essential things in environment
and the needs that they introduce for product development were introduced
in a brainstorming session. This method was used to maximize the discus-
sion and the amount of ideas. The last point in the workshop was to check
that no important need was missing. This was done by taking the current
important practices and comparing them to the needs and by every partic-
ipant thinking of his everyday work and what needs could rise from there
for the product development.

The documentation throughout the workshop was done on the ip chart
and on a white board. The results were written down in electronic format
after the workshop from the workshop documents.

2.3.2 Overview of the Workshop Results

The general opinion of the participants was that the company is in a turning
point moving from a few customers acting partly as development partners to
many customers that want ready-to-use products. This naturally reects to
the needs for the product development and it is likely to introduce changes
to the current practices. Additionally, participants stated that exibility,
fast responses to customers needs and ability to show the product were key
issues in previously won deals. On the other hand, in the current customer
cases, a ready-to-use product with well-de�ned features and documentation
would have more value. The most important reason for being in this turning
point was seen to be working with a partner who actually makes a delivery
and making a deal outside of Finland where company does not have pres-
ence. In this situation professional skills and eÆciency of the company's own
employees is not enough but ability to transfer that needed information to
the partner organization starts to play the key role.

16

The most important challenges, or current problem areas, were related
to being in a turning point as well. More predictable development and
better de�ned products were seen important, but at the same time, exibility
and fast reactions to changes and customer needs were considered essential.
Combining these points of view was seen challenging but important. Other
current problem areas that were mentioned were quality of the products and
collecting feedback from customers and end-users and using it in product
development.

2.3.3 Description of the Environment

The workshop agreed on three categories for operational environment: com-
pany strategy, customers and technology. Also the organization of the com-
pany was mentioned but with less importance. Even if formal de�nitions for
these categories are not needed here short informal de�nitions are given to
form a right idea of what they are about:

Strategy can be understood as a long term plan created by management
and the organization to reach the objectives of the company.

Customers include the actual customers as well as partners.

Technology covers the application domain speci�c factors and technical
factors related to programming languages, design technics, protocols
and software architectures.

It is good to point out that customers and technology categories are actually
de�ned by the strategy. Here they are however treated as separate categories
to make the structure simple.

More speci�c factors that describe the characteristics of each category
were worked out by the participants. Each category had four to �ve major
factors relate to it. Naturally some of the factors can be related to more than
one of the categories. Relations with factors and categories are visualized
in a mind map style �gure, which is close to the way they were presented in
the workshop (see �gure 2.2).

Strategy

Strategy was described by �ve factors in the workshop: Product focus, en-
terprise software, global competitors, development for the current markets
and future proof solution. Next these factors are explained shortly.

Software product focus di�ers signi�cantly from contract based software
project focus. The same software is sold to multiple customers without
or with only little customization. Pro�ts come from duplicating the once
developed product to many customers.

17

Enterprise software means the type of software product the company
develops. Hoch Detlev divides software into three di�erent categories in the
book Secrets of Software Success(Detlev et al., 1999): mass market software,
enterprise software and professional services. Software developed in the case
organization �ts well into the de�nition of enterprise software. Naturally,
this type of software leads to few bigger customers. And this leads to the
situation where value of every customer is considerable.

Global competitors means simply that when it chose to go for interna-
tional markets the case organization decided to challenge the global players
as well as the local ones in each country.

Development for the current markets summarizes the basic decision about
how far to the future development is done. For the case organization, the
e�ect is that products are developed for current markets, step-by-step with
the customers. The alternative would be that products would be developed
for future markets for example with technology that is currently under de-
velopment. The choise made minimizes risks and enables immediate revenue
from the customers.

Future proof solution is another view to the previous factor. Even if
product is developed for the current markets it has to be future proof. The
new technology and other future needs must be easily added to the product
or at least they should not make the product useless. This point is naturally
essential for the venture capitalists behind the company.

Customers

The customers category was described by �ve main factors in the workshop:
Large compared to the case organization, as a development partner, need
for ready-to-use product, time related decision and high security demands.
Contradictions can be found between factors dealing with the need for ready-
to-use products and customers acting as a development partner. These
factors both exist at the moment and it is very likely that there will be
customers with both motivations in the future as well. Naturally, this not
just problem for the organization but a chance to develop the product with
some of the customers and provide others with a better de�ned product a
little later.

The size of the customers in terms of turnover or number of employees
is large compared to the case organization. This causes a situation were the
case organization's credibility is continuously evaluated by the customer.
The case organization really needs to gain the respect in every customer
case, which would not quite be the case if the customer and the supplier were
equal in size. A big customer like a national telecommunication operator
easily �nds it easier to believe in a big player like Microsoft than a small
company like the case organization.

Some of the customers like to be extensively involved in the product

18

development. Their motivation is the early access to new product versions
and possibility to a�ect features that a new version has. These customers
might want to explore the potential of a new market with a new product or
a product version. Their demands for exact version de�nitions are not very
high, they would rather have as much new features as possible.

The opposite of the previous customer type are the customers that need
the product with exact documentation and description about the features of
that product version. Their motivation is mainly to get the product, unpack
and install it and make money. The attitude is not to play developer partner
with the supplier.

Time related decisions describe the way of dealing with the customers.
When a customer is planning to launch a new service for its customers the
delivery and product release schedule start to play a very important role. On
the other hand, sales persons from the case organization need exact dates
about product and product version releases to be used as sales arguments
and basis for o�ers.

High security demands are actually related to both customers and tech-
nology categories. It is usually with highest priority in customer's demands
for a software product and it has central role in the technology based on the
internet as well.

Technology

The technology category was described by four important factors: High rate
of change, not well established, no prior experience and complex environment
plus need for integration.

High rate of change describes the most important factor of the technology
that is related to the case organization and its products. Technology devel-
ops fast in the �eld of programming and architectures including J2EE6, Mi-
croft's .NET7 and application servers8, just to mention a few. Development
of di�erent network technologies and protocols such as UMTS9, WLAN10

and WAP11 is fast and naturally signi�cantly e�ects the development of new
devices such as mobile phones, PDAs12 and portable computers.

6Java 2 Enterprises Edition (J2EE) is a standard for developing multitier enterprise
applications.

7.NET is Microsoft's platform for XML Web services, the next generation of software
that connects our world of information, devices and people in a uni�ed, personalized way.

8Application server (for example BEA Weblogic or IBM WebShere) is a platform for
running web applications.

9UMTS stands for Universal Mobile Telecommunications System. It is a part of the
International Telecommunications Union vision of a global family of 'third-generation'
(3G) mobile communications systems

10WLAN is a wireless local area network, wireless equivalent of widely used local area
network.

11WAP is a wireless application protocol used in mobile devices mostly in Europe
12PDA stands for personal digital assistant, which actually is nothing but pocket size

19

Not well established describes the situation with the current solutions in
the �eld where the case organization o�ers its products. The environment
where software is run is still very heterogeneous and way in which these
services should be operated is not clear. This means that customers do
not necessarily quite know from start what they want and how they want
it to work. This and the next factor are due to the fact that information
technology and telecommunication technology and business are emerging
and creating new possibilities and challenges.

No prior experience is available about the technology used for the case
organization's application domain. There are no or just a few experience
reports on how new technologies should be used in di�erent situations. On
the other hand there are not even professionals that would have long experi-
ence with these technologies available. The di�erence between for example
an accounting software on PC and the case organization's software product
is remarkable when comparing the knowledge available on the application
domain and the technologies that can be used to implement it.

Complex environment and need for integration describes the demands
for communication with the other systems. Since the case organization's
products connect to customers' server environment, end-user organizations'
information systems and end-user mobile devices, it is evident that this
has a great e�ect on the software. Customers' server environment itself
provides great variance in supporting systems like databases and network
management systems. Integration needs arise when customers want to use
the new service with their existing customer care and billing systems and
when the customer already has a service concept into which it wants to
integrate the new service.

Organization

Organization was not discussed too widely in the workshop. However, the
three most important factors about the organization were clear: continu-
ous lack of resources, relative young and well educated personnel and large
portion of part timer workers in product development.

Continuous lack of resources is probably not a unique problem in this
�eld of business. To use all the resources eÆciently, balancing between
di�erent tasks and projects is everyday life in most companies nowadays.

Relative young and well educated personnel in the case organization
means that the average age is well under 30 years. Almost all of the em-
ployees have or are in the middle of getting their master's degree.

Large portion of the product development team works only part time.
About 35 % of the team works only �fteen to twenty hours per week.

computer.

20

2.3.4 Needs for the Product Development

Needs related to the case organization's operational environment were worked
out in the workshop simultaneously with the environment factors. In this
document they have been separated to a di�erent section to make the struc-
ture clear. The needs are presented in the relation with a speci�c environ-
ment factors category by category.

After the workshop it was evident that needs for product development
worked out in the workshop could not be used as requirements for software
development process without modi�cations. There were two main reasons
for this: too many detailed needs and needs concerning both products and
their development. Needs that consider more products than development
process are translated into needs for development.

Strategy Related Needs

Strategy related needs and their relation to di�erent factors are visualized
in �gure 2.3. Next, every need related to strategy is briey introduced with
its relation to a environment factor.

That type of the software results in three needs: customizable product,
easy management and need for usability. When targeting enterprises that
will provide service to their customers using a product, they most likely
want to brand for example the user interfaces to �t their own public image.
Easy management of the products is essential for the enterprise to provide its
customers with good quality of service and to manage its products eÆciently.
Usability is naturally important to all products that are used by people.
Here usability is a key need since customers seem to compare competitive
products' usability from their customers' point of view and use the results
as decision making arguments.

Product focus introduces three needs: minimized delivery projects, 'stan-
dard' integration and partners for integration and support. When selling
products, the pro�t comes from duplication of the product to multiple cus-
tomers. Essential in this model is that delivering the product to the customer
needs to be easy. It has been seen that integration needs of the customers
are similar. This brings up a need for 'standard', productized integration
package. To be able to concentrate on product development partners are
necessary for making the integration and providing the �rst level support.

The same global competitors are present in almost all cases where pro-
posals are made. Thus knowing the competitors product gives valuable infor-
mation about your own product and its strengths and weaknesses. Bench-
marking against the competitors helps to learn from the own product as
well. Sun Tzu (Sun-Tzu, 1983) once said: \Know your enemy and know
yourself; in a hundred battles, you will never be defeated", which is still a
valid attitude towards the competitors.

21

Strategy

Customers Technology

Smartner

Need for a
ready-to-use

product

Product
focus

Development
for current
markets

Future proof
solution

Time related
decissions

Large
compared to

Smartner

As a
development

partner

Enterprise
software

High security
demands

No prior
experience
available

High rate of
change

Not well
established

Complex environment
and need for integration

Global
competitors

Organisation

Continuous lack
of resources

Young
educated
personnel

Many part
time workers

Figure 2.2: Operational environment of the case organization

Strategy

Product
focus

Development
for now

Future proof
solution

Enterprise
software Global

competitors

Fast reactions
to customer

feedback

Features from
customers

Benchmarking

Know the
competitors

product

Partners for
integration

and support

'Standard'
integration

Minimized
delivery projects

Usability
counts

Easy
management

Customizable
product

Know the effects
of the new

technologies

Invest on
architecture

Figure 2.3: Strategy related needs

22

Development for now and not for the future raises two important needs:
features come from customers and fast reactions to customer feedback is
essential. Who would better know what the customers want in the close
future than the customers themselves? So cooperation with the customers
to de�ne new product versions and fast reactions to customers' feedback
about the features under development makes current customers happy. This
will most likely help in getting new customers.

A future-proof solution needs two main things. Investing on architec-
ture that is able to absorb new technologies and products is essential for
fast development and continuity. Secondly, knowing how new technologies
will e�ect the product is important. This is valuable in �nding possible
problematic areas with a new technology and in exploring the possibilities
a new technology introduces.

Customer Related Needs

Customer related needs and their relation to di�erent factors are visualized
in �gure 2.4. Each of the factors related to customers introduced two to
four needs for product development.

Customers

Need for a
ready-to-use

product

Large
compared to

Smartner

High security
demands

Time related
decissions As a

development
partner

Short response
time to customers

Demos

Early access to new
versions

Feature
priorisation by the

customers

Features of the
version well
documented

Product
works as is

Clearly defined
versions

Fast
delivery

Vsibility of the
development

Fixed dead
lines

Use standards
for security

Design for
security

Added value
of a new
version

Fast reactions
to customer

feedback
Use 3rd party
components

Figure 2.4: Needs related to customers

Time related decisions brought up three concrete needs: �xed dead lines,
visible development and fast delivery. These things had been seen valuable
in getting deals already and there had been no sign of them still not be-
ing important. Fixed deadlines in development projects makes it easier for
sales to communicate with the customers about the dates of delivery. The
features included in a speci�c version was seen exible if the deadlines are
met. Visible development makes it easier for managers to see where develop-
ment projects are. Seeing a new version every three months is not enough,
concrete visual state of the project is needed at the weekly or at least the
monthly level. When it comes to making a deal it seems that the customer
is always in a hurry. Fast delivery of the product can be the key factor

23

in getting a deal. This actually leads to demands for resourcing product
development and the delivery project.

The need for a ready-to-use product raised four needs for the product
development: clearly de�ned versions, well documented features by version,
value added by a new version is clear and product works as it is. It is
important for a customer to know the version they have. When they buy a
product they expect a stable set of features that do not change. This has
been one of the problems in the case organization with recent customer cases.
Features of a version need to be documented clearly. It must be clearly seen
if a certain feature is part of a version or not. This is especially important in
situations where new features are creeping into product after product version
release. For Sales the di�erence between versions is important. Value added
by a new version has to be easily seen to make an argument for a customer to
upgrade their product. The product also needs to work as it is. Customer
must be able to set it up and run it without extensive con�guring and
integration. This is valuable especially with customer pilots.

Some customers act as development partners. Needs related to these
customers di�er substantially from the customers that want a ready-to-use
product. Needs related to development partner type of customers are: fea-
ture prioritization by customer, fast reaction to customer feedback, early
access to new versions. The customers that are actually taking part in the
development are valuable in prioritizing features for new product versions.
Reactions to feedback from the customers is essential to keep them involved
in the development. Development needs to be done in such way that selected
customers can have early access to a new product version. This early access
is widely called beta testing.

Customers being large compared to the case organization leads to some
needs. Key points in earning credibility and trust in the eyes of the customer
are short response times to the customers and demonstrating a working
product fast. Response time has proved valuable in the previous cases and
is a good way to prove that the company really wants to do this case and
is going to do its best. Demonstrating the product is a chance to prove
superiority of own product as well.

High security demands result in three main needs: Design for security,
use standards for security and use 3rd party components. The most im-
portant need is to keep security demands in mind always when designing
software. Using standards for security is important because one needs to
rely on well known and accepted technologies like PKI13 and crypting algo-
rithms like TLS14 to be credible. When the organization's core competence

13Public Key Infrastructure (PKI) is the term generally used to describe the laws,
policies, standards, and software that regulate or manipulate certi�cates and public and
private keys.

14TLS stands for transport layer security, which is a protocol that provides security to
application protocols.

24

is not implementing security components, 3rd party component should be
used as widely as possible. This makes the solution more credible and saves
resources to core product development.

Technology Related Needs

Technology related needs and their relation to di�erent factors are visualized
in the �gure 2.5. The most important and most stressed factor out of four
technology implicated factors was the high rate of change. The other three
factors are di�erent views to the same thing: new and old technology and
systems are challenging to combine.

Technology

High rate of
change

No prior
experience
available

Complex environment +
need for integration

Not well established

Open minded
problem solving

Learning from
mistakes

Deploying new
technologies

Short projects to
minimize risks

Visibility of the
development

Partnering
with the big

players

Understanding
the technical
environment

Focus on
interfaces

Using
standards for

integration

Agressive
learning

Partnering to get
early access to

information servers
Continuously

changing
requirements

Fast release
cycle

Figure 2.5: Technology related needs

High rate of change in technology was considered one of the most impor-
tant factors a�ecting the case organization. It introduced �ve main needs:
fast release cycle, visibility of the development, deploying new technologies,
continuously changing requirements and short development projects. Fast
release cycle was needed for the following reasons: When the release cycle is
short enough the main product vision does not probably need to be changed
during the project and on the other hand new features possibly taking ad-
vantage of new technology can be delivered relatively fast to the customers.
Visibility of the development becomes important in a dynamic environment
where requirements change continuously and development projects need to
be steered according to those changes. Product development needs to be
able to continuously handle changing requirements eÆciently to stay pro-
ductive. Short development projects are needed to minimize risk. Short
projects are easier to manage and adding features incrementally seems to
help the product better together. The importance of managing this high rate
of change is well summarized in the article Bringing Descipline to Project
Management (Elton and Roe, 1998): \When it comes to products for the in-
ternet and other fast-emerging technologies, customers' needs are changing
so rapidly that traditional, sequential product-development processes run the

25

risk of generating products that are obsolete by the time they are released.".
\Not well established" introduced two needs. Understanding the techni-

cal environment, 'big picture' so to say, is essential for developing a product
that can be used in di�erent environments without other modi�cations than
con�guring. Secondly, there is a need for partnering with the big players
who have provided customers with hardware, software, support and consul-
tancy. Partners whose core competence is to know the environment with
its challenges and possibilities can remarkably help with installation and
integration projects.

No prior experience available on application domain and technologies
raised a few obvious needs: aggressive learning, open-minded problem solv-
ing and learning from mistakes. These needs are common to all situations
where not enough knowledge is available on the subject in hand. Aggressive
learning means e�ective communication within the team and encouraging
everyone to study new subjects. Open-minded problem solving is needed
to solve problems that do not have well known and documented solution.
Learning from mistakes is one of the corner stones in an e�ective organiza-
tion. As the CEO of the case organization once said in his speech to the
personnel: \We are moving fast and that causes us to make mistakes. We
all make mistakes but w'd better learn from them".

Complex environment and need for integration were summarized in three
needs: using standards for integration, focus on the interfaces, and partner-
ing to get early access to information systems. Using standards for integra-
tion makes it easier to communicate with di�erent systems. For example
directory services regardless of the supplier support LDAP15, the standard
way of accessing contact information. Within the products design focus
needs to be on interfaces especially in the parts that might be integrated
to external systems. Partnering with the information server suppliers to
get early access to new product versions is important to be able to take
advantage of their new features as early as possible.

Organization Related Needs

Organization related needs and their relation to di�erent factors are visual-
ized in the �gure 2.6. Each of the factors resulted in only few needs. This was
probably because the focus of the workshop was not in the organizational
factors.

Continuous lack of resources naturally leads to a situation where every-
thing just cannot be done at the same time. Prioritizing tasks together with
a schedule centric attitude gives tools for surviving with less people. Priori-
tizing needs to include all the activities that the product development team

15LDAP stands for ligh-weight directory access protocol and it is widely used for ac-
cessing contact information

26

does: di�erent product development projects, integration projects with cus-
tomer and support for older versions. Schedule centric attitude focuses on
being on time.

Relatively young and well-educated personnel raises a few needs for prod-
uct development: at team organization, divided responsibility and big chal-
lenges. Team organization needs to be as at as possible to delegate the re-
sponsibility as low as possible. The development team has been motivated
by big challenges.

The organization having many part time workers introduces needs for
good communication. Tasks need to be clear and separate for part timers to
be able to be e�ective and on the other hand communication about changes
must reach all the team members.

2.3.5 Comparing Needs to Literature

In this section the most important areas found in the workshop are briey
compared to the literature. If a high-level look is taken to the workshop
results, two main areas can be pointed out: an unstable and dynamic envi-
ronment (see de�nition in the chapter 1.1) and time dependence. The area of
unstable and dynamic environment is compared to Ed Yourdon's thoughts in
his book Death March: The Complete Software Developer's Guide to Surviv-
ing 'Mission Impossible' Projects (Yourdon, 1999). The area of time depen-
dence is discussed with Kathleen Eisenhardt's article Time Pacing: Com-
peting in Markets That Won't Stand Still (Eisenhardt and Brown, 1998).

Unstable and Dynamic Environment

Ed Yourdon deals with software projects that take place in very uncer-
tain and dynamic environments in his book called Death March: The Com-
plete Software Developer's Guide to Surviving 'Mission Impossible' Projects
(Yourdon, 1999). Yourdon de�nes projects he calls 'death march' projects,
explains reasons behind them and gives tips to survive those projects. Even
if his main assumption is that death march projects are exceptions in orga-

Organisation

Many part time
workers

Continuous lack
of resources

Young educated
personnel

Divided
responsible

Big challeges

Flat team
organisation

Schedule
centric attitude

Prioritising
tasks

Good communication

Clear tasks

Figure 2.6: Needs related to organization

27

nization's project culture there could be organizations where death march
projects are a way of life. If Yourdon's de�nition of a death march project are
compared to the environment of the case organisation many links between
them can be found (see table 2.1).

Table 2.1: Comparison of 'death march' project de�nition and case organi-
sation's environment

Death march project de�ni-

tion

Case organization

Schedule compressed to less than
half the amount of time esti-
mated by a rational estimating
processes because of the pres-
sures of business competition in
today's global marketplace.

Schedule is de�ned but no ratio-
nal estimations are made.

The sta� has been reduced to less
than half of the number of people
that would normally be assigned
to a project this size and scope.

Situation in many projects when
part of the project team is needed
for performing other tasks in cus-
tomer projects and support.

The budget and assosiated re-
sources have been cut in half.

Does not happen too often.

The functionality, features, per-
formance requirements, or other
technical aspects of the project
are twice what they would be un-
der normal circumstances.

Frequent situation when cus-
tomers' wishes and requests for
features creep into the require-
ments.

Death march project de�nition �ts well to the case organisation. Also
some of the reasons behind the death march projects, such as intense com-
petition caused by globalization of markets and appearance of new technolo-
gies, naive optimism of youth and start-up mentality, apply well to the case
organisation (see appendix B.1 for all the reasons behind the death march
projects). After comparison it is quite fair to say that Yourdon's advice
for death march projects can be considered when setting requirements for
software development process in the case organisation.

Yourdon introduces the concept of triage16 as the most important thing
in the process that helps to succeed death march type projects. In short,
triage means prioritizing things so that the most important things are done
�rst and making sure that most important things really are the most im-
portant things. This aligns well with the needs that were discovered in the

16Triage: 1) A process for sorting injured people into groups based on their need for
likely to beni�t from immediate medical treatment. 2) A system used to allocate a scarce
commodity, such as food, only those capable of deriving the greatest beni�t from it.

28

workshop. Other principal best practices Yourdon o�ers for death march
projects are17:

� Formal risk management.

� Agreement on interfaces.

� Peer reviews.

� Metric-based sceduling and management.

� Binary quality gates at the 'inch-pebble' level.

� Project-wide visibility of project plan and progress.

� Defect tracking against quality targets.

� Con�guration management.

� People aware of management accountability.

Based on the workshop results we can take almost all of these best practises
as requirements for the software development process for the case organiza-
tion.

The need for visibility (see �gures 2.4 and 2.5) relates straight to the
binary quality gates and project wide visibility of progress. Binary quality
gates mean that the project should have weekly or even daily 'binary' indi-
cations of progress. Status of the project must be seen and understood by
the whole team, which can be done by making the progress visible.

Good support can make even tightly scheduled project easier. According
to Yourdon, con�guration management (source code version control) is an
essential practice in high-pressure projects. Defect tracking can support
projects in scheduling and prioritizing activities. Risk management with
defect tracking can act as a powerfull tool to steer a project to the right
direction.

Learning from mistakes (see �gure 2.5) can be done in many ways. Your-
don suggests using metrics for doing it. This should be considered when
de�ning the software development process for the case organization as well.
The importance of the metrics was put in words by DeMarco:\You cannot
control what you cannot measure"(Demarco and Boehm, 1982).

Peer reviews can be considered important since they are widely agreed
to �nd defects in the early phase of development and on the other hand peer
reviews in the form of pair programming forms one of the main principles
of extreme programming.

In short, it is reasonable to consider almost all of the key practices listed
by Yourdon when setting requirements for the software development process.

17Actually Yourdon has adopted best practices from SPMN that is an organization
under USA Departement of Defense.

29

Dependence on Time

Kathleen Eisenhardt describes the importance of managing time and change
in her article Time Pacing: Competing in Markets That Won't Stand Still
(Eisenhardt and Brown, 1998). She describes time pacing as \a strategy
for competing in fast-changing, unpredictable markets by scheduling change
at predictable time intervals ". She claims that companies, no matter how
big or small, high or low tech can beni�t from time pacing especially in the
markets that will not stand still. Even from the description of time pacing
it is clear that time pacing could be very useful for the case organization.
When comparing the main points of the time pacing and the needs of the case
organization the suitability of the time pacing becomes even more evident
(see table 2.2).

Table 2.2: Comparison of time pacing and case organisation's needs
Time pacing Case organization needs

Time pacing creates predictable
rhythm for change in the com-
pany.

High rate of change in the envi-
ronment of the case organisation.

Transitions can be used for learn-
ing, changing direction and for
acconmplishing other goals.

Learning from mistakes and
changing direction e�ectively.

Rhythm helps people plan ahead
and synchronize their activities.

Organization with many part
time workers needs clear task
planning and communication.

Time pacing helps managers to
avert the danger of changing too
infrequently or too frequently.

Short development projects and
fast release cycle.

Besides creating a sense of urgency, time pacing stresses two essential
processes for succeeding in changing markets: managing transitions (shifts
from one activity to the next) and managing the rhythm. Managing tran-
sitions is vital because major transitions are periods when the organization
is likely to stumbe. Well managed rhythm is in synhronization with the
rhythms of suppliers and customers. Rhythm creates the momentum for
the organization and helps people to predict the changes. The main points
of the time pacing are valuable to consider from the view point of the case
organization.

Managing transitions well in the product development can improve the
eÆciency of the shifting from one product development project to the
next (minimizing the 'downtime' between the projects) and shifting
from development to the maintenance and support of a product.

30

Managing rhythm so that organization is synchronized with any of those
rhythms that create new opportunities (like release rhythm of the in-
formation server suplier) can make organisation to improve its perfor-
mance.

In short, time pacing seems to �t well to the needs of the case oprgani-
zation. Time related needs from workshop got support from the literature
and some of the ideas from time pacing can be concidered when de�ning the
requirements for the software development process.

2.4 Summary of the Requirements

This section summarizes results from the workshop and makes comparisons
with literature to create one list of requirements for the software development
process of the case organization.

Due to the large number of needs derived from the workshop material,
needs must be grouped to form the actual requirements. Same kinds of needs
from di�erent viewpoints can be found related to di�erent environmental
factors. For example needs related to the environmental factors time related
decisions and high rate of change produced same kind of needs. For this
reason needs are grouped here according to theme. Needs that belong to a
same theme form a requirement for the software development process.

The list of requirements is presented in the tables 2.3 and 2.4 where it has
been made clear which of the needs are related to each of the requirements.
These requirements are the basis of the rest for the research.

31

Table 2.3: Requirements for the software development process
Requirement Need

Architecture centric Customizable product
Easy management of product
Invest in architecture
Divided responsibility
Design for security
Use standars for security
Use 3rd party components for security
Focus on interfaces
Using standards for integration
Deploying new technologies

Time oriented Fixed deadlines
Schedule centric attitude
Fast release cycle
Short projects to minimize risks
Partnering to get early access to infor-
mation servers
Big challenges
Flat team organization
Managing transitions
Right rhythm

Fast reactions to change Continuously changing requirements
Prioiritizing tasks
Risk management

Customer oriented Features from customers
Feature priorization by customers
Fast reactions to customer feedback
Fast delivery
Short response times to customers
Early access to new product versions

Managed requirements Clearly de�ned versions
Features of the version well docu-
mented
Added value of a new version
Con�guration management

Visible development Demos
Visibility of the development
Clear tasks
Binary quality gates as the 'inch-
pebble' level
Peer reviews

32

Table 2.4: Requirements for the software development process
Requirement Need

End-user orientation Usability is important

Focus on core product Minimized delivery projects
Partners for integration
Standard integration
Partnering with the big players

Extensive testing Product work without modi�cations
Understanding the technical environ-
ment
Defect tracking

Learning organization Agressive learning
Learning from mistakes
Open-minded problem solving
Good communication

Research for the future Knowing the competitors
Benchmarking
Knowing e�ects of new technologies

33

Chapter 3

Evaluating Existing Process

Models

In this chapter existing process models and frameworks are evaluated against
the requirements de�ned in the section 2.4 (see tables 2.3 and 2.4). First,
relevant process models and frameworks are chosen for evaluation. The
chosen models are introduced briey and then more speci�c evaluation is
done. The result of the evaluation is �nally summarized into a table where
the process models are rated against the requirements. The process models
are not described in detail in this research. Only the relevant points are
explained to give the reader adequate background. This chapter forms the
basis for constructing the new software development model for the case
organization.

At this point it is good to note that process models and methodologies
are not trivial to compare. Some of the models are more like loose high-
level frameworks when the others might be very detailed and concrete. Since
models have di�erent levels of abstraction they could even be parts of each
other so that one model actually implements a part of the other model.
Because models are evaluated against the requirements, not against each
other, that should not be a big issue in this research.

3.1 Choosing Models to Evaluate

Software process maturity models and standards, such as CMM (Paulk et al.,
1991), SPICE (Dorling et al., 1996), and BOOTSTRAP (Kuvaja et al.,
1994), have a slightly di�erent point of view to the software development
process than it is needed in this research. They do not necessarily provide
concrete enough actions that could be evaluated against the requirements.
The other aspect is that these frameworks have been developed at least
partly for analyzing the maturity of the software process, not to provide
concrete ways of working.

34

Four software process models were chosen for evaluation: Rational Uni-
�ed Process (RUP) (Kruchten, 1999), Extreme Programming (XP) (Beck,
2000), Scrum (Schwaber and Beedle, 2002), Synchronize and stabilize (synch-
n-stabilize) (Cusumano and Selby, 1998).

RUP was chosen to represent a more traditional view of software devel-
opment. Even if it is a framework by its nature, it has a great practical value
compared to its base framework USDP (Jacobson et al., 1999) 1. XP was
chosen because it is maybe the most hyped and popular agile process model
at the moment. Series of XP books have been published after Kent Beck's
initial de�nition of XP (Beck, 2000) in a relatively short time frame. This
gives an indication that XP is found interesting by the software developer
community. Scrum, another agile process model, was chosen to give XP a
point of comparison. Synchronize and stabilize was chosen because it have
been seen to work fairly well in the very unstable and dynamic environment
of Microsoft.

3.1.1 Rational Uni�ed Process

RUP is a commercial product that is actually a speci�c and detailed instance
of a more generic process framework USDP introduced by Ivar Jacobson
(Jacobson et al., 1999). RUP is supported by a large toolset provided by
Rational Software Corporation.

In the product white paper (Rational, 1998), RUP is de�ned to be \a
software engineering process that provides a disciplined approach to assign-
ing tasks and responsibilities within a development organization". RUP takes
UML2 in extensive use. Rather than producing large amount of paper doc-
uments RUP uses UML models to represent the software product from its
de�nition to installation. RUP is targeted to both small and large teams
and organizations. It is con�gurable for di�erent purposes.

RUP concentrates on deploying commercially proven best practices into
the software development. Six best practices are listed as being the most
important of them:

1. Develop software iteratively

2. Manage requirements

3. Use component-based architectures

4. Visually model software

5. Verify software quality

1USDP stands for Uni�ed Software Development Process
2The UML is an industry-standard language that allows us to clearly communicate

requirements, architectures and designs.

35

6. Control changes to software

RUP can be described in two dimensions: time and process workows as
visualized in the �gure 3.1. In the �gure, the weight of the process workow
in each phase is visualized with shaded area.

Figure 3.1: The Iterative Model Graph of RUP

The time dimension de�nes phases and iterations. The phases are called
inception, elaboration, construction and transition phase. Each phase con-
sists of number of iterations and ends with a major milestone, a point where
key goals have been achieved.

The process workow dimension de�nes nine core process workows. Six
of them are considered \engineering" workows: business modeling, require-
ments, analysis & design, implementation, test and deployment workow.
Other three of them are \supporting" workows: project management, con-
�guration & change management and environment workow.

3.1.2 Extreme Programming

Kent Beck �rst introduced XP in his book Extreme Programming Explained:
Embrace Change (Beck, 2000). Since then XP has gained popularity and
number of books and articles have been written about it3. XP process
currently has no tool support but activities carried out in XP are currently
supported by number of open source tools.

Kent Beck de�nes XP to be \a light-weight methodology for small-to-
medium-sized teams developing software in the face of vague or rapidly

3see http://www.extremeprogramming.org for a list of books about XP.

36

changing requirements". XP's motto is traveling light and maximizing the
produced value to the customer. Its exible project scope provides means
to control cost, time and quality of the software development project and
product.

XP can be described by its values and practices (see �gure 3.2). The
values of XP are communication, simplicity, feedback and courage. Com-
munication is encouraged by employing practices that cannot be done with-
out communication: pair programming, unit-testing and task estimation in
\planning games". System metaphor communicates the whole development
team as well as the customer the main story about the software to guide all
development. Practices like simple design and refactoring strive for simplic-
ity. The question to ask in XP-style design is \What is the simplest thing
that could possibly work?" Feedback works in di�erent time scales. Develop-
ers get minute-by-minute feedback from their programming pairs and on the
other hand from the system by running unit tests. In a time frame of weeks,
the planning game gives customer immediate feedback from developers in
the form of task estimations. Small releases give the customer and the de-
velopment team frequently feedback about the quality of the work. Courage
follows the other three values. When the �rst three are in place develop-
ers have the courage to strive for simpler and better design by refactoring
even if it might result in the software to break for a while. Practices like
collective code ownership, pair programming, coding standard and testing
give courage to make even radical changes to any part of the code when it is
needed. Practices of XP (visualized in the �gure 3.2) are done iteratively so
that planning games are played once in about three weeks, iteration plan-
ning is done few times between the planning games to derive tasks out of
the user stories which have been developed in the planning game. Stand up
meetings occur about once a day to solve urgent problems of coding, testing
and integration.

On-Site
Customer

40-hour
work week

Planning
Game

Metaphor

Simple
Design

Pair
Programming

Testing

Refactoring

Continuous
Integration

Coding
Standard

Small
Releases

Collective Code Ownership

Figure 3.2: Practices of the XP

XP project is managed by coaching, tracking and metrics. Coaching
is about communicating and keeping the focus on relevant things such as

37

keeping the design simple, refactoring when needed and running and writing
unit testers that run with 100% success. Tracking using metrics helps to keep
the project in schedule and makes the team learn from the past. Metrics are
to be provided to those who can bene�t from them. For example, a metric
describing the planned e�ort against realized e�ort needs to be seen by the
developers who make the task estimations.

Even if XP is considered to be a light-weight method it surely is also a
deliberate and disciplined approach to software development when exercised
strictly.

3.1.3 Scrum

The term scrum was �rst used in the �eld of software development by Hiro-
taka Takeuchi and Ikujiro Nonaka in their article The New New Product De-
velopment Game (Takeuchi and Nonaka, 1986) to describe hyper-productive
software development in Japan in the year of 1987. Later, the term scrum
was adapted by Ken Schwaber and Mike Beedle to give a name to a soft-
ware development process they were using to build software products and
that they used to help other organizations to build systems. To the larger
audience Scrum was introduced in their book Agile Software Development
with Scrum (Schwaber and Beedle, 2002). Originally scrum is a rugby term
and Schwaber argues that the name �ts for the software process model well
since \Both are adaptive, quick, self-organizing and have few rests". Scrum
belongs to same category of agile software process models as XP.

Ken Schwaber de�nes Scrum as \a management and control process that
cuts through complexity to focus on building software that meets business
needs". Scrum primarily works on the team level so the ideal size of a de-
velopment team is seven (plus or minus two) members. Scrum advices to
divide larger organizations into smaller Scrum teams that may work inde-
pendently. Scrum being introduced quite recently to the general public it
doesn't have tool support.

Scrum concentrates on management and control of development work.
It does not de�ne its own engineering practices but is more like a wrapper
for existing practices. For example XP practices could be used in a Scrum
project. Scrum de�nes a set of concepts and workows which are visualized
in �gure 3.3. Everything starts with product backlog that is a prioritized
list of all product requirements. The Product owner controls the product
backlog by prioritizing its requirements that can be originated from var-
ious sources (customers, user, sales people, engineers, etc). Development
is divided into one-month iterations called sprints. A sprint starts with a
sprint planning session where sprint backlog is constructed from the most
important items of the product backlog. The sprint ends with a sprint
demonstration or sprint review meeting that has one important purpose: to
demonstrate all new functionalities that have been developed in the sprint.

38

The importance of the demonstration is stressed in Scrum's motto: \demo
or die".

Sprint backlog items are expanded by the team into concrete task list
with work estimations. The estimations for task describe how many hours of
work are still needed for a speci�c task. The sum of the estimated remaining
working hours is visualized against calendar time in the project burn down
graph. This graph gives a real-time estimate for sprint completion date
(see appendix B.2 for an example and more information about the project
burndown graph). Everyday work in a sprint is steered by daily scrum lead
by the scrum master. The scrum master is responsible for the success of
the scrum. The scrum master's main responsibility is to help the team
to work as eÆciently as possible by removing any impediments the team
might have and by making decisions. The daily scrum is a short meeting
with a standard agenda. Everyone is asked the same three questions to
communicate the progress and the possible problems: What did you do
since the last scrum meeting? Do you have any obstacles? What will you
do before the next meeting?

Scrum assigns great responsibility to the development team: the team is
responsible for delivering the new functionality and on the other hand team
is free to use any means to make it happen.

Figure 3.3: Scrum concepts and workow

39

3.1.4 Synchronize and Stabilize

Michael Cusumano and Richard Selby introduced the synch-and-stabilize
development approach in their book Microsoft Secrets: How the World's
Most Powerful Software Company Creates Technology, Shapes Markets, and
Manages People (Cusumano and Selby, 1998). Actually synch-and-stabilize
describes the software development process used in Microsoft starting from
the early 90's. Synch-and-stabilize does not have a similar development com-
munity in the World Wide Web promoting the model as XP or Scrum, nei-
ther is it a commercial product like RUP. Anyway, Cusumano's and Selby's
book has been cited in a number of articles in the software development
literature.

Synch-and-stabilize does not have a clear de�nition. In Cusumano's
words \synch-and-stabilize is Microsoft's approach to product development".
Even if synch-and-stabilize has been developed for large development orga-
nization of Microsoft, one of its principles is to make large organization work
like small teams.

M
ile

st
o

n
e

0

Development 6-12 monthsPlanning 3-12 months Stabilization 3-8 months������

P
ro

o
je

ct
 p

la
n

ap
p

ro
va

l

M
ile

st
o

n
e

I

M
ile

st
o

n
e

II

M
ile

st
o

n
e

III

C
o

d
e

co
m

p
le

te

R
el

ea
se

 t
o

m
an

u
fa

ct
u

ri
n

g��

6-
12

 w
ee

ks
-

C
od

in
g

-
T

es
tin

g
-

F
ea

tu
re

 s
ta

bi
liz

at
io

n

2-
5

w
ee

ks
-

In
te

gr
at

io
n

-
T

es
tin

g

2-
5

w
ee

ks
-

B
uf

fe
r

tim
e

F
ea

tu
re

 c
om

pl
et

e

Z
er

o
bu

g
re

le
as

e

V
is

ua
l f

re
ez

e

-
V

is
io

n
st

at
em

en
t

-
S

pe
ci

fic
at

io
n

do
cu

m
en

t
-

P
ro

to
ty

pe
s

-
T

es
tin

g
st

ra
te

gy
-

S
ch

ed
ul

e

-
In

te
rn

al
 te

st
in

g
-

B
uf

fe
r

tim
e

-
B

et
a

te
st

in
g

-
B

uf
fe

r
tim

e
Subproject 2-4 months

Figure 3.4: Overview of the Synch-and-stabilize development approach

The basic idea of the synch-and-stabilize approach is to continually syn-
chronize the work of parallel working teams and to periodically stabilize the
product increments. The overview of the synch-and-stabilize approach (see
�gure 3.4) visualizes its �ve principles about de�ning products and develop-
ment process:

1. Divide large projects into multiple milestone cycles with bu�ers and
no separate product maintenance.

2. Use a vision statement and outline speci�cations of features to guide
projects.

3. Base feature selection and priorization on user activities and data.

40

4. Evolve a modular and horizontal design architecture, with the product
structure mirrored in the project structure.

5. Control by individual commitments to small tasks and '�xed' project
resources.

The life cycle of product development is formed by three phases: plan-
ning, development and stabilization. In the planning phase, the vision state-
ment and speci�cations including architecture plans are made and features
are prioritized. The development phase is divided into three subproject sep-
arated by milestones and a stabilization period. In the subprojects the large
organization is divided into small feature teams consisting of program man-
ager, 3-8 developers and 3-8 testers (who work parallel 1:1 with developers).
Feature teams go through the complete development cycle (implementation,
integration, testing and �xing) in each of the subprojects. Subprojects have
bu�er time for unexpected problems to balance the schedule. Development
is governed by the �ve principles of developing and shipping products:

1. Work in parallel teams but 'synch up' and debug daily.

2. Always have a product you can theoretically ship, with a version for
every major platform and market.

3. Speak a common language on a single development site.

4. Continuously test the product as you build it.

5. Use metric data to determine milestone completion and product re-
lease.

In synch-and-stabilize approach the project resources are �xed, so that
the amount of new features is exible. The most critical features and shared
components are developed in the �rst subproject and the rest are developed
in the next two subprojects in the order of priority. Features may also change
from the original set of features during the development phase.

3.2 Evaluation of the Software Process Models

In this section the software process models that were presented in the pre-
vious section are evaluated against the requirements. The purpose of the
evaluation is to �nd out how these models support the requirements and to
�nd out the strong areas of each model.

Evaluation of the models against the requirements is done fairly theoret-
ically (see the summary of requirements from section 2.4). The features of
the models are taken as they are presented in the literature and evaluation
is done based on that information. The reason for this is that objective

41

experience reports are not available equally for the four models under eval-
uation.

If reference is not explicitly mentioned in this evaluation the information
is from the following books

� The Rational Uni�ed Process: An Introduction (Kruchten, 1999)

� Extreme Programming Explained. Embrace Change (Beck, 2000)

� Agile Software Development with Scrum (Schwaber and Beedle, 2002)

� Microsoft Secrets: How the World's Most Powerful Software Company
Creates Technology, Shapes Markets, and Manages People
(Cusumano and Selby, 1998)

3.2.1 Architecture Centric

By de�nition RUP is an architecture centric process model. It stresses the
importance of early development of robust executable architecture using
component-based technologies. This supports well requirements for focus-
ing on interfaces, dividing responsibilities and gives good basis for using
standards and ready-made components.

De�ning component interdependency and basic architecture is a very
important part of the synch-and-stabilize approach to be able to divide work
between smaller feature teams. The details of developing the architecture
are not discussed but the main e�ort for it is done in the �rst development
subproject when common components are implemented and tested.

The architectural skeleton is to be developed in the �rst iteration of an
XP project. The system metaphor should be good enough to de�ne needed
border conditions for the architecture. It is evident that the quality of the
�rst architecture skeleton depends on the case and it is very likely that it will
be changed even dramatically during the project. Demand for making the
simplest possible architecture however gives a good chance to use standards
and ready-made components.

Being more a management model, Scrum does not comment how archi-
tecture should be considered.

3.2.2 Time Oriented

All evaluated models except RUP introduce �xed deadlines for the devel-
opment projects. The release cycle naturally depends on the scope of the
project but XP and Scrum guide development to fairly short development
projects of three to six months. Synch-and-stabilize, on the other hand,
aims at one to two year development projects. All these three models not
only have a �xed dead line for the whole development project but also for
the iterations inside the project. Iterations inside the development project

42

give a chance to re�ne and modify the requirements of the product under
development. This naturally lowers the risk of building something that is
not usable by the time the project is �nished. Also RUP is based on itera-
tive development but its development approach can better be described as
feature oriented than schedule oriented.

Especially Scrum and XP are very time and schedule oriented models
from day-to-day practices to whole development project. Scrum even has a
daily schedule of steering the project in the scrum meetings. In XP, teams
are encouraged to hold daily stand up meetings where the direction of the
project is corrected if needed. Synch-and-stabilize introduces a concept of
bu�er time. This contingency time is part of each major milestone during
development and stabilization. Having a bu�er time minimizes the risk that
the release date must be delayed because of unexpected problems. This of
course gives sales more con�dence about promising a delivery of the product
to customer at a speci�c date. Synch-and-stabilize and XP require devel-
opers to make daily builds to keep the state of the software visible at all
times.

Synch-and-stabilize, and especially XP and Scrum, push the responsi-
bility as low as possible. Organization in XP and Scrum projects is consid-
erably low, giving every team member a great chance to a�ect the project
result. This creates a challenging environment for the whole team since the
goal is clear but the means to achieve it are up to the team and individuals.
Scrum promotes self-organizing teams which are said to maximize the value
produced by the team by giving the team a possibility to divide tasks in the
best possible way for that particular group of people. In RUP the struc-
ture of the team depends on the way RUP is implemented for that speci�c
project. Anyway, the basic attitude seems to be top-down management of
projects that might limit the challenges given to an individual programmer.

The right release schedule, the rhythm, is essential in synch-and-stabilize.
New product releases must be in synch with other products as well as with
new hardware releases. Of course, Microsoft has much better possibilities to
a�ect other software and hardware vendors' schedules than a small software
company. In Scrum the rhythm is clear and predictable, development goes
on sprint by sprint in �xed schedule. If this schedule is synchronized with
relevant events like exhibitions and other software releases this can be an
e�ective approach. But Scrum does not actually assume one to do this
synchronizing.

Transitions are considered at least in some way in Scrum and synch-and-
stabilize. In both models development of the product does not stop when a
release is made but it continues smoothly to development of the next version.
Transition is a moment of looking back, gathering feedback from the project
and starting planning for the next version. Synch-and-stabilize introduces
milestone 0 which is the time between �nishing one version and oÆcial start
of coding the next version. During this time code is cleaned up from things

43

that developers felt were wrong. In the larger picture where one product is
not developed to the next version or when the development of a completely
new product is started is not discussed in detail even in these two models.

XP and RUP have a more or less project view to rhythm and transac-
tions. They consider the development project, not the time between the
projects or how to place the project in the calendar.

3.2.3 Fast Reactions to Changes

All the models accept the fact that requirements will evolve during a de-
velopment project. Iterative development in all models gives a chance to
change requirements periodically. RUP has clearly more formal and time-
consuming approach to the change management than XP, Scrum or even
synch-and-stabilize.

The vision statement in synch-and-stabilize, system metaphor in XP and
sprint goal in Scrum are means of setting the direction for the development
project and basis for making decisions about changes in requirements. Re-
quirements can be changed if it leads the project to the right direction.
Especially if requirements change very frequently adopting the changes is
not the only important matter. The development team needs to have a cer-
tain period of stability to be able to be e�ective in their work. If tasks are
changing on a daily basis nothing will be completed but lots of things are
left un�nished. Fortunately all the models advice projects to concentrate
on a stable set of requirements for a certain period of time and to apply
changes in the beginning of the development period.

Prioritizing features and tasks is an essential point in all the models.
RUP prioritizes high-risk components to the top for every iteration while
synch-and-stabilize prioritizes the features based on user activity and data
(how well a feature supports important or frequent user activities based
on research data). XP and Scrum prioritize features and tasks according
to the value that these features produced to the customer. All the models
reprioritize features for each iteration. The time frame for doing it is shorter
in Scrum and XP than it is in RUP and synch-and-stabilize.

Risk management, i.e., identifying and attacking the highest risk items
early in the project, is one of the ten most essential precepts of the RUP
as described in the Rational Software white paper The Ten Essentials of
RUP (Probasco, 2000). The other three models do not address formal risk
management but manage risks by very frequent project reviews and short
project steering cycles.

3.2.4 Customer Oriented

The requirement of on-site customer in XP makes it the best model when
customer orientation is considered. It might be unrealistic to assume that

44

the customer really is available for the development team at all times. If the
on-site customer concept works the commitment of the customer and possi-
bility to a�ect the project and its priorities are at their maximum level. It
also gives the project team the possibility to react fast to customer feedback.

The source of the features is explicitly de�ned in XP and synch-and-
stabilize. The on-site customer de�nes features and requirements in XP
while user researches, feedback and usage data is the basis of the feature
selection in synch-and-stabilize. Scrum states that features and requirements
that are gathered to product backlog are from various sources like customer
support and feedback, sales and technology people. RUP does not give a
clear picture of how features and requirements are de�ned when developing
a product but in a tailored project they are de�ned at the start of the project
with the customer.

The customer is explicitly involved in feature prioritization in XP and
synch-and-stabilize while Scrum involves the customer implicitly through
the product owner who does the actual priorization. The amount of cus-
tomer involvement in prioritization of product backlog in Scrum is largely
depended on the attitude of the product owner. Synch-and-stabilize bases
prioritization on quantitative user activity data which is a natural approach
with mass market products.

Fast delivery is not explicitly discussed in any of the models. In synch-
and-stabilize products go through extensive testing including internal and
external (beta testing) testing in the stabilization phase. This strives at zero
bug release and complete product packaging that makes the fast delivery
to the customer easier. Naturally, this approach is important for shrink-
wrapped products that are available from almost any software store. Con-
tinuous integration, early production and presence of the customer should
make the delivery time short in XP as well.

3.2.5 Managed Requirements

Requirements management is one of the core process workows in RUP. It
introduces a formal way to capture, organize, document and track require-
ments from speci�cations to delivered product. Scrum on the other hand
has a very light-weight way of managing requirements: backlogs have short
requirement descriptions and are the basis of all work. They are kept up-to-
date throughout the project. Synch-and-stabize uses a similar requirement
speci�cation documentation that has feature speci�cation in a little more
detail. This can make the speci�cation fairly large with complex programs
like Microsoft OÆce (Excel 5.0 had initial speci�cation of 1500 pages). XP
manages requirements in user stories in a fairly informal way. In short, one
can say that only RUP has extensive requirement management support that
takes di�erent product versions and variants into account.

Communicating the added value of a new version to the customer is not

45

discussed in any of the models. In XP the value produced for the customer
is the main argument of prioritization so that it is assumed the that value
added is clear. In Scrum and synch-and-stabilize prioritization should make
the value added clear but communicating the real points to the customer is
left unclear.

Con�guration management is recognized as one of the core supporting
workows in RUP. It provides guidelines for managing multiple product vari-
ants and parallel development of a product. Daily builds and tests in synch-
and-stabilize and XP rely on e�ective con�guration management. However,
a clear picture of how to perform con�guration management is not presented.

3.2.6 Visible Development

Visibility of the development is one of the key issues in XP and Scrum:
both encourage communicating the state of the development daily within the
project and at least weekly with the customer. Synch-and-stabilize and XP
provide valuable insight to the state of the development by daily builds and
automated daily tests. These tests and builds can be used as 'inch-pebble'
level quality gates that ensure the project to go to the right direction.

The iterative approach to the development adopted by all the four models
give good visibility to the development. At the end of the iteration all models
stress that software needs to be basically ready for shipping. At least new
features developed in the previous iteration must be demonstrated as a part
of the whole software product. The most considerable di�erence between the
models from this point of view is the length of the iteration that varies from
XP's and Scrum's few weeks to few months of synch-and-stabilize. RUP,
instead, gives freedom to choose the length of the iteration and does not
stress the importance of frequent project status updates.

Clearly de�ned and estimated tasks are important in XP and Scrum.
Day to day work is de�ned by the tasks and the progress of the project
is estimated through the tasks. Tasks are de�ned and estimated in both
models, as well as in synch-and-stabilize, by the developers who actually
implement the tasks. RUP, instead, as a framework, does not describe
how tasks should be de�ned or estimated but leaves that for the one who
implements the model to decide.

Peer reviews are taken as one of the corner stones of XP. Actually work
is reviewed by a peer continuously in pair programming. Other models do
not explicitly comment if peer reviews should be used or not. In synch-and-
stabilize limited peer reviews are done on design and code. However, it is
not enforced and in practice the amount of reviews depends on the project
schedule. Scrum and RUP do not instruct whether to use peer reviews or
not.

46

3.2.7 End-user Oriented

Synch-and-stabilize is the only model out of the evaluated models that ad-
dresses usability testing as part of the development process. Usability is
built into the product during the whole development project. In the plan-
ning phase usability goals are set and exploratory testing is done. In the
development phase usability tests are done iteratively to provide feedback
for development. Stabilization phase includes wider testing whose results
are used in the next version of the product.

Even if usability testing is not an actual part of the other models there is
not anything that prevents one to include them as a part of the development
or testing tasks.

3.2.8 Focus on the Product

Focusing on the chosen products is a higher-level product development strat-
egy decision and it is not really discussed in the models evaluated here. Ac-
tually, this kind of focus is planning the product releases of all the products
in a longer time scale. Only synch-and-stabilize takes this long-term product
planning into account.

Some other things that may a�ect to the core product focus by the
process are the simplicity of the product, usage of component architecture
(and 3rd party components), product documentation and using standards
in development. RUP and synch-and-stabilize have their strengths in ar-
chitecture and component centric design (see section 3.2.1) as well as in
documentation.

3.2.9 Extensive Testing

Testing plays a key role in especially XP but in synch-and-stabilize as well.
XP's principles of \test �rst" and \unit test must run 100% successfully"
reect well its attitude towards testing. Automated and frequently run unit
tests control the development project in both XP and synch-and-stabilize.
Successfully done testing on all major platforms (hardware and software)
is also a goal of iteration in synch-and-stabilize. Also principle of having
a 1:1 ratio of developers and testers in the development team stresses the
importance of testing. RUP has testing as one of its core process workows.
Testing is done throughout the development project in a systematic way.

Defect tracking guides development in synch-and-stabilize. Defect track-
ing tools are used for recording and tracking the status of the bugs. As a
guideline, a developer that has more than ten open bug reports is not al-
lowed to start developing a new feature. In XP failed unit tests are visible
for the whole team but how defects should be managed when found in accep-
tance testing or production is not described. RUP treats defects similarly

47

as change requests, they are recorded and managed with a defect track-
ing tools which RUP supports well as can be expected from a commercial
process suite.

Understanding the technical environment is necessity for performing the
right kind of tests. This is assumed in all three models that focus on testing.
Scrum does not give any guidelines for testing.

3.2.10 Learning Organization

Learning from the past and present projects and products is one of the prin-
ciples in synch-and-stabilize. It is done by arranging project postmortem
sessions and writing postmortem document on basis of it. Feedback and
improvements are also encouraged by using metrics about the projects and
benchmarks about the best practices and project experiences. Scrum intro-
duces sprint review session after each sprint to ensure that the project team
communicates to the customer and to the rest of the organization the new
features and the status of the project as well as to ensure that the project
team gets feedback from them. This feeback is not even semi-formal and it
is not recorded for later like the information gathered in synch-and-stabilize
process.

Extensive communication and problem solving in the development team
is a fundamental thing in Scrum and XP. Teams have very little guidance
but challenging problems to solve. This, with adequate resources (like sup-
porting software and hardware) encourages individual developers to face the
problems with an open mind. Also the team working closely together maxi-
mizes the information ow within the team and helps to �nd good solutions
to problems.

Learning and communication are not the main themes in RUP but
the framework is surely adaptive for introducing for example project post-
mortems.

3.2.11 Research for the Future

Research for the future is not considered in any of the models. The focus
in the models is more on the situation in hand and on how to develop a
new product or version. Knowing the competitors and benchmarking the
product is considered to be more the job of the business intelligence than
product development.

Long-term e�ects caused by the new technologies are not considered
either. Microsoft's general strategy towards the future technologies is de-
scribed in Microsoft Secrets (Cusumano and Selby, 1998) but it does not
strictly relate to the development process. Even if Microsoft tries to a�ect
and make the standards of new technologies themselves that is not probably
an option for small company.

48

On the other hand, successful usage of standards and component archi-
tecture is more likely to help adapting new technologies than an ad hock
architecture. From this point of view RUP and synch-and-stabilize (see
section 3.2.1) provide a chance to success with new technology adaptation.

3.3 Summary of the Evaluation

This section summarizes results from evaluation of the existing software
process models based on previous sections (see sections 3.2.1 - 3.2.11). The
scale used for comparing the models based on the evaluation has four levels.
The levels give a general picture of how well the model supports a speci�c
requirement.

� � � Indicates that requirement is one of the main focus areas of the process
model and it is described in detail.

� � Indicates that the process model supports that requirement.

� Indicates that requirement is described shortly in the process model
but it lacks at least some relevant information.

- Requirement is not supported or even mentioned in the process model.

It is important to notice that level given to a model is not unambiguous.
Since one requirement is a collection of needs that have a same theme the
model might support some of the needs but not all of them. This leads
to the fact that levels give a qualitative estimate, not an exact value for
comparing how well the models support a speci�c requirement. However,
this qualitative estimation is suÆcient for this research since no decisions
are based only on these estimations and it gives a visual overview of the
models compared to the requirements.

To summarize, it is clear that none of the models is perfect if all the
requirements are considered. The biggest lack of support is related to the
requirements that cope with long-term planning and research as well as
business intelligence and partnering (focus on core product and research for
the future). Product customization and delivery was not discussed in any
of the models either. On the other hand, almost every requirement but the
ones just discussed has at least one best rating (� � �). This leads to an
interesting conclusion that combining the evaluated models could possibly
support these requirements if the models themselves support additive utility.
Combining the models is discussed more in the next chapter where the new
software process model is introduced.

49

Table 3.1: Evaluation of the process models
Requirement RUP Synch XP Scrum

Architecture centric � � � � � � � -
Time oriented � � � � � � � �
Fast reactions to change � � � � � � � �
Customer oriented � � � � � � � �
Managed requirements � � � � � �
Visible development � � � � � � � � �
End user oriented - � � � - -
Focus on core product � � � - -
Extensive testing � � � � � � � �
Learning organization - � � � � � �
Research for the future � � � - -

Average � � � � �

50

Chapter 4

The New Software Process

Model

In this chapter the new process model is introduced. The new process model
is based on the requirements derived in chapter 2 and results from evalua-
tion of existing process models against those requirements (see the summary
of requirements and evaluation from sections 2.4 and 3.3 respectively). Be-
sides these border conditions some �ndings and experiences from literature
are used. Especially, early results from SEMS1 research project are used
since participation of the case organization to that project has had a great
inuence on the resulting framework called 4CC2 (Rautiainen et al., 2002).

The 4CC framework aims at combining business and process manage-
ment through four cycles of control. This approach is a valuable comple-
ment to the evaluated models that have their weakest points in including
the business and strategic view to the product development. The four cycles
of control in the 4CC framework are:

Strategic release management the main purpose of which is to plan re-
lease cycles and content, role and timing of individual release project.

Release project management the main purpose of which is to make sure
that assigned product release gets done.

Iteration management the main purpose of which is to build a stable,
working product in increments.

Mini-milestones the main purpose of which is to integrate and synchro-
nize the e�orts of individuals and teams in the development project.

1SEMS research project develops a Software Engineering Management System for
small and medium-sized software enterprises. The SEMS project is planned to span
over three years (2001-2003) and it is part of the TEKES technology programme SPIN
(http://www.soberit.hut.�/sems/english).

24CC stands for four cycles of control.

51

At the time being, the 4CC is still a tentative framework lacking some details
and important issues like usage of metrics.

Combining existing process models to achieve synergy in certain situa-
tions is not a new idea. Rational provides two whitepapers (Smith, 2001)
(Pollice, 2001) describing how RUP can be implement so that it uses engi-
neering practices from XP. This approach is not too relevant for this research
as it is, but some of the ideas might be valuable. The scrum community
promotes combining scrum and XP so that engineering practices of XP are
wrapped with the management practices of Scrum3. This approach is inter-
esting from the viewpoint of this research but articles or experiences about
it are not available.

The new software process model is described by �rst presenting the over-
all picture of the model and then concentrating on details. The evaluated
models are frequently referenced to in this chapter. If the reference is not
explicitly mentioned information is from these references:

� The Rational Uni�ed Process: An Introduction (Kruchten, 1999)

� Extreme Programming Explained. Embrace Change (Beck, 2000)

� Agile Software Development with Scrum (Schwaber and Beedle, 2002)

� Microsoft Secrets: How the World's Most Powerful Software Company
Creates Technology, Shapes Markets, and Manages People
(Cusumano and Selby, 1998)

� A Tentative Framework for Managing Software Product Development
in Small Companies (4CC) (Rautiainen et al., 2002)

4.1 Overview

All the models evaluated plus the 4CC model have an iterative and sequen-
tial approach to product development. This approach has also been found
to be good for developing a high-quality product in very uncertain and dy-
namic environments (MacCormack, 2001). Considering the fact that this
approach was also found to support the requirements in the evaluation of
the models (see section 3.2.2), it is reasonable to take this approach as a
basis for the new software process model.

4.1.1 Leadership and Management

Leadership and management are two di�erent aspects of getting a team or
a company to reach its goal. John Kotter describes their fundamental dif-
ference in his article What Leaders Really Do (Kotter, 2001): \Management

3See http://www.controlchaos.com/xpScrum.htm for more information.

52

is about coping with complexity. Leadership, by contrast, is about coping
with change". In the uncertain and dynamic environment of the case or-
ganization, the role of leadership needs to be understood. Since change is
a fundamental part of the product development it cannot just be managed
but also lead.

Kotter points out di�erences in activities of management and leader-
ship. At a high level, companies are managed by planning and budgeting
while leading an organization starts by setting a direction, a vision for the
future. Management enables achieving the plan by organizing and staÆng
while aligning people towards the vision is essential in leadership. When it
comes to everyday tasks, management ensures accomplishment of the plan
by controlling and problem solving. On the other hand, leadership requires
motivating and inspiring in achieving the vision. Especially in an unstable
environment, a well-led organization has much greater chances to succeed
than a strictly managed one. Kotter argues strongly for possibilities of an
organization that has an active leadership culture.

The new model lays down a basis for product development that is both
led and managed. Empowering the individuals to work for the common goal
is its main purpose. From the leadership point of view strategic release man-
agement sets the direction for the whole development. Release management
cycle and sprints are about aligning people towards that common vision and
after all, daily rhythm is about motivating and inspiring.

Product development is creative work in a constantly changing environ-
ment. Strict control structures cannot work in a place where individual
decisions and new ways of thinking are needed for surviving. Kotter illus-
trates this situation with an apposite military analogy: \A peacetime army
can usually survive with good administration and management up and down
the hierarchy, coupled with good leadership concentrated at the very top. A
wartime army, however, needs competent leadership at all levels. No one
yet has �gured out how to manage people eÆciently into battle; they must be
led".

Combining management and leadership is essential since, as Kotter says,
strong leadership with weak management can even be worse than the reverse.

4.1.2 Periodical Approach

Di�erent activities in software product development have a di�erent time
scale. Strategic planning of product releases has obviously a far longer
cycle than for example daily builds. Nevertheless, all these activities are
sequential: they start at one point, they go on for a period of time, they
end at some point and after that start all over again. The activities might
have a little di�erent content every time but the fundamental goals are fairly
stable. For example, the content of a release project surely changes from one
project to another but the goal stays the same: high-quality software. This

53

sequential ow of development also gives a good chance to improve working
by learning from the previous cycles. Di�erent development activities need
to be aligned conveniently to get the right rhythm for the development and
to reach the business goals of the company.

To illustrate the di�erent periods of activities and their relations one
can think in mathematical terms. Activities can be described with sin(ft)
functions with di�erent periods. Aligning these functions so that they
intersect at the start of the period illustrates the main point of interac-
tion between these development actions. By bounding a function with a
shorter period with a function having longer period we can illustrate that
the activity with longer period governs the other activity. Naturally, the

Figure 4.1: Illustration of two development activities with di�erent periods

points where the function hits the time-axis illustrate the start (as well
as the end) of the activity. This illustration is visualized in �gure 4.1
which could for example represent a time period of six months having
two release projects each having three iterations. Functions are de�ned by
f(t) = j0:5sin(t=3)j; g(t) = jsin(t)jf(t) where the absolute value has been
used to simplify the �gure.

The purpose of the periodical approach focuses on getting the right
rhythm for the development, aligning di�erent activities and continuous
improvements. This approach has mainly been adopted from Kathleen M.
Eisenhardt's article \Time Pacing: Competing in Markets That Won't Stand
Still" (Eisenhardt and Brown, 1998) that was discussed in section 2.3.5. It
steers the model to ful�l the requirement for time oriented process.

4.1.3 Main Concepts and Alignment

The main concepts of the new process model are cycles of di�erent devel-
opment activities. The cycles have di�erent period, purpose and amount of

54

details. EÆcient alignment of the cycles is important to enable fast steering
of the development and extensive learning from the previous experiences.

4CC model is used as a high level framework for the new model. Ter-
minology is slightly changed to stress the involvement of the other models
even if the main cycles are similar to the ones in the 4CC model. On the
other hand, elements of the synch-and-stabilize model can easily be mapped
to these cycles as well. The management concepts of Scrum are relevant in
shorter-term cycles where terminology has been adapted from it. The main
concepts and their purposes are:

Strategic Release Management is for setting the direction for the prod-
uct development. It is about how to align product development with
the business and technology strategy by setting the release project
schedule for products and the main issues involved in each of them.
In this cycle the focus is on long-term issues like starting to develop a
completely new product or dropping a non-core product out of devel-
opment.

Release Project Cycle is for developing a new product or a new product
version. Product vision guides development done in the sprints. Prod-
uct vision is a synthesis from customer feedback, market researches,
product roadmap and possibly other things. The schedule and main
themes are also de�ned for the sprints in this cycle. Release Project
Cycle produces a new product or product version.

Sprints produce a stable increment for the software product. Sprints have
di�erent themes such as architecture and stabilization that clarify the
main target of the sprint. Sprint always ends with a sprint review
session where the new features are demonstrated and feedback is gath-
ered from the results and from the sprint project. Respectively, sprint
always starts with a sprint planning session where features to be de-
veloped are selected from a prioritized list and development tasks with
work estimations that are derived from the features.

Daily Rhythm is for steering and motivating the development towards the
sprint goal. Work of di�erent team members is synchronized and the
product is integrated and tested constantly.

Supporting Actions are continuous activities that support and guide de-
velopment. Their main purpose is to provide eÆcient methods and
tools for con�guration and requirement management, defect tracking
and daily builds and tests.

Figure 4.2 visualizes the main concepts of the new model and their align-
ment. The visualization of the model has been produced in �ve steps:

55

1. Drawing di�erent cycles of the model on a straight time axis as in
�gure 4.1.

2. Aligning the phases of the cycles.

3. Cutting a 12-month period out of the time axis and making it a circle.

4. Changing the curve of strategic release management to two circles
placed on the starting points of that phase to simplify the picture.

5. Adding spokes to make the model represent a wheel.

Supporting actions keep \the wheel of development" running from one phase
to another in a continuous feedback and steering loop.

Strategic Release
Management:
- release plan
- long-term
 decissions

Release Project
Cycle:
- product vision
- feature prioritization
- sprint planning
- productization

Sprints
- sprint goal
- sprint themes
- new product
 increment
- sprint demo

Daily Rhythm:
- steer development
- communication
- synchronize
 development
- ensure quality

Supporting Actions:
- helping development
 by providing tools

Main Cycle:
- length 12
 motnhs

PrototypeAlpha
release

Beta
release

Marketing
release

Figure 4.2: Overview of the new process model

The main idea of the alignment is that the cycle with the longer period
de�nes goals for its inner cycle and the inner cycle gives feedback to the
outer one. Strategic release management has the longest period. Its output
(plans for product releases) is essentially important to take into consider-
ation immediately in the release project cycle. Therefore it is natural to
align these two cycles so that every six months they start at the same time.
Similarly, the same output a�ects development sprints and make it evident
that release project cycle and sprints are aligned. This alignment also makes
it easy to connect a feedback loop from sprints to strategic release manage-
ment. In practice, all these three cycles do not start at the same second but

56

within a short period of time that is used for communicating the results and
the plans between the people involved in di�erent the cycles.

Di�erent releases are presented for one release project in �gure 4.2. For
the other three release projects delivered releases are the same, but to keep
the presentation clear they are not included in the �gure. Di�erent releases
correspond to d���erent themes of the sprints starting from an architecture
prototype and ending after the stabilization period with a marketing release.

Sales needs a demonstration version of the new product as soon as pos-
sible and the delivery project needs a product which has gone through a
stabilization phase (Cusumano and Selby, 1998) it is reasonable to align
these cycles so that they have a phase di�erence of one sprint. This way
the period for ready-for-delivery releases stays the same but it is one sprint
behind the marketing releases. The time of the phase di�erence is used for
demonstrating and selling, providing selected customers with early access to
the new product, as well as for stabilization of the new product version.

The only thing that �gure 4.2 does not visualize is alignment of the
whole model to the calendar. Since the strategic release management cycle
is about company level issues within long time frame, it needs to be aligned
with strategy updates.

If a company develops more than one product or product family, devel-
opment of these products should be aligned with strategic release manage-
ment. A release project should concentrate on one product or a product
family. If there is a need for releasing more product versions in a release
cycle, work should be divided into separate release projects. However, these
separate projects should have fairly similar schedules to match the rhythm
of strategic release management.

All the main concepts are described in detail in the following sections.
The same structure is used for representing the essential points of each cycle.
For every cycle goals, the main activities and participants are de�ned and
listed in a similar manner.

4.2 Strategic Release Management

Strategic release management steers the whole product development by set-
ting the direction for it. It is a cycle where business strategy and man-
agement are combined with the technology strategy to produce a vision
for product development. The main goals, activities and participants of
the strategic release management cycle are summarized into table 4.1. The
length of each strategic release management cycle is six months. Even if
the cyclic nature of the strategic release management is not as evident as
it is in release project cycle, it has clear points of redirecting the develop-
ment. Redirecting is caused by changes in company business and technology
strategy, which are the main inputs for the strategic release management.

57

A six-month period reects biannual strategy updates and it also ensures
fast feedback between business management and product development. The
roadmap is updated twice in the cycle to reect the results from release
project cycle. One person, who is usually the head of product development,
is responsible of managing this cycle.

Table 4.1: Strategic Release Management
Goal � Schedule product releases concerning the business

and technology strategy
� De�ne the main issues for product releases
� Resource development projects

Activities � Collecting feature ideas and feedback
� Updating product roadmap
� Resource allocation for the release projects

Participants � Head of product development
� Management team
� Product managers
� Customers and partners

The goals related to the release schedule and content of the releases
can best be explained by using the concept of product roadmap. A prod-
uct roadmap is actually simply a high-level release project plan for all the
products of the company. This implies that the goals of strategic release
management can be divided into two areas: roadmapping and resource al-
location.

4.2.1 Roadmapping

Roadmapping is an interactive process for producing a roadmap. It provides
a way to evaluate di�erent strategic alternatives to produce the best possible
plan to reach the business objectives of the company. In short, the roadmap
answers the questions when and what, while roadmapping tells how to �nd
those things out.

The question of when to make a product release is always challenging.
Good timing might have a great business e�ect and, respectively, bad tim-
ing might make new product release even worthless. The requirement of
a time oriented process asks for �xed release deadlines, fast release cycle
and the right rhythm. Since the products of the case organization are not
mass-market products where promoting them at a certain exhibition is vital,
regular and fast paced release schedule plays a more important role. Sales-
people can be more con�dent when promising a customer a new release of
a product when the release cycle is predictable. When existing customers
know that new versions are released periodically they have a better chance

58

to plan their activities, like promoting a new service including the prod-
uct. Customers and partners also have a chance to a�ect product features
regularly and when the release periods are short, they get to evaluate the
potential of the new features fast. This is especially relevant in markets that
will not stand still. Releases of di�erent products have to be scheduled so
that the development team has a chance to concentrate on one speci�c prob-
lem �eld at a time. If there is more than one development team, multiple
release projects can be done in parallel.

The new model introduces a continuous three-month release cycle. This
gives predictability, rhythm and possibility to react fast to customer re-
quests. Only one release project should be scheduled for the same time
window since there is only one development team in the case organization.
An example of a compact product roadmap is presented in table 4.2 (the
product vision is not completely shown).

Table 4.2: A simple roadmap example
Product Q1 Q2 Q3 Q4

Mobile
Product

2.0 enables
voice over
GSM

2.1 wireless
short mes-
sages

Network
Product

0.1 is pro-
totype for
network
monitoring

1.0 network
monitoring
agent

.NET
research

New possi-
bilities and
threats

The question 'what' includes two major things: long-term strategic de-
cisions and de�ning mid-term product release contents. Long-term decision
about adapting (or not adapting) new technology into the products needs to
be included into the roadmap. This gives a tool to ful�l the requirement of
research for the future if these items in the roadmap include needed research
and competitor analysis. Long-term decisions also include decisions whether
the development of a speci�c product should be ended due to the market
or to strategic reasons. Mid-term decisions about the content of product
releases require feedback and information from customers and various other
sources. This makes the planning process more complicated.

Each product release that is included into the roadmap needs to have a
scope for the content. For the new model, the concept of product vision is
applied from synch-and-stabilize and RUP combined with Scrum's concept
of product backlog. The purpose of the product vision is to crystallize the
main things about the release and initially select the features from product

59

backlog to release backlog. The feature ideas must primarily come from
customers as the requirement of customer oriented presumes, but opinions
of other stakeholders are considered as well. The primary inputs for product
features and requirements are:

Customers and partners are heard by asking for feedback from possible
previous products and by holding a special meeting for brainstorming
new feature and product ideas.

End-users are considered by arranging customer (end user) satisfaction
questionnaires with the actual customer.

Results from previous projects are taken into account especially when
something important has been found out, for example in a product
benchmark.

Employees being professionals in the �eld are asked for ideas and feed-
back and they are given a chance to add ideas straight to the product
backlog.

Reports including articles in relevant magazines are studied for ideas.

The challenging task of prioritizing the product backlog that has all the
collected feature ideas is done by the head of product development. He
is not to do it by himself but in cooperation with selected customers and
partners and product managers. After grouping the prioritized features into
preliminary release backlogs they are ready to be scheduled into the product
roadmap.

Managing requirements and feature ideas from various sources needs to
be e�ective in order to really help roadmapping. Supporting this action
with a proper tool can remarkably improve the complicated process, as is
pointed out in RUP. This is one of the reasons why requirement management
is part of the supporting actions of the new process model. This was also a
requirement for the new process model.

4.2.2 Resource allocation

Even if resource allocation in a small company is sometimes done even on
a daily basis, the fundamental decisions about allocating resources need to
be done in the strategic release management cycle. The human resources
of the company are divided between di�erent projects such as development,
delivery, product customization and support projects. To be able to plan
product releases beforehand by roadmapping, development projects need to
have proper resources. The amount of resources available naturally a�ects
the amount of new features possible to develop per release project. At
this point, a decision needs to be made about how the resources of the

60

company are to be divided and whether new employees are to be recruited.
The proportions may di�er from time to time but it is important for a
development project that the guidelines have been decided. To achieve more
exibility, outsourcing is an option, especially in customer projects.

The new model suggests allocating a certain percentage of the available
e�ort to development projects. This e�ort would preferably be from persons
that have no or little tasks and responsibilities in other projects. This ap-
proach is adopted from Scrum and makes managing release projects easier
and the team more eÆcient.

4.3 Release Project Cycle

The main purpose of the release project cycle is to make sure that release
projects are done as they are de�ned in the product roadmap. The main
goals, activities and participants of the release project cycle are summa-
rized into table 4.3. The length of release project cycle is three months to
align eÆciently with strategic release management cycle. The Product man-
ager in cooperation with the head of product development is responsible for
managing this cycle.

Table 4.3: Release Project Cycle
Goals � To schedule sprints

� To update the product vision and re�ne the release
backlog
� To produce a fully-functional and tested product or
a product version

Activities � Scheduling sprints inside the release project
� Reprioritizing and selecting features for the release
� Technical planning session for feature estimation and
architecture planning
� Creating testing strategy for the release project

Participants � Head of product development
� Customers and partners
� Product managers
� Development team

The goals and activities of the release project cycle can be divided into
two parts: scheduling the sprints and re�ning the release content. The goal
of producing a fully-functional and tested product or product version is
taken care of in the sprints. If properly planned, the last sprint produces a
ready and tested product.

Selected customers are given a possibility for early access to the new

61

version. This might include trialing, joint testing and early customization
of the product. In synch-and-stabilize, this phase of external testing is
considered an important source of feedback about the product. Feedback
is also to be collected from the customers using the early access possibility.
It is used mainly for improving the next product versions but some minor
things can be included into the current version as well.

The release project cycle gives feedback to strategic release management
by re�ning the release descriptions in the product roadmap and by intro-
ducing new product releases.

4.3.1 Scheduling the Sprints

Sprints are scheduled evenly inside the release project. The length of the
sprint is advised to be 30 days in Scrum while iteration length is advised to
be 1-3 weeks in XP. The new model adapts the approximately one month
sprint length to align sprints with the release project and to �t development
well to management approach of Scrum. The most important single thing
about the sprint schedules is the dates and times for sprint demonstrations.
These dates are to be published for the whole company so that people can
include them into their personal schedules.

4.3.2 Re�ning the Release Content

Re�ning the release content aims to crystallize the product vision and to
re�ne the release backlog that have been initially de�ned in the strategic
release management cycle. The main thing in re�ning the release backlog is
reprioritizing the features. At this point it is also possible to add features
that are not included in the initial release backlog.

Scrum does not tell how to prioritize the items in the release backlog. It
just tells that only one person should be responsible for doing that. In RUP
features are prioritized by risk and with the \architecture �rst" approach.
XP suggests prioritizing by the value produced to the customer while synch-
and-stabilize prioritizes features by user activities and data. The new model
suggests applying a combination of these practices in a following manner:

� The product manager is responsible for feature prioritization but does
it with cooperation with experts and customers.

� Collecting usage data of the products from customers.

� Using internal experts to make initial prioritization based on usage
data and their experience.

� Holding sessions with customers and partners to prioritize features.

� Holding technical planning session where architectural issues are con-
sidered and added to prioritizations.

62

� Holding session for de�ning a testing strategy for the release.

Prioritization is done mainly by the customer as it is required from the
model (requirement of customer oriented). To also ful�l the requirement of
architecture centric development the architectural issues are also included in
the prioritization. The testing strategy for the release covers testing issues
that are not taken care of in the daily development and need to be included
in the sprint planning. These tests are, for example, performance test at
partners' premises, usability tests, testing on di�erent platforms and testing
of di�erent localizations. Work needed to implement the testing strategy of
the product is included in the release backlog.

The �rst sprint has an architecture theme. This means that in the �rst
sprint architecture is implemented for the most important features. Usually,
the main themes of the sprints are:

1. Architecture and stabilization

2. Feature implementation

3. Finalizing

Stabilization theme in the same sprint as architecture is actually about the
previous release. Stabilization period of one sprint takes place parallel to
architecture development, since all the development resources are not bound
to new product release and stabilization of the product is needed for more
eÆcient deliveries and less support. The feature implementation theme is
the main sprint for new feature development even if some features might be
developed in other sprints as well. The sprint with �nalizing theme concen-
trates on integration testing and packaging. Released product increments
from sprints with di�erent themes are called prototype- (architecture), alpha-
(feature implementation), beta- (�nalizing) and release-versions (stabiliza-
tion).

In the �nalization sprint product features are frozen and documented.
A data sheet describing the features of the product and di�erences to the
previous version is written together with the people responsible for market-
ing them. Value added and the bene�ts provided by the new version are
described in this document as well.

Items in the release and product backlogs consist of all work that can
be foreseen for the product or a release. As it is de�ned in Scrum, backlog
consists of \product features, functionality, infrastructure, architecture and
technology". Items are described with short textual expressions, as done in
synch-and-stabilize product vision document.

63

4.4 Sprints

The main purpose of sprints is to produce stable increments to the product.
The concept of sprint is adapted from Scrum because it was found to support
well requirements related to short-term management of product development
(requirements of time oriented and visible development and fast reaction to
changes). The main goals, activities and participants of the sprints are
summarized in table 4.4. The length of a sprint is de�ned by the release
project cycle and it is approximately one month. The scrum master, a
concept adopted from Scrum, is responsible of the success of the sprint
with the whole development team. The role of scrum master is close to the
traditional role of project manager.

Table 4.4: Sprints
Goals � To de�ne sprint goal and features that are to be

implemented in the sprint
� To produce a stable increment for the product as
de�ned in the sprint goal
� To demonstrate the product with the new features
� To gather feedback from demonstration and sprint
project

Activities � Sprint planning session where sprint goal is de�ned
and sprint backlog is created
� Sprint review session where new features are demon-
strated

Participants � Product managers
� Scrum master
� Development team

Goals and activities of the sprints can be divided into planning, man-
agement and reviewing. The goal of producing a stable product increment
is partly considered here but its creation is described in detail by the daily
rhythm in section 4.5.

Sprints provide release project cycle feedback in the sprint review ses-
sions where new the functionality is presented and possible problems are
discussed.

During the sprints, the development team has great responsibility over
its doings. When the sprint goal has been set, the team is free to organize
itself in the best possible way to reach that goal. The scrum master's main
responsibility is to help the team to achieve the goal, not to control the
team. Besides helping, scrum master has an important role in communicat-
ing and encouraging communication within the team to get people aligned
towards the right direction. This low organization and divided responsibility

64

empowers the team to challenge the old results and habits.

4.4.1 Sprint Planning

Planning a sprint takes place in a sprint planning session. The participants
of the session are the product manager and the development team including
the scrum master. Everyone from the development team needs to be present
because decisions a�ecting the whole team are done and because everyone's
expertise is needed. The sprint planning session has two goals: de�ning the
sprint goal and creating a sprint backlog.

The product manager presents the release backlog and other relevant
background information, such as upcoming customer cases that include
some new features, to the development team. Working together, top pri-
ority items, including architectural and testing issues, are identi�ed from
the release backlog. Having selected the subset of release backlog items, the
sprint goal is crafted based on them. The sprint goal is an objective that
will be met if the selected subset of release backlog items are implemented.
The sprint goal is like a small product vision that guides the development
of the sprint. Sprint goal is a destination for the development team but the
path to get there is not de�ned. That gives the team room for innovative
ideas.

The second part of the sprint planning session concentrates on de�ning a
sprint backlog that is a list of tasks to be completed in order to achieve the
sprint goal. At this point, the development team takes responsibility of the
planning. If the product manager participates in this part of the meeting,
he is to take a very passive role. The only time he should be involved is
when the sprint goal is considered. Tasks in the sprint backlog are derived
from the subset of release backlog items that are to be implemented in the
sprint. The amount of work needed to accomplish a task is estimated by
the team and recorded to the sprint backlog. The size of a task should
be approximately from eight to twenty hours. After all tasks are initially
estimated, the total amount of available working hours per day is estimated
for the whole development team. The �rst estimation of working days needed
to accomplish the sprint goal is calculated by dividing the sum of the task
estimations by available working hours per day. This estimation is then
mapped to the calendar to get the �rst estimation for delivery date. If this
date is too far from the planned review date of the sprint, the content of the
sprint has to be adjusted. Adjusting is done by modifying the sprint goal so
that tasks can be dropped out or added. Sprint goal and tasks are adjusted
until the estimated delivery date is close enough to the planned review date.

An important thing in creating the sprint goal and the sprint backlog
is that the development team creates them, so that they are committed to
reach the goal.

Items from the release backlog that are to be implemented during the

65

sprint are de�ned in more detail. Functionality that has been described in a
few words needs to written out so that it is understood in the same way by
the developers and by the customer (or the product manager). RUP suggests
using use cases for de�ning functionality in detail. This approach is also
suggested by the new model to take advantage of the end-user perspective
of the use cases.

4.4.2 Managing the Sprint

The sprint is managed using project burn down graph and daily scrums as
tools. The project burn down graph is a function of task estimations over
calendar time plus a linear slope from the current date to estimated �nish
date (see an example graph in the �gure 4.3). The daily scrum is discussed
in section 4.5

Work estimations for tasks are updated constantly during the sprint by
the developers. The estimation is actually the amount of work left for a
speci�c task. In an ideal case this estimate would go down linearly as de-
velopers work on tasks. However that is not always the case. Estimation
may go up when something unpredictable happens. If additional work is
discovered during the sprint it is added to the sprint backlog. An example
of a project burndown graph is presented in �gure 4.3. In this example, the

Figure 4.3: An example of a project burn down graph

initial amount of tasks was too large so that the sprint goal needed to be
adjusted before starting. Then work proceeded as planned until something
unpredictable came up and the graph went up. After that work continued
as planned but from it was evident that the planned �nish date would not
be reached. At this point, the product manager and development team hold
a meeting where decisions about actions are made. When the sprint review

66

date and amount of available working hours per day (the size of the develop-
ment team) are �xed, the only variable is the sum of task estimations. Tasks
need to dropped out by adjusting the sprint goal. The e�ect of adjustment
and optimal situation can described by a mathematical equation

����
nX

i=1

xi � w
5

7
(tfinish � tcurrent)

���� < �; (4.1)

where xi is an estimate for a speci�c task, w is average amount of working
hours available per day, n is number of tasks and � is an acceptable deviation
from the planned �nish date. Current date and planned �nish date of the
sprint are represented by tcurrent and tfinish and the actual working days are
taken into account by multiplying the amount of working hours available by
5

7
to exclude weekends.
Project burn down graph provides a real-time picture of the project's

state if task estimations are updated frequently. This is not a suÆcient
method for managing the sprint but combined with the activities of daily
rhythm (see section 4.5), it is a powerful tool for controlling the project.

4.4.3 Sprint Review

Reviewing the sprint takes place in a sprint review session. Participants in
the session are the development team, the product owner, the management
of the company, sales and project people and possibly selected customers.
The scrum master is responsible for coordinating the sprint review session
including sending out the invitations with agenda and agreeing with the
team who is going to present and what. The sprint review session is an
informal meeting where the most important goal is to share information.
The main steps of the sprint review meeting are:

Sprint overview describes the highlights of the sprint. The sprint goal
and release backlog are compared to the actual results and reasons
for di�erences are discussed. The actual amount of e�ort done in
the sprint considering working hours is compared to the estimated
amount of working hours and di�erences are discussed. The scrum
master presents the overview.

Architectural overview is given by a team member to describe the main
technical points and their relations to functionality.

Demonstrating the product increments is done feature by feature by
team members. Demonstrations are done in a 'real' production en-
vironment not on developers' own computers. Participants should
understand as many dimensions of the product increment as possible,
its strengths and weaknesses.

67

Feedback questions, observations, discussion and suggestions are allowed
and encouraged.

The results from the sprint review session, the product increment and the
feedback, are used in the planning session of the next sprint.

4.5 Daily Rhythm

Daily rhythm describes day-to-day activities in product development that
drive the team towards the sprint goal. The main goals, activities and
participants of the daily rhythm are summarized into table 4.5. The length
of activities in the daily rhythm varies from a few hours to about a week.

Table 4.5: Daily rhythm
Goals � To steer the development towards the sprint goal

� To produce quality software
� To ease communication inside the team
� To synchronize work of team members

Activities � Designing
� Coding
� Testing
� Synchronizing the work and the project
� Demonstrating working software
� Adjusting the direction of the project

Participants � Scrum master
� Development team

Daily rhythm is a combination of practices from XP, synch-and-stabilize
and Scrum. The engineering practices are mainly adopted from XP while
management practices are adopted from Scrum and synch-and-stabilize.
Daily rhythm concentrates on ful�ling the requirements visible development,
extensive testing, learning organization and end-user oriented development.

Daily rhythms can be seen as a circle where the main activities (see
table 4.5) are located sequentially. To clarify the real essence of the main
activities, more concrete actions need to be related to them. Relations of
the activities and the daily rhythm cycle are visualized in �gure 4.4.

The main activities are discussed next with their relations to the concrete
actions and practices.

4.5.1 Design

Design is done with the two most important things in mind: keep it simple
and keep the end-user in mind. The principle of keeping design simple is

68

Adjust

Design

Daily
Rhythm

Sprint
Goal

Test

Code

Demo

Synch

Coding
standard

Performance

Unit
testing

Spikes

Usability
Keep it
simple

Problem
solving
pattern

Collective
ownership

Refactor

Use
components

'normal'
erros

Coaching Spurring

Peer
review

Other

Metrics

Weekly
demo

Sprint
review

Burndown
graph

Daily
scrum

Daily
build Daily

tests

Daily
scrum

Usability

Figure 4.4: Daily rhythm and activities

adapted from XP but other models stress that as well. The end-user view-
point is adapted from synch-and-stabilize that uses great e�ort on designing
and testing usability.

The new model adapts a role of a coach from XP. Coaching is primarily
concerned with technical questions. The coach needs to be uent in the
technology and the product, so for example chief architect would be a good
choice for the job. His duties are to be available for developers in diÆcult
technical tasks, to encourage and plan refactoring and to help developers
with technical tasks like testing and design. To help the coach and to make
coaching visible for every developer a problem-solving pattern is introduced.
The pattern has �ve steps (the actor(s) are in parenthesis):

1. Create an initial idea for solving the problem (developer)

2. Spurring and brainstorming the idea (coach and developer)

3. Implementing and testing the idea (developer)

4. Reviewing the implementation (coach and developer)

5. Finalizing the implementation (developer)

This pattern encourages learning by working together, gives the developer
con�dence about the solution and strives for better quality using peer re-

69

views. Developers may try di�erent approaches to the problem by imple-
menting simple programs that evaluate the approach before presenting the
idea to the coach. These small programs are called spikes like in XP.

Especially in the sprint that has an architecture theme, development is
concentrated on building a stable and well performing architecture. A com-
ponent based architecture which reects the product structure and where
standards and 3rd party components are used extensively is favored. This
approach is adapted from synch-and-stabilize model. A well-thought-out
architecture ensures the possibility to form a standard way of integration to
existing systems. The coach steers development towards good architecture
by spurring and reviewing developers' ideas and implementations.

Design of architecture and components can be done using modeling tech-
niques and workows presented in RUP. The level of details in the design
should reect the criticality of the component. The new model does not
require more than high-level design documents that can be presented in the
sprint review session. The development team is free to use more detailed
modeling if they see it helpful to reach the sprint goal.

The approach of synch-and-stabilize, where usability is tested through-
out the development is adapted to the new model. Usability issues are
considered in the design by using heuristic evaluation of the user interface
prototype. Heuristic evaluation is a cost eÆcient way to �nd usability prob-
lems from products. The new model instructs to use approach developed by
Jacob Nielsen (Nielsen, 1992), which introduces very concrete principles for
heuristic evaluation.

Documentation of the technical solution, design and implementation, is
written into source code �les. Since the case organization is using Java
for all development, it is natural to use Javadoc for generating documenta-
tion from the source code. Documentation in the source �les needs to be
uniform to really be informative. The new model suggests using widely ac-
cepted Javadoc writing convention4 provided by the Sun Microsystems Ltd.
complemented with company-speci�c guidelines in the similar manner as a
coding standard.

4.5.2 Code

In the new model coding is really close to design, actually they overlap at
some points. This approach is adopted with some changes from XP where
the design comes through the code. The problem-solving pattern for design
is a link between the design and coding. Besides guiding design in the right
direction, it guides the actual implementation using peer reviews.

Refactoring code, a practice adopted from XP, is an essential element
of coding in the new model. It helps in keeping the product solid and not

4See the convention at http://java.sun.com/j2se/javadoc/writingdoccomments.

70

to fragment while new increments are added to it. Refactoring guidelines
and experience reports have recently been published (for example chapter
Refactoring and Re-Reasoning in the book Extreme Programming Examined
(Succi and Marchesi, 2001)) which gives more con�dence for using it.

The practice of collective code ownership is adapted from XP as well.
Any developer has the right and the responsibility to correct defects in any
part of the code. This naturally implies that the one who makes the change
is also responsible for testing that the change made works �ne and does
not break anything else. Using a common coding standard is essential for
e�ective use of collective code ownership. The new model suggests usage of
Java coding standard5 complemented with company speci�c guidelines that
are described in a separate document. Collective code ownership empowers
learning from the code and makes the development team more exible.

One of the main coding practices of XP is dropped from the new model.
Pair programming is not used extensively; only when developers see that it
is useful for solving a problem or sharing information.

4.5.3 Test

Extensive testing is one of the requirements for the new model. Testing strat-
egy is mainly adopted from XP with some practices from RUP and synch-
and-stabilize. The main point about testing is that it continues throughout
the whole development process from the beginning to the end. It is not a
single activity at the end of the project.

XP argues that every code that can possibly break should be tested.
This is taken as a motto for testing in the new model as well. Unit testing is
done parallel with coding using independent and automatable test programs.
Having testers for each component encourages developers to refactor their
code and correct defects made by other developers. If refactoring or �xing
results in an error, it is easily found by running the testers. This gives the
developer con�dence to make changes that make the code and design better.
Peter Grassman lists bene�ts of writing unit tests in the chapter 15 of the
book Extreme Programming Examined (Succi and Marchesi, 2001):

� Short feedback loop

� Improved changeability of the system

� Fewer errors

� Micro design improvements

� Regression testing

� Refactoring support

5See the coding convention at http://java.sun.com/docs/codeconv.

71

� Communicating design and documenting code

� Teaching junior programmers

� Installing a developer machine

� Boosting morale

and also some pitfalls and problems:

� Short feedback loop

� Testing cache

� Out-of-sync tests

� Accessing database

� Complicated test code

� Meaningless, easy tests

� Problems with people

Comparing these pros and cons, it is reasonable to take advantage of unit
testing in the new model.

A framework for making and running unit tests has been created by the
XP community. The JUnit framework6 provides means for fast implementa-
tion of the testers and feasible way for running them. Some guidelines and
experiences have been published about using the JUnit framework for unit
testing (Succi and Marchesi, 2001). Even more advises and experiences are
available on the WWW produced by the XP community. The new model
suggests using JUnit framework for testing Java software at the unit level.
The coach of the development team can help team towards a common way
of writing e�ective unit testers.

The new model requires writing and running performance tests on critical
components. These tests can be done using extensions of JUnit, writing
special testers or by using ready commercial or open source products.

Checklist for so called 'usual' errors is used for preventing them from
appearing time after time in the product. The list of usual errors is selected
from a comprehensive list provided in the appendix of the book \Testing
Computer Software" (Kaner et al., 1999) and it is updated constantly with
errors speci�c to the product and organization. Usual errors are discussed
in the review with coach and developer.

Usability testing is done using heuristic evaluation as described in sec-
tion 4.5.1. If needed, the development team can use usability specialist for
spotting the biggest usability problems in the product.

6See http://www.junit.org for more information.

72

4.5.4 Synchronize

Synchronizing is about synchronizing the development work of team mem-
bers and the understanding of the project status. It builds on daily activities
the main purpose of which is to share information and encourage communi-
cation inside the development team.

Daily Scrum

The concept of daily scrum is adopted from Scrum. It is a meeting which the
development team attends to communicate. It takes place on every working
day at the same time and at the same place and lasts a maximum of �fteen
minutes. The purpose of this status meeting is to get �rst-hand informa-
tion about the project, identifying impediments and making decisions. It
is required that every team member participates in the meeting physically
or via phone so that no one misses important pieces of information. In the
daily scrum every team member is asked three questions:

� What have you done since the last scrum?

� What will you do between now and the next scrum?

� What got in your way of doing work?

With these questions, the development team and the scrum master should
have a pretty clear picture about what the status of the project is. The
scrum master is responsible of removing the obstacles that come up in the
meeting. The whole team is to make decisions based on the information,
if needed. If the team does not feel that they are able to make a decision
scrum master makes the �nal call. The team should every once in a while
take a look at the project burndown graph to get more information about
the progress of the sprint.

The scrum master is responsible for successfully conducting the daily
scrum. His job is to keep the meeting short and concentrated on the correct
issues. If the meeting is about to turn into speci�cation session, the scrum
master is responsible for interrupting it and advising to continue after the
daily scrum with relevant team members.

Daily Build

The daily build concept is used in synch-and-stabilize and XP. The new
model adapts this concept to help and force the team to synchronize their
work. A daily build is done automatically every night. The build makes
a 'nightly build' of the product. It takes the latest code versions from the
version control system, compiles and links the whole product, including old
and new components, and makes an installation package out of it. The
result can be used on the next day for testing.

73

The Scrum master is responsible for checking that build has been suc-
cessful every night. If the build fails, the one responsible for breaking the
build has to �x the defect that caused the problem as his �rst thing in the
morning. In synch-and-stabilize the 'build ruiner' is given a penalty such as
task for taking care of the build. The new model also suggests penalty for
ruining the build. The penalty is up to the development team to decide. A
successful build is important because non-compiling code can prevent the
whole team working eÆciently next morning. Another point is how the team
can say anything about the status of the software if it does not even com-
pile. Other motivations for daily build are described in the book Microsoft
Secrets (Cusumano and Selby, 1998).

Daily Tests

The concept of daily testing takes one step forward from the daily build.
After making the daily build, all unit testers are run against the new version.
This practice expects that unit testers have been written as described in the
previous section and that the daily build is successful. The new model
suggests that the daily test is run nightly just after the nightly build. The
result from the test run is available in the morning. If there are failed test
cases, the defects should be corrected immediately. If daily build gives a
little con�dence to the development team about the state of the product,
daily tests give much more of it if the tests are written properly.

The daily scrum, build and testing are practices that make development
visible as it was required from the new model.

4.5.5 Demonstrate

Demonstrating a working product increment is done in the sprint review ses-
sion as described in section 4.4.3. The main purpose of that demonstration
is to share information about the new product increment in functional and
technical sense. Great value of the review comes from seeing the running
software and a possibility to comment it. Nothing visualizes the state of the
software better than seeing it in action. The new model takes demonstrating
the new features and functionality into daily rhythm of the project.

Even if the state of tasks and the project is reviewed daily in the daily
scrum meeting, it is not a visual way of seeing the state of the software. A
weekly demo is a chance for every developer to show what they have ac-
complished in terms of running software. Not everyone has to demonstrate
something every week but at state when a new component is running. As
a principle, the tasks in the sprint backlog that produce software (not for
example con�guring environment) are demonstrated. If the new compo-
nent does not have a user interface, it can be demonstrated by the unit or
performance testers.

74

Demonstrating pieces of running software weekly has the same kind of
bene�ts as writing unit tests and holding the sprint review:

Getting a visual image about the state of the software compared to the
sprint goal.

Sharing information about the software, how it looks and what kind of
solutions have been used.

Con�dence of the team in the software rises when they see it running more
and more every week.

People that are not part of the project are free to participate in the
weekly demonstrations if they are interested. The agenda of the demo is not
�xed beforehand but the demo is always at the same time and at the same
place.

4.5.6 Adjust

Adjusting the direction of the project is done frequently using �rst-hand
observations and metrics. The scrum master is responsible for initiating
adjusting but the whole development team takes part in correcting the di-
rection. If adjusting the project includes changing the sprint goal (which is
not advisable if the situation does not really require it), the product manager
has to participate in adjusting and setting a new direction to the project.

First-hand observations come mainly from the daily scrum meeting. The
status and progress of the individual team members gives required informa-
tion for evaluating if adjusting of the project is needed.

Metrics are used for adjusting in a limited way. Scrum advises to use
the project burndown graph as the only metric. This is adopted by the new
model to give quantitative information about the state of the project. Other
metrics can vary so that a new metric is introduced when some particular
thing needs attention as described in XP. For example if it seems that there
are not enough testers written, a metric indicating of the amount of testers
could be introduced. XP has an adaptable idea for amount and lifetime of
metrics \Don't have too many metrics, and be prepared to retire metrics that
have served their purpose. Three or four measures are typically all a team
can stand at one time".

Adjusting the project can include minor things like giving a task from
one person to an other or changing the implementation order of few things
because additional dependencies were found between them. On the other
hand, adjusting can include major things like dropping features or even
changing the sprint goal.

75

4.6 Supporting Actions

Supporting actions are tools and methods for helping product development
achieve its goals. The main goals, activities and participants of supporting
actions are summarized into table 4.5. Supporting actions are not cyclic like
the other main concepts of the new model. Supporting actions are contin-
uous things that keep the development rolling from one phase to another.
Their importance is not often seen until they fail and stop the wheel of de-
velopment from rolling. Supporting actions are not a responsibility of one
person but responsibility is divided by the activity.

Table 4.6: Supporting Actions
Goals � To help the development team to concentrate on

achieving the sprint goal
� To form a common basis for working

Activities � Con�guration management
� Requirement management
� Defect tracking
� Daily builds
� Automated testing
� Maintaining test and development environments

Participants � System administrator
� Product manager
� Scrum master
� Development team

Supporting actions are mainly adopted from RUP's core supporting
workows. In addition, some other actions are introduced to support the
model. RUP actually combines con�guration and requirement manage-
ment and defect tracking into one supporting workow called Con�guration
and change management workow (CCM). It is described to form a CCM
cube that covers three interdependent functions: con�guration management,
change request management and status and measurement. Change manage-
ment includes defect management as part of it and status and measurement
gives time dimension to the other two functions. Here, these actions are
described separately to keep the structure clear, even if all the supporting
actions are related to each other.

4.6.1 Con�guration Management

The main purpose of con�guration management is to provide means for
storing and relating di�erent versions of di�erent work products such as
source code, documents and testers.

76

Storing and managing di�erent versions of di�erent �les is commonly
referred to as version controlling. There are di�erent tools for version control
that can be used. An easy and light-weight tool that �ts well to the approach
of the new model is CVS7. Naturally, a tool is not adequate for version
control but a common way of using it and clearly de�ned directory structure
is also needed. The data repository of the version control tool needs to be
backed up regularly so that developers do not have to worry about breaking
hard drives if they have put their work into the version control system. The
administration of the company is responsible of maintaining the version
control tool, server and backups while the development team agrees on the
structure and way to use version control system.

Con�guration management can be understood as management of di�er-
ent sets of artifacts with di�erent versions. Con�gurations are a combination
of di�erent elements which all have their own version. For example, a soft-
ware binary is built from combination of source code �les that have di�erent
versions. In practice, the most important con�gurations to manage are

� Binaries and related source �les.

� Release packages and all binaries and documents that are related to
them.

� Customer speci�c delivery packages and release plus customization
packages that are related to it.

� Product �x packages that are for a speci�c release package.

Most version control systems like CVS support combining various artifacts
into one con�guration. Combined with a build tool that enables selecting
the correct artifacts, con�guration can be handled eÆciently. A good choice
for a build tool for development teams using Java would be Ant8. Using a
tool here does not guarantee good con�guration but a common and semi-
automated way of using it makes chances of success a lot better. The product
manager is responsible for de�ning how to use the tools when it comes to
product release packages and the development team, when it comes to actual
usage of tools.

4.6.2 Requirements Management

Requirements management is done using product and release backlogs. Items
should be easy to add to product backlog so that all stakeholders can do
it without consultancy from product manager. Also, prioritization of the
requirements should be easy. In addition, there should be some basic infor-
mation about the requirements that is common for all the items:

7CVS stands for Concurrent Versions System. See more at http://www.cvshome.org.
8See http://jakarta.apache.org/ant for more information.

77

� Subject of the requirement.

� Priority of the requirement.

� Where the requirement was originated (a person or an organization).

� Name and contact information of who entered the requirement.

� Comprehensive description about the requirement.

� Type of the requirement (functional, usability, performance, etc.).

� The value generated by the feature.

� Decisions made about the requirement (for example: to be imple-
mented in version 1.4).

Based on this information it is easier to prioritize requirements and to make
decisions about the content of the release backlog.

The usage of Excel spreadsheets is adequate if they are used in a cen-
tralized manner but a simple application using a database with WWW user
interface would provide easier access, for example, to add feature ideas to
the product backlog.

Change requests are straight forward to handle in similar manner as the
requirements. Change requests are added to the product backlog and from
there they are taken to release backlog when it is their time.

4.6.3 Defect Tracking

Defect tracking is managing the defects of a product. It needs to provide
means for reporting defects, following their status and organizing the �xing.
Defect tracking is an activity that starts from the beta-version of the product
and goes on until the product is not supported anymore.

For eÆcient defect tracking, a tool is needed. There are plenty to choose
from in the markets but, as an example, an open-source product Bugzilla9

is a light-weight and widely used tool. The tool itself needs to have some
basic features:

� Reporting the defect with proper information (subject, description,
severity, product, environment, etc.).

� Grouping defects by products or components.

� Prioritizing the defects.

� Assigning defect to a person.

9See http://bugzilla.mozilla.org for more information.

78

� Changing the state of the defect (for example: open, working, testing,
closed).

� Informing concerned people about the changes in a defect report by
email.

The defect tracking tool is also to be used in maintenance projects as a task
list and organizer of work.

4.6.4 Daily Builds

Daily builds need to be automated in order to be e�ective and useful in
development. Actually a daily build is just a scheduled event that uses a
version control system and a building tool. In short, steps of the daily build
(adapted from synch-and-stabilize) are:

1. Checkout source code from the version control system.

2. Compile all components.

3. Package the binaries and other �les into a build archive.

4. Copy result to web site where the build is available for using the next
day .

5. Report the success of the build to the development team.

The daily build needs very little extra to normal product build scripts. The
main additional thing is the script that runs the build and analyses the
results and reports them to the development team. The scrum master is
responsible for the daily build structure.

4.6.5 Automated Testing

Automated testing is needed for daily tests. Automated testing uses the
same framework for testing as unit testing in general. It is actually a wrapper
for testers that is run automatically. Tests are run against the new binary
version of the product after the daily build has been done. The steps of
automated testing are:

1. Compile all testers.

2. Run pretest scripts to clean up the environment if needed.

3. Run testers one by one.

4. Report test results to the development team.

79

If testers are written like they should be, independent of the other tests,
running tests centralized is not a big issue. In addition, proper database
connections need to be available and mechanism for reporting the test results
need to be implemented. The scrum master is responsible for keeping the
automated tests running.

4.6.6 Maintaining Environments

Developing software is very dependent on environments: if a developer's
computer does not work, no code will be created. Properly working in-
formation technology infrastructure is vital for development projects. The
environment can be divided to three di�erent areas: common, development
and testing environment.

The common environment includes a personal computer with proper of-
�ce applications, email and calendar applications, internet access and back-
ing up of all needed information. Without these basic things, development
will freeze. The system administrator is responsible for the basic environ-
ment.

The development environment includes compilers, IDEs10, testing frame-
works, emulators, database, version control system, defect-tracking system
and possibly product-speci�c software. The responsibility for maintaining
these elements is divided between the system administrator and the develop-
ment team. As a rule of thumb, the system administrator is responsible for
applications that have more than one user, such as databases. To ease the
maintenance of the environments, developers need to have standard work-
ing directory structure and standard tools for development, not including
personal IDEs.

The testing environment includes di�erent test environments, di�erent
test devices, databases, testing software and product speci�c applications.
The responsibility for the testing environment is divided between the system
administrator and the development team on a project-by-project basis.

4.7 Summary of the New Model

In this section, the new software process model is summarized and compared
to its requirements. In tables 4.7 and 4.8 the concepts of the new model are
mapped against the requirements. For each requirement the main points of
the new model are presented.

The new model consists of six separate concepts of which �ve represent
the phases of the model. Presenting the requirements against the phases of
the new model gives a clear picture of when each requirement is considered.

10IDE stands for Integrated Development Environment.

80

It is evident from the table that some of the requirements are considered
throughout the whole process whereas some are taken care of in just one
phase. This is reasonable since some of the requirements deal mainly with
long-term issues and are not worth considering on a daily basis.

The new model can be consider to support the requirements well since
every requirement is considered at some point of the new process. Naturally,
every relevant aspect cannot be included into the summary table but a high-
level view on the new model can be achieved.

81

T
ab
le
4.
7:
R
eq
u
ir
em
en
ts
A
n
d
th
e
N
ew
M
o
d
el

P
er
io
d
ic
al

ap
p
ro
ac
h

S
tr
at
eg
ic

re
le
as
e
m
an
-

ag
em
en
t

R
el
ea
se

p
ro
je
ct

cy
cl
e

S
p
ri
n
ts

D
ai
il
y

rh
y
th
m

S
u
p
p
or
ti
n
g
ac
-

ti
on
s

A
rc
h
it
ec
tu
re
ce
n
tr
ic

P
ri
or
it
iz
in
g

ar
ch
it
ec
tu
re

D
es
ig
n
in
g

ar
ch
it
ec
tu
re

�
rs
t

T
im
e
or
ie
n
te
d

P
er
io
d
ic
d
e-

ve
lo
p
m
en
t

cy
cl
es

R
oa
d
m
ap
p
in
g

an
d

co
n
-

st
an
t

th
re
e

m
on
th

re
le
as
e
cy
cl
e

F
ix
ed
d
ea
d
-

li
n
es

in

sp
ri
n
ts

T
as
k
es
ti
m
a-

ti
on
an
d
ac
-

ti
ve
p
ro
je
ct

co
n
tr
ol

D
ai
ly
b
u
il
d
,

te
st
s

an
d

sc
ru
m
m
ee
t-

in
g

A
u
to
m
at
ed

d
ai
ly

b
u
il
d

an
d
te
st
s

F
as
t
re
ac
ti
on
to
ch
an
ge

C
on
ti
n
u
ou
s

fe
ed
b
ac
k

lo
op

Q
u
er
te
rl
y

ro
ad
m
ap

u
p
d
at
e

S
h
or
t

re
-

le
as
e
cy
cl
e

F
ea
tu
re
s
ca
n

ch
an
ge

fo
r

ev
er
y
sp
ri
n
t

S
te
er
in
g

p
ro
je
ct

on

d
ai
ly
b
as
is

S
u
p
p
or
t

fo
r

re
q
u
ir
em
en
ts

m
an
ag
em
en
t

C
u
st
om
er
or
ie
n
te
d

C
ol
le
ct
in
g

cu
st
om
er

fe
ed
b
ac
k

F
ea
tu
re

p
ri
or
it
iz
a-

ti
on

w
it
h

cu
st
om
er
s

S
u
p
p
or
t

fo
r

d
ef
ec
t
tr
ac
k
in
g

M
an
ag
ed
re
q
u
ir
em
en
ts

P
ro
d
u
ct
v
i-

si
on
s
in
th
e

ro
ad
m
ap

U
si
n
g

re
le
as
e

b
ac
k
lo
g

U
si
n
g
sp
ri
n
t

b
ac
k
lo
g

S
u
p
p
or
t

fo
r

re
q
u
ir
em
en
ts

m
an
ag
em
en
t

82

T
ab
le
4.
8:
R
eq
u
ir
em
en
ts
A
n
d
th
e
N
ew
M
o
d
el

P
er
io
d
ic
ap
-

p
ro
ac
h

S
tr
at
eg
ic

re
le
as
e
m
an
-

ag
em
en
t

R
el
ea
se

p
ro
je
ct

cy
cl
e

S
p
ri
n
ts

D
ai
il
y

rh
y
th
m

S
u
p
p
or
ti
n
g
ac
-

ti
on
s

V
is
ib
le
d
ev
el
op
m
en
t

S
h
or
t

re
-

le
as
e
cy
cl
e

S
p
ri
n
t

re
v
ie
w
s

P
ro
je
ct

b
u
rn
d
ow
n

gr
ap
h

W
ee
k
ly

d
em
os

an
d

d
ai
ly

sy
n
-

ch
ro
n
iz
at
io
n

A
u
to
m
at
ed

d
ai
ly
b
u
il
d
s

E
n
d
-u
se
r
or
ie
n
te
d

In
p
u
t

fo
r

ro
ad
m
ap

fr
om
u
se
rs

U
sa
ge

d
at
a

fo
r

sp
ri
n
t

p
la
n
n
in
g

D
es
ig
n
w
it
h

u
sa
b
il
it
y

in

m
in
d

F
o
cu
s
on
co
re
p
ro
d
u
ct

L
on
g-
te
rm

st
ra
te
gi
c

d
ec
is
io
n
s

P
ri
or
it
iz
at
in
g

fe
at
u
re
s

E
x
te
n
si
ve
te
st
in
g

T
es
ti
n
g

th
ro
u
gh
ou
t

th
e
p
ro
je
ct

C
on
ti
n
u
ou
s

u
n
it
te
st
in
g

S
u
p
p
or
ti
n
g

te
st
in
g

an
d

d
ef
ec
t
tr
ac
k
in
g

L
ea
rn
in
g
or
ga
n
iz
at
io
n

C
on
ti
n
u
ou
s

fe
ed
b
ac
k

lo
op

F
ee
d
b
ac
k

fr
om

cu
s-

to
m
er
s

C
ol
le
ct
iv
e

sp
ri
n
t
p
la
n
-

n
in
g

an
d

re
v
ie
w

P
ro
b
le
m

so
lv
in
g

p
at
te
rn

R
es
ea
rc
h
fo
r
th
e
fu
tu
re

R
oa
d
m
ap
p
in
g

re
se
ar
ch

p
ro
je
ct
s

83

Chapter 5

Steps for Improvement

In this chapter the reality of the software development in the case organiza-
tion is described. Current practices are compared to the new model to �nd
out what needs to be done in order to improve the software process of the
case organization. A suggestion for improvement steps is presented based
on the comparison.

5.1 Current Situation and the New Model

How the current model is actually working in practice is discussed in this
section. Practices are also briey compared to the new model to form a
basis for de�ning the improvement steps.

The information about the current model in practice is summarized from
the author's experiences. The reason for this approach is that the author has
been participating in product development of the case organization at many
levels: building the roadmap, managing development projects, building and
managing testing environments, testing products, coding components for
the products and improving the development methods. Information about
these di�erent areas could also be gathered from various other people to
minimize the subjective point of view. However, it is reasonable to expect
that a majority of the information can be derived from the author's expe-
riences (Hafner, 2001). A complete, objective and detailed picture about
the current model in practice is not necessarily needed, since the research is
about improving the case organization's software process, not to model the
current situation in detail.

5.1.1 Current Practices

The structure of the current model is used for describing the practice com-
pared to the current model. Each subsection �rst compares current practices
to current model and secondly current practices to the new model. Prob-

84

lems and deviations from the new model are summarized in table 5.1 after
the comparison.

Strategic Release Management

The release schedule quite well follows the planned three-month release cy-
cle in practice. The product roadmap currently extends over a period of six
months instead of a year. Features that are not scheduled in the releases
for the next six months are left without initial implementation schedules.
So, a high-level product vision is de�ned only for the next two releases at
the moment. Requirements are currently collected mainly from prospec-
tive customers so that the new version of the product includes features a
potential customer requires in order to sign the deal. Feature suggestions
are not collected continuously, only before every release project. There is no
systematic way of collecting suggestions for features in a continuous manner.

The main di�erence between current practices and the strategic release
management cycle of the new model is that the product roadmap should
reect long-term decisions about the technology and products. This, in
practice, means that the roadmap should have research projects scheduled,
as well as the product releases. Another considerable di�erence is including
feedback from actual end-users for inputs for the product features. E�ec-
tive support for collecting feature suggestions is also lacking in the current
situation.

Fundamental high-level decisions about resourcing product development
projects is not done at the moment. Resourcing is currently done on a
day-to-day basis which can make the product development projects unpre-
dictable.

Release Project Management

Feature prioritization is done in practice similarly to how it is described in
the current model. Only the feature iteration has been found hard to com-
plete in a week because of the tight schedules of the customers. Scheduling
iterations has failed in practice at least to some extent. Especially the re-
lease iteration has not produced a release-quality version of the product but
more like a beta version. This has been unplanned and it has naturally
e�ected the next release project by consuming resources for �nalizing the
release. Setting up early access has almost not been functioning at all. Then
needed infrastructure is not built for early access and goals for early access
have not been de�ned.

The main di�erence between the current practices and the release project
cycle of the new model in general, is using Scrum terminology and practices
and adding the stabilization phase after the third iteration. Also, di�erent
themes for iterations are not currently done. Scheduling sprint (or iteration)

85

demonstrations beforehand and informing the larger audience about them
is not currently done as suggested in the new model.

Re�ning the content of a release has few additional points to current
practices. Collecting usage data and using it for prioritizing features is not
currently done. Architecture and testing issues are not discussed currently
as a part of the feature and requirement prioritization.

Early access to new product versions is not currently properly organized
and feedback from customers is not collected about the new version, as is
required by the new model.

Iteration Management

Current practices di�er considerably from the current model in the iteration
management phase. Di�erent iterations are fairly similar so the features
are developed equally in every iteration and architectural issues are handled
only incidentally. Probably the greatest di�erence between the practice and
the current model is in the task e�ort estimations. Estimations are not
currently really done and so the scope of the development project is not
bound by the estimates. The project team tries to do everything it can
to stay in the schedule but without even trend setting work estimations, it
has caused projects to fall behind the schedule or in delivering un�nalized
products. Reprioritizing features works in the practice as it is described in
the current model.

Current practices in iteration management di�er remarkably from the
sprints of the new model. First of all, terminology and practices adapted
from Scrum are not used. Iteration planning does not address adjusting the
scope of the iteration using work estimations for the tasks and the developers
available to work for the project. A clear goal for the iteration is not estab-
lished either. The development team is not currently explicitly involved in
de�ning the scope for the iteration, as required by the new model.

Management of the project during the iteration is not currently sup-
ported by any metrics or practices. Management is done using mini-milestones
as a tool. In practice, the success of the project has been highly dependent
on the leading and management skills of the project manager.

Currently, there is no prede�ned review session after the iteration. This
is a fundamental di�erence to the new model and its sprint review session,
which is one of the main activities in the sprint.

Mini-milestones

Weekly goal setting and status updates work in practice like they are de�ned
by the current model. The deviations from the model are greatest when
testing and reviews are considered. Only few components have been unit
or load tested simultaneously with implementation. This has caused daily

86

automated testing to be nearly impossible. Code reviews have not taken
place regularly even with critical components. Daily builds have worked in
practice as de�ned in the current model.

Current practices lack many of the components included in the daily
rhythm of the new model. Since there is currently no sprint goal, work is
aligned based on the project manager's understanding of the situation. This
is fairly far from the idea of a self-organizing development team introduced
by the new model.

Designing does not currently have guidelines concerning the architecture,
usability or how new features are designed in general. The current practice
depends mainly on every individual developer and his skills. A coding stan-
dard and collective code ownership are currently in use, but without proper
unit testing and peer reviews their value is not high. Testing practices lack
discipline and supporting lists of usual defects.

Development is currently synchronized using daily builds, but daily test-
ing and daily meetings like the daily scrum are missing. Weekly demonstra-
tions of working software are currently given, but at the end of iteration, no
special demonstration is held.

Adjusting product development projects is currently done by the project
manager without help of any metrics. Success in adjusting the direction of
the project depends on the skills of the project manager.

Development Support

Development is currently supported by various systems. Most importantly,
con�guration management is well supported by using CVS as a version con-
trol system and Ant as a build tool for the software. The structure of the
�le repository is well de�ned and build scripts for di�erent products exist.

Defect tracking is done using a web-based tool that fairly well ful�ls the
requirements of the new model. It is also in use after the beta release of the
product.

Requirement management is done using various documents and work-
group note-boards of the oÆce application. This is quite far from the cen-
tralized requirement management suggested by the new model.

Di�erent environment are currently fairly well taken care of, but every
once in a while unclear responsibilities result services to be out of use.

5.1.2 Summary of the Comparison

In this section the problems in the current model and the deviations from the
new model are summarized into table 5.1. Naturally, only the main points
can be �t into the table but they give a clear picture of the improvement
areas.

87

Table 5.1: Comparison of the current practices and the new model.
The phase of the new

model

Problems and deviations

Strategic release man-
agement

� The roadmap does not reect long-term
decisions about technology and products
� Research and business intelligence
projects are not included into the roadmap
� Feature suggestions are not collected
systematically.

Release project cycle � Development projects fall behind the
schedule
� Release iteration does not produce
release-quality software
� End-user feedback is not used as an in-
put for product development
� There is no stabilization phase after the
release
� Iterations do not have di�erent themes
or stressing
� Early access to new product versions is
not provided for customers

Sprints � Iteration planing is done without realis-
tic task estimations
� Scrum terminology and practices are not
used
� Architecture and testing issues are not
explicitely discussed
� A clear goal for an iteration is not es-
tablished
� Team is not involved in iteration plan-
ning
� Project management is not supported by
any metric or a tool
� Iteration review sessions are not hold

Daily rhythm � No design or problem solving guidelines
� Code review are seldomly done
� Testing lacks discipling
� Daily project meetings are not hold

Supporting actions � Requirements are not systematically
managed
� Unclear responsibilities in environment
support

88

5.2 Improvements in the Case Organization

In this section a suggestion for improvement steps for improving the software
process in the case organization is presented. Improvement steps describe
one possible way to take the new model into use in the case organization.
Steps are based on the current situation in the case organization and on the
new model.

5.2.1 Improvement Steps

The steps are formed so that the organization can deploy them one by one.
The steps have been constructed so that they are as independent of each
other as possible to ease the deployment. The steps are also prioritized by
the author so that �rst steps are expected to create the most valuable e�ect
on product development considering the challenges the case organization
currently has. The improvement steps are:

1. Promoting the New Model.

2. Tuning the rhythm and alignment.

3. Establishing Scrum management practices.

4. Clarifying feature prioritization and data collection.

5. Tuning engineering practices.

6. Improving roadmapping.

7. Improving daily builds.

8. Enabling early access.

The steps are next described in more detail. They do not quite follow
the structure of the main concepts of the new model, instead, they form
conceptual sets of actions.

It is important to note that adapting a new process model is not a simple
thing to do. Timo Kaltio (Kaltio and Kinnula, 1998) lists three critical
elements for successful process deployment:

� Well-organized support infrastructure.

� The right product.

� E�ective promotion.

It is evident that in the scope of this research all these elements cannot be
discussed in detail. Instead, the basic steps for improvement are described
and actual implementation is left for the case organization to do. Deploying

89

the new model, as well as any change activity in an organization, need
resources, commitment, time and support. These things are left for the case
organization to take care of.

Step 1: Promoting the New Model

Promoting the model includes presenting the model to management and the
development team and collecting feedback and improvement ideas. Since
the new model has the same structure and principles as the current model,
promoting is not probably going to be a huge e�ort.

First, the new model is presented to the management team of the case
organization to get approval and commitment for improving the product
development as it is planned here. Comments about the model are thought
over and the model is re�ned if needed.

Secondly, the new model is introduced to the development team. Intro-
duction should take the form of a workshop where current challenges of the
development are discussed and the possibilities of the new model are evalu-
ated to solve those problems. If minor changes are needed they are done on
the model. The result of the workshop should be an agreement to improve
development by adopting the new model step by step. The possibility to
a�ect the content of the model and seeing the problems it is meant solve
should give the team con�dence towards the new model and commitment
to adapt it.

Promoting the new model does not necessarily need process support tools
and documentation. A clear summary should, however, be made for both
management and development team. A summary for the development team
should also act as a reference to the new model.

Naturally, each step described here needs additional promoting. This
�rst step is more promoting the whole new point of view and the improve-
ment plan.

Step 2: Tuning the Rhythm and Alignment

The development rhythm is currently fairly close to the rhythm described
in the new model. The main things to work out are adding a stabiliza-
tion phase, input points for business and technology strategy and clarifying
responsibilities.

Responsibilities for di�erent tasks in the new model need to be assined.
Especially the responsibility of leading the strategic release management
cycle needs to be given to one person. This person and his commitment to
improve product development are vital for successful adaptation of the new
model.

The sales and customer project organizations need to be convinced of
value the stabilization phase after the development sprints. This one-month

90

shift in schedules needs to be sold to the customers and partners as well.
Agreement on the points where the company strategy is re�ned need to

be done with the management and maybe even with the board of directors.
This de�nes the points when the roadmap is updated to reect changes in
the strategy.

The value of tuning the rhythm and alignment comes from minimizing
the 'down-time' between the projects and from fast reactions to changes in
the strategy.

Step 3: Establishing Scrum Management Practices

The main shift in the development compared to the current practices is
adopting leadership and management practices from Scrum. The most visi-
ble di�erence in iteration planning is starting to make estimations for tasks
and adjusting the scope of the project by these estimations.

The next release project after promoting the whole new model starts
with an extra workshop. There, the development team goes through the
main concepts of Scrum and developing software in sprints. The team needs
to �nd its tools and methods for making the task estimations and the project
burndown graph. This workshop will most likely result in some development
tasks for tools supporting the sprint planning and work estimations. The
�rst sprint review should be held after the �rst sprint even if it has not gone
perfectly. This is done for pointing out the importance of working software
and deadlines.

After the development team has agreed on how to carry out Scrum ac-
tivities in practice, the �rst sprint can be started. Feedback about Scrum
practices is gathered after the sprints to make the practices work smoothly
for the development team.

The single most important person in this phase is the scrum master.
He needs to be uent with the Scrum practices. He encourages the team to
take initiative on solving its daily problems and steering its work towards the
sprint goal. During the �rst sprints, estimating tasks and taking more re-
sponsibility over the success of the project, are really challenging. Schwaber
(Schwaber and Beedle, 2002) say that it takes few sprints before a team gets
used to the new way of developing software. The scrum master is the one
person who is to lead the team through these challenging �rst sprints.

Management and Sales are given a presentation about the Scrum man-
agement practices. Especially points where they are expected to participate,
such as sprint reviews, are described. They need to be motivated to put their
e�ort into the development by describing the chances they have to inuence
the development.

The great value of establishing Scrum management practices comes from
empowering the development team and making development more predictable.

91

Step 4: Clarifying Data Collection and Feature Prioritization

Collecting data for feature prioritization has currently some major aws
compared to the new model: collecting usage data and feedback from the
end-users and overall management of the data.

Application logs that include the usage data of the product should be
obtained from the customers. Sales and project people need to agree with the
customers that relevant log �les can be transferred to the case organization.
Usage pro�les are made by analyzing the log �les.

Customers should be provided with a standard end-user satisfaction
questionnaire. Sales and project people need to agree with the customers
that end-users are asked for feedback and that information is available for
the case organization. Usage pro�les and user feedback provide valuable
information for feature prioritization.

The overall management of the feature ideas, requirements and feedback
need to be improved in the case organization. It is evident that a tool is
needed for collecting, managing and prioriritizing this information. The
Product Management team of the case organization should decide which
tool they want to use and provide all stakeholders with information on how
to use the tool.

There are two major things that are not currently considered explicitly
when prioritizing features for product releases: architectural and testing
issues. These issues are best worked out in a workshop in which technology
specialists from the development team describe the alternatives and their
consequences to the Product Management team. After choosing the proper
alternatives for testing and architecture these issues can be included into
the feature prioritization.

The value of clarifying data collection and feature prioritization comes
from getting the information from all stakeholders for the feature prioriti-
zation and hence building the right kind of product.

Step 5: Tuning Engineering Practices

Tuning engineering practices includes taking activities of daily rhythm into
use. Tuning especially concentrates on design, coding and testing practices.
If establishing Scrum management practices depended on the scrum master,
tuning engineering practices highly depends on the coach.

The �rst step in tuning the engineering practices is to hold a meeting with
a few of the best engineers from the development team. The most important
engineering practices are selected based on the new model. After that all
developers are invited to a workshop the goal of which is to together work
out the practices for design, coding and testing. The practices of the new
model are used as basis, but improvements are added when needed, so that
developers can easily commit to use the resulting practices. Especially the

92

coaching practice, problem solving pattern, peer reviews, design guidelines,
unit testers, documentation style and usability testing and design are to be
discussed.

If the coaching practice and the problem-solving pattern are successfully
adapted, improving of the engineering practices is very likely to succeed.

The value of tuning the engineering practices comes from better quality
software and shared knowledge about the technical solutions in the product.

Step 6: Improving Roadmapping

Roadmapping is to be improved in two ways: including research and business
intelligence issues into the roadmap and making long-term decisions about
technologies and products.

Roadmapping is currently working fairly well. The focus of the im-
provement should be on including research and intelligence projects into the
roadmap and making sure that the roadmap extends over one year. Also
the product vision is to be added to the elements in the roadmap so that is
easy see what the value added by the new version is.

The roadmap should be visible for the whole organization and it should
be presented inside the company always after its revision.

The value of improving roadmapping comes from making research and
business intelligence explicitly a part of development.

Step 7: Improving Daily Builds

Improving daily builds is about integrating daily tests into the currently
working daily build process and agreeing on the actions to be taken if some-
thing does not work in the daily build.

Development team should work out a proper way to run all the tests
automatically after the daily build. Running the tests and maintaining the
testers should not take much extra time. Unit testers should be made in a
way that suits to the test automation from the beginning. The result of the
daily build and tests need to be visible for all the developers.

Reaction to defects also need to be agreed on. Everyone in the develop-
ment team should know what happens if a build fails or testers do not run.
Penalty for the 'build ruiner' needs to be agreed on.

The value of improving the daily builds comes from the ability to �nd de-
fects early and from con�dence about knowing the status of the development
project.

Step 8: Enabling Early Access

Enabling customers and partners to get early access to new versions and
products is not only the job of the development team. Actually, support,

93

sales and project organizations have even more motivation to provide early
access.

In short, selected customers should be able get early version for testing
and evaluation. As a favor in return customers are to give feedback and
report possible defects.

The value of enabling early access comes from customer feedback and
new sales potential.

5.2.2 Summary of the Improvement Steps

The improvement steps presented in the previous section describe one possi-
ble way to apply the new model. The order of the steps or even the content
of the steps is not very important. The single most important thing about
improving the software development process is to motivate the employees
to seek for better ways to do their work. The new model provides a fairly
complete set of practices for easing the improvement e�orts.

Since each cycle of the model ends with a feedback session or provides
feedback in some other way, also feedback about the process is easy to
collect. Just as a development cycle steers the next cycle by providing needed
feedback and information, it can steer itself for better performance. The
overall responsibility for keeping the continuous improvement cycle running
should be given to one person.

Objectives of the product development are fairly stable but means to get
there may vary. When the direction is clear the process aligns work towards
the vision and motivates people to strive for the goal.

94

Chapter 6

Conclusions

In this chapter the results of the research are discussed. Their reliability
and possibility for generalization are discussed together with suggestions for
further research.

6.1 The Research Results

This research aimed to �nd an answer to the question of how can the soft-
ware development process be improved in the case organization, a small
software product company. This research question was answered by de�ning
the requirements for software development process in the case organization,
evaluating four existing software process models, synthesizing these models
and experiences from literature and practice into a new process model and
�nally constructing a suggestion for improvement steps for the case organi-
zation based on the new model.

Requirements for the new process model were worked out in a workshop
with professionals from the case organization. The result from the work-
shop was a combination of needs for the process, needs for the product and
current challenges in general. Since there were relatively many needs they
were grouped by theme to form the actual requirements for the new process
model. Most stressed requirements from the workshop were requirements re-
lated to time orientation and continuous change in the markets, technology
and products. The summary of the requirements was presented in section
2.4.

Existing process models were evaluated against the requirements. First,
the models were presented briey and secondly, all requirements were dis-
cussed from the viewpoint of model support. It was found that none of the
models is perfect if all the requirements are considered. However, almost
every requirement has at least one best support rating by the models. This
leads to a conclusion that combining these evaluated models to form a new
model could support these requirements fairly well.

95

The new software development process was introduced. It was based on
the evaluated models and experiences from the literature. The new model
supports all requirements that were given to the process model by the case
organization. The new model is based on interrelated development cycles
that follow each other in a continuous feedback loop.

The current situation of the software development process in the case
organization was compared to the new model to point out the improvement
steps. The improvement steps describe phases of deployment of the new
model. It was pointed out that commitment to the new model needs to built
from bottom up using workshops where the new model can be communicated
to all stakeholders and where the stakeholders have a chance to contribute
to the model.

The new software process model and the improvement plan that were de-
veloped in this research can be considered to answer to the research question
well. The new model provides a framework and a set of practices for improv-
ing the software product development in the case organization. The steps
introduced for improving the current situation to the direction of the new
model form a good basis for improving the software development process in
the case organization. The concrete contribution to the case organization is
the new model that provides answers to the current challenges and problem
areas and is based on the needs of the company. The suggestion for improve-
ment can be used as a basis for project plan for an improvement project.
Individual improvement steps can be taken by a smaller group of people, for
example to improve engineering practices in product development projects.

Secondary contribution of the research was that people involved in the
research gained valuable information about di�erent approaches to prod-
uct development. Even if the research concentrated on solving the prob-
lem in the case organization, some valuable experiences were produced for
the SEMS research project as well. Additionally, the research stimulated
discussion about software process issues and their importance in the case
organization.

6.2 Reliability of the Results

In order for the results of the resarch to constitute a contribution to the
research �eld or the case organization, the study must demonstrate suÆcient
reliability. Reliability of a measurement is the result staying the same from
one sample to the other, assuming that everything else remains the same.

Concerning the reliability of the results, the critical points of the research
are selecting the participants for the workshop, constructing the workshop
results, selecting the existing process model for evaluation, evaluation of the
models creating the new model and conclusions for improvement steps for
the case organization.

96

De�ning the requirements and understanding them signi�cantly a�ect
to the rest of the research. This emphasizes the importance of selecting
the right persons for the workshop. The chosen persons represented three
di�erent views: customer and sales point of view, strategic point of view and
technology point of view. These points of view cover well the environment
of the case organization. Taking into account the that selected persons
have had a very active role in the company from the start of its business,
the selection can be considered reasonable. One can ask why the CEO
or the CTO were not participating. They were not invited since the roles
they would have represented are similar to those already presented in the
workshop. The number of the participants was also kept relatively small to
ensure e�ective working in the workshop.

There is no recording from the workshop except the notes of the au-
thor and some ip chart drawings. The constructed workshop results were
presented in this study using the similar 'mind-map' presentation style as
was used in the workshop. This and the fact that the author was able to
ask participants to specify unclear points later, makes the results from the
workshop relatively reliable. It can be asked if a workshop was a proper
way to �nd out the requirements or would interviews have been a better
way for gathering the information. A workshop was selected because of its
interactivity and eÆciency. It is very likely that if a new workshop was held
the resulting requirements would be qualitatively the same.

The process models evaluated were selected subjectively by the author.
This introduces a possibility to have lacked some model that would have
had an e�ect on the new model. Currently, there are not many research
articles about using di�erent software process models in a small software
product company. This is why it can be considered reasonable to make a
subjective selection of the models and still keep the result reliable enough
for its purpose.

The results of the evaluation of the existing models can be found con-
troversial. The evaluation was made by the author and a subjective opinion
cannot be completely avoided. The main reason for this approach was that
an objective or an experience-based evaluation was not found from the lit-
erature. Because the purpose of the evaltuation was to form a qualitative
picture, not a quantitative measurement, of the models, the result of the
evaluation can be considered reliable for its purpose. It is likely that if an-
other evaluation were done on the models the result would be qualitatively
the same.

The information about the existing process models was from literature
that is available publicly and relatively widely spread in the �eld of software
development. This information and the articles referred to can be considered
a reliable source of information.

The main result of the research, the new model, is based on the require-
ments and the information about the existing models. Since they were both

97

found reliable it is reasonable to expect that the resulting model is reliable
as well. However, the model was constructed by the author and subjective
opinions are evident. This is not necessarily a bad thing for the result since
the author has been working in the product development of the case orga-
nization. One can of course ask, would the model be similar if someone else
would have constructed it from the requirements and the existing models.
Probably the main ideas would have been same but details might have been
constructed di�erently.

Conclusion for improvement steps based on the current situation in the
case organization and the new model have been made by the author. It
can be asked why would this order of the steps be a proper one. The steps
are constructed from a consistent set of practices that allow changing the
deployment order of the steps.

Possibility to generalize the results without any modi�cations are lim-
ited. The new model is focused on small software product companies and
it is based on the requirements de�ned by the experts from the case orga-
nization. If another company would like to adapt the new model it would
require that

� the company has its focus on software products

� its business environment is not well established and it is highly com-
peted

� the size of the company is small

� the technology used is new and frequently changing

In short, if the company shares the same requirements for a software process
model, the new model with minor changes could be used for improving
the software process of that company. Naturally, the improvement steps
presented in this research depend remarkably on the current situation of the
case organization and therefore cannot be generalized.

On the other hand, the approach to de�ning a new model can be gen-
eralized fairly well. If an organization de�nes requirements for its software
development process, evaluates selected process models against them and
constructs a new model based on that information, it is reasonable to ex-
pect that the resulting model is suitable for the organization.

6.3 Suggestion for Further Research

Even if de�ning a new process model is quite a large task for a research
like this, many questions related to software product development were left
unanswered. A few questions arise immediately after de�ning the new pro-
cess model:

98

� How should the new model be promoted and supported?

� How did deployment of the new model a�ect the product development
in the case organization?

� How should the customer project and delivery process be improved in
the case organization to work eÆciently with the new model?

The most important of all further research would be studying if the new
model really helped the case organization to improve its software develop-
ment process in practice.

The SEMS research project actually continues studying software pro-
cesses of small software product companies. Therefore its results are inter-
esting also from the viewpoint of this research.

99

Appendix A

Workshop Material

A.1 Invitation to the Workshop

This is an invitation email to workshop participant that was sent them before
the workshop.

Ari, Antti and Lauri,

Would you have time for a two hour workshop? The subject is

improving product development (process) to better fulfill the

needs of the company's strategy, sales and customers. This is

of cource the needs of the whole company.

The goal of the workshop is to dig out those factors in the

product development that are important especially for the

sales and company's strategy. The questions that we will be

seeking answers for are:

- What are the essential things that define Smartner's

operational environment (strategy, customers, technology)?

- What needs for the product development do these

factors generate?

- What are the reasons behind the current practices? Are

there more needs related to those reasons?

For example: Company's size compared to the customers is

small, which might lead to need for proving credibility by

having demo applications for customers.

Agenda for the workshop is shortly:

- Describing the problem and goals

- Brainstorm to work out essential things in environment

and needs that they introduce for product development

100

- Reverse engineering current practices and working out

needs related to them

Would Friday November 30th at 2PM be fine for the workshop?

--

Lauri Vuornos

101

Appendix B

Citations from the Literature

B.1 Reasons for death march projects

The reasons for the death march projects de�ned by Ed Yourdon in his book
(Yourdon, 1999) are listed fully in the table B.1.

Table B.1: Reasons for death march projects
Politics, politics, politics.

Naive promises made by marketing, senior executives, naive
project managers etc.

Naive optimism of youth: 'We can do it over the weekend!'

The 'Marine Corps' mentality: Real programmers do not need
sleep!

Intense competition caused by globalization of markets.

Intense competition caused by the appearence of new technologies.

Intense pressure caused by unexpected government regulations.

Unexpected and/or unplanned crises - e.g., your hard-
ware/software vendor just went bankrupt, or your best program-
mers just died of Bubonic Plague.

B.2 Project Burndown Graph in Scrum

The project burndown graph in Scrum visualizes the estimated work left
and the estimated sprint completion. Each item in the sprint task list has
an estimation for how many hours is still needed to �nish the task. The
project burn down graph is a sum of all those estimations. The estimate for
sprint completion is derived from the current estimate of hours remaining
and the amount of the working hours available per day which sets the slope
of the curve. Estimation for completion is naturally the point where there

102

is no more hours remaining. Since estimations can sometimes be initially
incorrect the project burndown graph may also go up occationally.

Figure B.1: Project burndown graph

103

Bibliography

Backholm, A. and Vuornos, L.: 2001, Smartner Product Development Pro-
cess in Short, An unpublished internal document

Beck, K.: 2000, Extreme Programming Explained: Emrace Change, Vol. 3,
Addison Wesley

Brodman, J. G. and Johnson, D. L.: 1994, in Proceedings: 16th Interna-
tional Conference on Software Engineering, pp 331{340, IEEE Computer
Society Press / ACM Press

Cusumano, M. A. and Selby, R. W.: 1998, Microsoft Secrets: How the
World's Most Powerful Software Company Creates Technology, Shapes
Markets, and Manages People, Touchstone

Demarco, T. and Boehm, B. W.: 1982, Controlling Software Projects: Man-
agement, Measurement, and Estimates, Prentice Hall PTR

Detlev, H. J., Roeding, C. R., Purkert, G., and Lindner, S. K. L.: 1999,
Secrets of Software Success: Management Insights from 100 Software
Firms Around the World, HBS Press

Dorling, A., Mackie, C., Smith, B., Lazinier, E., Pesant, J., Rand, B., Diaz,
A., Winograd, Y., Campbell, M., Buchman, C., Azimi, A., Hodgen,
B., and Shintani, K.: 1996, SPICE, Consolidated product version 1.00,
Stadnard, ISO/IEC

Eisenhardt, K. M. and Brown, S. L.: 1998, Harvard Business Review pp
59{69

Elton, J. and Roe, J.: 1998, Harvard Business Review pp 3{7
Hafner, A. W.: 2001, Pareto's Principle: The 80-20 Rule, An unpublished

WWW article
Jacobson, I., Booch, G., and Rumbaugh, J.: 1999, The Uni�ed Software

Development Process, Addison-Wesley
J�arvenp�a�a, E. and Aalto, P.: 2000, Ohjelmistoyrityskysely 2000, Technical

report, TAI Research Center
Kaltio, T. and Kinnula, A.: 1998, in Proceedings: SPI'98 at Monte Carlo
Kaner, C., Falk, J., and Nguyen, H. Q.: 1999, Testing Computer Software,

2nd Edition, Vol. 2, John Wiley & Sons
Kotter, J.: 2001, Harvard Business Review pp 85{96
Kruchten, P.: 1999, The Rational Uni�ed Process: An Introduction, Vol. 2,

Addison Wesley

104

Kuvaja, P., Simila, J., Krzanik, L., Bicego, A., Koch, G., and Saukonen, S.:
1994, Software Process Assessment and Improvement: the BOOTSTRAP
approach, Blackwell Publishers

Laitinen, M., Fayad, M., and Ward, R.: 2000, IEEE Software 17(5), 75
MacCormack, A.: 2001, IEEE Engineering Management Review 29(2), 90
McCormick, M.: 2001, Communications of the ACM 44(6), 109
Nielsen, J.: 1992, in Proceedings: Human Factors in Computing Systems.

(Monterey, Calif., May 3-7)). ACM/SIGCHI, New York
Paulk, M. C., Curtis, B., Averill, E., Bamberger, J., Kasse, T., Konrad,

M., Perdue, J., Weber, C., and Withey, J.: 1991, Capability Maturity
Model for Software, Technical Report CMU/SEI-93-TR-024 ADA240603,
Software Engineering Institute (Carnegie Mellon University)

Pollice, G.: 2001, Using Rational Uni�ed Process for Small Projects: Ex-
panding Upon eXtreme Programming, An unpublished Rational Software
whitepaper

Probasco, L.: 2000, The Ten Essentials of RUP. The Essence of an E�ective
Development Process, Technical report, Rational Software Corporation

Rational: 1998, Rational Uni�ed Process Whitepaper: Best Practices for
Software Development Teams, Technical report, Rational Software Cor-
poration

Rautiainen, K., Lassenius, C., V�ah�aniitty, J., Pyh�aj�arvi, M., and Vanhanen,
J.: 2002, in Proceedings: Hawai'i International Conference on System
Science, January 1-10, 2002

Sachs, G.: 2001, The Impact of 3G Mobile Phone Services: Telecom Services,
Report, Global Equity Research

Schwaber, K. and Beedle, M.: 2002, Agile Software Development with
Scrum, Prentice Hall

Smith, J.: 2001, A comparison of RUP and XP, a Rational Software
whitepaper

Succi, G. and Marchesi, M.: 2001, Extreme Programming Examined, Vol. 1,
Addison Wesley

Sun-Tzu: 1983, The Art of War, Delacorte Press
Takeuchi, H. and Nonaka, I.: 1986, Harvard Business Review pp 137{146
Varkoi, T. and Jaakkola, T.: 1999, in Proceedings: PICMET�99, Portland,

Oregon
Yourdon, E.: 1999, Death March: The Complete Software Developer's Guide

to Surviving 'Mission Impossible' Projects, Prentice Hall

105

