
Towards Intelligent Support for Managing
Evolution

of Configurable Software Product Families

Tero Kojo, Tomi Männistö, and Timo Soininen

Software Business and Engineering Institute (SoberIT)
Helsinki University of Technology

P.O. Box 9600, FIN-02015 HUT, Finland
{Tero.Kojo, Tomi.Mannisto, Timo.Soininen}@hut.fi

Abstract. Software product families are a means for increasing the ef-
ficiency of software development. We propose a conceptualisation for
modelling the evolution and variability of configurable software product
families. We describe a first prototype of an intelligent tool that allows
modelling a software product family on the basis of the conceptualisation
and supports the user in interactively producing correct configurations
with respect to the model. The implementation is based on an existing
general purpose configurator and thus is not application domain specific.
We use the Debian Familiar Linux package configuration task over many
releases and package versions as an example. Preliminary results show
that the conceptualisation can be used to model evolution of such a soft-
ware product family relatively easily and the implementation performs
acceptably.

1 Introduction

Software product families (SPF) (or lines, as they are also known) have been
proposed as a means for increasing the efficiency of software development and
to control complexity and variability of products [1, 2]. A SPF can be defined to
consist of a common architecture, a set of reusable assets used in systematically
producing, i.e. deploying, products, and the set of products thus produced.

Software product families are subject to evolution, similarly as other soft-
ware [3]. This leads to a need for practical solutions for controlling evolution.
Configuration management tools keep evolving software products under control
during their development [4]. However, the configuration management of large
and complex software and the post installation evolution of software products
present challenges [5, 6].

In this paper we propose an approach to the modelling of evolving software
product families based on viewing them as configurable software product fami-
lies. A configurable product is such that each product individual is adapted to
the requirements of a particular customer order on the basis of a predefined
configuration model [7]. Such a model explicitly and declaratively describes the



set of legal product individuals by defining the components out of which an indi-
vidual can be constructed and the dependencies of components to each other. A
specification of a product individual, i.e., a configuration, is produced based on
the configuration model and particular customer requirements in a configuration
task. Efficient knowledge based systems for configuration tasks, product config-
urators, have recently become an important application of artificial intelligence
techniques for companies selling products adapted to customer needs [8, 9]. They
are based on declarative, unambiguous knowledge representation methods and
sound inference algorithms. A configuration model traditionally captures the
versioning of an SPF in space, i.e., it describes all the different configurations
the SPF consists of. Evolution, i.e., versioning in time, is typically not supported.

The main contribution of this paper is a conceptual foundation for modelling
evolution of configurable SPFs with the main concern being the deployment
phase and generation of valid configurations. The conceptual foundation is based
on a subset of a de-facto standard ontology of product configuration knowledge
[10] and extended with concepts for modelling evolution.

We describe a prototype implementation of an intelligent tool for modelling
configurable SPFs on the basis of the conceptualisation and supports the user
in interactively producing a correct configuration with respect to the model. In
this we use a state-of-the-art prototype product configurator [11] as an imple-
mentation platform. Our implementation is not product or application domain
specific. It is enough to change the model to use it for another SPF.

To show the feasibility of both the modelling method and its implementa-
tion, we use the Debian Familiar Linux package configuration as an example.
It is an appropriate software product family for the purposes of this work as it
has a component structure consisting of hundreds of packages, resulting to well
over 2100 potential configurations. Furthermore, there are multiple subsequent
releases of the same package.

The remainder of this paper is structured as follows. Section 2 describes De-
bian Familiar Linux, its package model and how evolution is currently handled.
Section 3 defines the conceptual foundation for representing the evolution of
configurable SPFs. In Section 4 the implementation is described and some pre-
liminary results on its feasibility are given. After that the modelling method and
implementation are discussed and compared to related work in Section 5. Finally,
some conclusions and topics for further research are presented in Section 6.

2 Debian Familiar Linux Case

Debian Linux Familiar is an open source operating system distribution developed
for the Hewlett-Packard iPAQ handheld computer. Familiar is distributed as
packages, each of which provides a piece of software, such as an application or
device driver. A Familiar release is a collection of packages, which make up a
complete Linux environment for the iPAQ. Therefore a release allways includes a
Linux kernel, device drivers and essential user software such as a shell and editor.
The packages of a Familiar release are described in a package description file



distributed with the release. Each release has a release date, on which that release
becomes the official current Familiar distribution. The releases are stored in
separate folders on the ftp.handhelds.org FTP server. Figure 1 shows an example
of a single package description.

Package: ash

Essential: yes

Priority: required

Section: shells

Installed-Size: 152

Maintainer: Carl Worth <cworth@handhelds.org>

Architecture: arm

Version: 0.3.7-16-fam1

Pre-Depends: libc6 (>= 2.2.1-2)

Filename: ./ash_0.3.7-16-fam1_arm.ipk

Description: NetBSD /bin/sh

Fig. 1. Example Debian Familiar Linux package description

The package description provides information on the different properties of
the package it represents. The description provides the package name, essen-
tiality, version information and dependencies. The version information contains
the revision information and the status of the package. If a revision number
is followed by ”a” or ”alpha” or ”pre”, the package is an alpha or pre-release
version. The possible dependencies of a package are Depends, Pre-depends,
Conflicts, Provides, Replaces, Recommends and Suggests. The meanings
of these are:

– Depends - the package requires another package to be installed to function
correctly.

– Pre-depends - installation of the package requires another package to be
installed before itself.

– Conflicts - the package should not be present in the same configuration some
other package.

– Provides - the package provides the functionality of some other package.
– Replaces - the installation of the package removes or overwrites files of an-

other package.
– Recommends - another package is recommended when it is presumable that

the users would like to have it in the configuration to with the package.
– Suggests - another package is suggested to get better use of the package.

Of these dependencies Depends, Pre-depends and Conflicts directly indicate
the need for an another package or conflict with another package. Provides, Rec-
ommends and Suggests can be seen as a method of providing help at installation
time in the form of features. Replaces is directly associated with the installation



of the package. The dependencies are used by the Familiar package management
tool when installing a package. Most packages have a different maintainer, as
the packages are maintained by volunteer hackers. This brings inconsistencies,
for example, in the usage of dependencies and to the version naming scheme.

The Linux Familiar distribution has had four major releases, 0.3, 0.4, 0.5 and
0.6, and several minor releases between the major releases during the two years
the project has been active. The releases 0.4, 0.5, 0.5.1 and 0.5.2 were chosen for
this study. Release 0.6 was not included as it has just recently come out.

The total number of packages in the four releases is 1088, making the average
number of packages per release 272. Of these packages 148 have their priority
set as required. The number of dependencies between packages is 1221.

Installation instructions for each release of Familiar can be found on the Fa-
miliar WWW pages [12]. Each release has separate installation instructions, even
though the process is similar for each release. This is a configuration problem
related to the versioning in space. Problems related to evolution are the focus
of this paper and include the representation of configuration knowledge over
time and (re)configuration tasks that span time. For example, updating from
an older release to a newer one requires that the user installs everything from
scratch onto her/his HP iPAQ, which wipes the handheld clean removing all
the user data. Installing packages from multiple releases is not supported. This
means that once a user has installed a certain release on her/his iPAQ she/he
must use packages only from that particular release. There clearly is need for a
package management utility that supports (re)configuration over several releases.
To achieve this one needs to incorporate the versioning in space and versioning
in time. Constructing such a solution is the topic of this paper.

3 A conceptualisation for Modelling Evolution

This section describes a conceptualisation for evolution of configurable software
product families. This work is based on a de-facto configuration ontology [10],
which does not contain concepts for evolution. The conceptualisation uses con-
cepts, such as components, their properties, compositional structure and con-
straints, which are introduced in the following and illustrated in Figure 2. We first
introduce the main concepts for modelling configurable SPFs, i.e., for capturing
versioning in space, and thereafter add the concepts for modelling evolution—
more detailed discussion is postponed to Section 5.

A configurable SPF fundamentally consists of a large set of potential product
individuals, called configurations. In the conceptualisation, a configuration is
represented by component individuals, their properties and has-part relations
between component individuals. A configuration model is defined to describe
which configurations are legal members of a configurable SPF. A configuration
is related to a configuration model by a is-configuration-of relation.

A configuration model contains component types, their part defintions and
property definitions and constraints. Component types define the characteristics
(such as parts) of component individuals that can appear in a configuration. A



Fig. 2. Meta-model of concepts for modelling evolution of configurable SPFs

component type is either abstract or concrete (represented by the concreteness
of the component type). Only an individual directly of a concrete type is specific
enough to be used in an unambiguous configuration.

A component type defines its direct parts through a set of part definitions. A
part definition specifies a part name, a non-empty set of possible part types and
a cardinality. A component type may also define properties that parameterise or
otherwise characterise the type.

Component types are organised in a taxonomy or class hierarchy by means
of a is-a relation where a subtype inherits the property and part definitions of
its supertypes in the usual manner. Multiple inheritance is not supported.

These concepts provide the basic variation mechanisms, i.e., means for cap-
turing the versioning in space:

1. Alternative parts are modelled by part type of part definitions, which defines
the component types whose individuals are allowed as parts in a has-part
relation with a particular (part) name.

2. A cardinality defines a range for the allowed number of component individ-
uals for a has-part relation. Zero minimal cardinality represents an optional
part and minimal cardinality of 1 a mandatory part.

3. A property definition with an enumeration type defines a set of variation
choices, e.g., “UNIX”, “win2000”, “MacOs”.

4. Subtyping of component types can also be used for representing variation;
the subtypes of a component type being the variants of the component type.

Constraints associated with component types define additional conditions
that a correct configuration must satisfy. A constraint is a boolean expression
with references to access the parts and properties of component individuals.

To model the evolution in configurable SPFs, additional concepts are intro-
duced, namely component type revision, status, and effectivity period.



A component type has a set of revisions, called component type revisions,
which are related to the component type by is-revision-of relation, and ordered
by is-successor-of relation. These relations provide a simplified conceptualisation
for revisioning and elaboration on them goes beyond the scope of this paper. Re-
visions capture the evolution of a component type in time. However, separating
the versioning in time from versioning in space in this manner is a simplification
we make in this paper. Ultimately, such versioning dimensions of a component
type should be represented uniformly [13].

Status tells the life-cycle status of a component type revision [14]. The status
is a measure of the maturity of a component type revision, e.g., “unstable”, “sta-
ble” and “end of life”, and can be used as additional information in configuration
task. The status is a useful concept, e.g., for expressing the user requirements,
but has no relevance in determining the correctness of a configuration.

Effectivity period is a time interval stating when an component type revision
may legally appear in a configuration. Effectivity period is thus a new additional
concept needed in determining the correctness of a configuration.

In the meta-model, component type revision is a subtype of component type
to indicate that component type revisions have the same properties as compo-
nent types plus the additional concepts for representing evolution. Each compo-
nent individual is directly an instance of a component type revision, represented
by is-instance-of relation. This basically means that component individuals are
component type instances with additional revision information.

The is-a relation between component types is constrained more than what is
visible in Figure 2. The relation is only allowed between component types, not
component type revisions. Similarly, the is-revision-of relation can only be from
a component type revision to component type.

4 Implementation

This section describes a prototype implementation of the modelling method and
the intelligent support system, presented in Figure 3, for managing and con-
figuring SPFs based on the models. We first describe an existing configurator
prototype, called WeCoTin1, that is used as the implementation platform. We
then show how the Debian Familiar Linux package descriptions are modelled us-
ing the conceptualisation presented in the previous section. After this we show
how a model based on the conceptualisation is represented using the modelling
language of the prototype configurator. Finally the functionality of the modelling
and support tool is presented, and some preliminary results on the feasibility of
the method and implementation are provided.

The implementation consists of two new pieces of software, software that
mapped the individual Familiar package description files to the conceptualisa-
tion, software that mapped the conceptualisation to a product configuration
modelling language (PCML) and the existing WeCoTin configurator.

1 Acronym from Web Configuration Technology.



Fig. 3. The architecture of the implementation

4.1 Existing Work

An existing product configurator, WeCoTin, which is currently under develop-
ment at Helsinki University of Technology, is used as the implementation plat-
form for the conceptualisation presented in the previous section [11].

WeCoTin enables configuration over WWW and centralised configuration
model management. The implementation semi-automatically generates a web-
based user-interface. WeCoTin supports the user by preventing combinations of
incompatible components or their versions, by making sure that all the neces-
sary components are included, and by deducing the consequences of all selections.
WeCoTin is also capable of automatically generating an entire correct configura-
tion based on requirements. A state-of-the-art logic-based artificial intelligence
knowledge representation and reasoning language and a system implementing
it provide the inference mechanism for WeCoTin [15]. WeCoTin translates the
configuration model presented in PCML to weight constraint rules and uses
a state-of-the-art general implementation of such rules, Smodels [16], for effi-
ciently computing configurations satisfying given requirements. PCML is based
on a practically important subset of a de-facto standard ontology of configura-
tion knowledge [10] that unifies most of the existing approaches to configuration
modelling.

4.2 Mapping the Evolution of the Familiar Linux Releases

The package descriptions from the different releases of Familiar were mapped to
the conceptualisation as follows (Table 1).

A root component type, the root of all configuration models was defined.
For each package a component type was defined, and made a part of the root

component type by a part definition. If the package is essential the cardinality
of of the part definition corresponding to it is 1, otherwise it is 0..1. The part



Table 1. The mapping of Familiar package descriptions to the conceptualisation

Familiar term Conceptualisation

Package Component type
Part definition in the root component type

Name of the package Component type name

Essentiality Part definition cardinality

Version Component type revision
Component type revision status

Release date information Component type revision effectivity period

Depends Constraint

Pre-depends Constraint

Conflicts Constraint

Provides Installation time activity (Not mapped)

Replaces Installation time activity (Not mapped)

Recommends Semantics unclear and installation time activity
(Not mapped)

Suggests Semantics unclear and installation time activity
(Not mapped)

types of the part definition containt the component type that was mapped. The
name of the component type and the name of the package were the same.

A component type has the revision of the package it represents as a property.
The version identifier was taken directly from the package information. If the
package had multiple versions, the is-successor-of relation was defined by the
chronological order of the package versions.

Status information of a package is a property of the component type revision.
The status information was derived from the package version information, if a
version was marked with ”a” or ”alpha” or ”pre”, the status property of the
component type revision was given the value unstable, otherwise a stable value
was given.

The component type revisions have an effectivity period based on the releases
the package is in. If a version of a package is present in only one release the
component type revision has an effectivity period starting with the release date of
that release and ending with the release date of the next release. If a version of a
package is present in consecutive releases the effectivity period of the component
type revision is a combination of the effectivity periods as if the package version
were present in all the releases separately.

The package dependencies were mapped to constraints. Depends and pre-
depends were mapped both to a requirement constraint that states, that the
package requires another package. The additional information provided by pre-
depends is used only in the instantiation phase, which was outside the scope
of this case. Conflicts was mapped to a constraint that states, that the two
packages may not exist together in the same configuration. Provides, replaces,
recommends and suggests were not mapped, as they are seen as a method of



providing help at installation time and thereby fall outside the scope of this
work.

4.3 Mapping the Conceptualisation to PCML

The conceptualisation needed to be mapped to PCML so that WeCoTin could
be used to generate configurations of the Familiar system (Table 2).

Table 2. The mapping of the conceptualisation to PCML

Conceptualisation PCML mapping

Component type Component type

Property definition Property definition

Part definition Part definition

Constraints Constraints

Component type revision Property of component type as a tempo-
rally ordered list of strings

Component type revision status Property of component type as a tempo-
rally ordered list of strings

Component type revision effectivity
period

Properties of component type as integers
stating end and start time of effectivity pe-
riod
Constraints expressing which version is ef-
fective at which part of the effectivity pe-
riod

PCML provides modelling concepts for component types, their compositional
structure, properties of components, and constraints. The mapping from the
evolution concepts to PCML concepts was simple for these concepts. PCML
also provides value types and structures such as lists, strings and integers, which
were used in the mapping of the other evolution terms [11].

Component type revisions were mapped to a property of component type as
a temporally ordered list of strings, i.e., ordered by the is-successor-of relation.
Strings were used as the version identifiers in the Familiar package descriptions
contain alphanumerical characters.

Component type revision status was mapped to a property of component
type as a list of strings that was ordered in the same way as the list of revisions.

Component type revision effectivity periods were combined and mapped as
two integers stating the start and end of the component type effectivity period.
Constraints were used to specify which component type revision can be used in
a configuration at specific parts of the effectivity period. This was used in cases
where a package was present in many Familiar releases and it was necessary to
identify when each revision can be used in a configuration.

Due to the fact that the inference engine in WeCoTin does not at this time
support reasoning over large integer domains well, time used for effectivity peri-



ods was discretised. The times selected were those at which the Familiar releases
were made and single points of time in between the release times.

4.4 Implementation of the Conceptualisation

The software for mapping the Familiar package descriptions reads the package
description file for a single Familiar release and maps the package descriptions
to the conceptualisation as described in Section 4.2. The software performs the
mapping for each Familiar release. The software was implemented with perl and
it’s output is files containing the evolution models of each Familiar release that
was mapped.

The software for mapping the conceptualisation to PCML reads the evolution
models created by the component for mapping the Familiar package descriptions,
combines them and simultaneously maps them to a PCML model as described in
Section 4.3. The software searches the evolution model files for component types
and collects the different component type revisions under a single component
type. The constraints expressing which revision is effective at which part of
the effectivity period are created as the component type revisions are collected.
Identical part definitions and constraints are removed. The output from the
software is a PCML model, which can be given as input to WeCoTin. The
software was implemented with perl.

Figure 4 shows the final PCML presentation of the previously shown Familiar
package description (Figure 1 in Section 2).

The PCML model was then input into WeCoTin which translated it into
weight constraint rules. Internal inconsistencies in the model were identified and
removed. The inconsistencies come from missing or erroneous package defini-
tions, such as requirements on packages that are not in the model and inconsis-
tent requirements, where a package at the same time depends on another package
and conflicts with it. Requirements on packages that are not in the release are
an implication that the package has been ported from somewhere else, like the
main Debian Linux PC distribution, and the maintainer has not updated the
package dependencies. After the inconsistencies were removed the PCML model
was ready for use. The final PCML model file was an ASCII text file of 781
kiloBytes.

WeCoTin can semi-automatically generate a web-based user-interface for the
end user based on the PCML model, presented in Figure 5. WeCoTin provides
the possibility of defining default property sets, which in this implementation
were used to set the default component type revisions according to the current
time set by the user. WeCoTin supports the user by preventing combinations
of incompatible component types or their versions, by making sure that all the
necessary component types are included, and by deducing the consequences of
already made selections. The implementation is also capable of automatically
generating entire correct and complete configurations from the model based on
user requirements. The inference engine makes inferences on the basis of the
model in a sound and complete manner, meaning that e.g. the order in which



component type ash

subtype of concrete

property revision value type string constrained by $ in

list("0.3.7-16-fam1","0.3.7-16")

property status value type string constrained by $ in

list("stable","unstable","eol")

property refinement effectivity_start value type integer always 20010606

property refinement effectivity_end value type integer always 20020621

part ashpart

allowed types ash

cardinality 0 to 1

constraint ash_0_3_7_16_fam1_time

ashpart.ash:revision = "0.3.7-16-fam1" implies current_time > 20020514

and current_time < 20020621

constraint ash_0_3_7_16_time

ashpart.ash:revision = "0.3.7-16" implies current_time > 20010606

and current_time < 20020621

constraint ash_DEP_libc6_2_2_1_2

present(ashpart) implies present (libc6part) and

libc6part.libc6:revision >= "2.2.1-2"

Fig. 4. Example Debian Familiar Linux package description

the package descriptions appear in a model do not affect the set of correct config-
urations. The inference engine does not need to be changed if the model changes.

It took about one minute to map the individual Familiar package description
files to the conceptualisation and a similar amount of time to map the concep-
tualisation to PCML. The translation of the configuration model by WeCoTin
took 20 minutes. The removal of inconsistencies took about an hour of work,
but had to be performed only once to the package descriptions. After that the
model can be used to generate a correct Familiar configuration in seconds. No
programming is necessary at any step of the configuration process. The config-
urations generated by WeCoTin are according to our initial experiences correct
with respect to the package descriptions used in configuration and based on
manual inspection could be loaded into an iPAQ to provide a bootable working
Familiar installation.

5 Discussion and Related Work

5.1 Modelling Method

The concepts provided by PCML for configuration were used in the conceptual-
isation presented in this paper. In addition to these concepts PCML offers other



Fig. 5. WeCoTin user-interface

modelling primitives, that are not discussed here. We chose to use PCML since it
provides a means for modelling the component types and their dependencies and
there is a prototype configurator supporting PCML on top of which we could
build the implementation of the modelling method.

The method presented in this paper was sufficient for modelling the evolu-
tion and structure of Linux Familiar package descriptions over multiple releases.
However the modelling method has limitations. The separation of the versioning
in time from versioning in space performed in the conceptualisation is a sim-
plification. Ultimately, such versioning dimensions of a component type should
be represented uniformly [13, ?]. However for the prototype implementation the
limited version concept was sufficient. The modelling method supports variation,
e.g., through the use of alternative and optional parts of a component type. This
is not a optimal method for representing component type variants, but more a
way of presenting the variation in the product family structure. The relationships
between versions should perhaps be modelled with a richer set of relations.

In the mapping of the Familiar package descriptions to PCML some com-
promises were made. Versions of a package were mapped as properties of the
component type. Constraints did not have explicit effectivity periods, but were
effective throughout the model, when the effectivity should be the same as the
component type revisions’ that they refer to. The global effectivity period of con-



straints does not impact the configuration results, as they only have meaning if
the component type revisions they refer to are effective.

As the modelling method was tested on one product family, Linux Familiar,
the question of whether the modelling method is suitable to other products
is open. More example implementations are needed to verify that the model
concepts are suitable and sufficient to model evolution in different types of SPFs.

Conradi and Westfechtel [5] present an overview of existing approaches in
software configuration management for building consistent configurations of large
software products. They identify version models and the constraints for combin-
ing versions as the most important parts in configuring large software products.
Managing the complexity of the different versions of objects under SCM control
and the close ties of the configuration rule base with the version database are
seen as problems. The use of constraints for and versioning of the rule base are
seen as solutions to these problems. The approach described in this paper relies
on an object-oriented configuration modelling method that allows representing
constraints between components types to partially solve these problems.

The use of attribute value pairs [14, 6] or attribution schemes in the selection
of a configuration are used in many SCM systems [18]. By selecting attribute
sets components are included in the configuration. Feature logic can be used to
verify the correctness of a configuration based on the feature terms or attributes
[18]. The model presented in this paper contains the concept of properties for
component types, which can be used like attributes. The constraints presented
in this work can be used in selecting the component types as in SCM systems
using an attribution scheme or feature logic. In addition this work also provides
formal semantics for the model giving a more powerfull language which can be
used to generate a correct configuration.

Configuration management techniques are applied for presenting the variabil-
ity, optionality and evolution of software architecture in [19]. The tool Menage
can be used to graphically specify software architectures. The work of Menage
has been continued in Mae [20], which added an environment for architecture
based analysis and development. Their works bridges the gap between the areas
of software architecture and configuration management by introducing a system
model combining architectural and configuration management concepts in a way
which is similar to the model presented here, with the exception that our model
does not include concepts for modelling connections of components types. These
were not required for Linux configuration but may well be appropriate for other
SPF configuration problems.

Software release management is the process of making a working piece of
software available to users [21]. Software release management provides the notion
of dependency between components. The tool SRM (Software Release Manager)
[21] supports the release management process. It provides developers with a tool
to track and control dependencies between components and users with a single
source of software. The approach described in this paper differs from SRM in
that it uses formal semantics in describing the configuration model and relies on
artificial intelligence methods to generate a correct configuration. However SRM



provides installation help and hides the physical distribution of of software from
users.

The Koala component model provides a method for describing the product
configuration through components and interfaces [22]. The Koala model does not
provide a method for modelling evolution in itself, but a separate process which
handles evolution is needed. The process includes rules for making changes in
the interfaces and components. The approach in this paper provides support for
modelling evolution on the concept level rather than on the process level, giving
more freedom in choosing a development process.

5.2 Implementation

Based on the modelling method a prototype implementation of the evolution of
Linux Familiar package descriptions was presented. The implementation showed
that it is possible to model the evolution of a large software product using
product configuration techniques. The model made from four releases of Familiar
Linux can be used to configure a valid Linux environment for the HP iPAQ. Even
reconfiguration of the system over time is possible. The model provides a way
for creating a configuration containing any packages which have an effectivity
at the current time. This overcomes the problem of needing to make a clean
install when the user wishes to have packages from different Familiar releases on
her/his HP iPAQ. The model supports having packages from multiple releases in
a single configuration and the system checks that the generated configuration is
correct based on the declarative semantics of the model. These are clear benefits
compared to the current release system of Familiar Linux.

WeCoTin also support structuring the Familiar packages into categories and
provides an intuitive web interface, with intelligent support for the user, such
as graying out packages that may not be selected. None of these are possible
with the current package management tools of Familiar. However this is only a
prototype implementation and not yet capable of replacing the current package
management tools of Familiar. For example the installation tools of Familiar
have not been integrated to the current implementation.

Configuration problems are typically at least NP-complete [11]. However, it
is not clear that the worst-case exponential computation for generating a con-
figuration occurs in practise, since many physical products seem to be loosely
constrained and can be configured efficiently [11]. This same potential for ex-
pensive computation holds for WeCoTin [15] and the implementation presented
in this paper. This should be studied further by extensively testing the current
implementation as well as with other software product families.

The Debian Linux PC distribution has been successfully modelled with a
similar approach as presented in this paper [23]. Also a release of Familiar has
been modelled as a configurable software product with PCML [24]. The two
works proved that the modelling of software products with configration modelling
languages is feasible. This paper brings the addition of evolution concepts to the
configuration of SPFs.



6 Conclusions and Further Work

In this paper we proposed an approach to modelling the evolution and variability
of software product families based on viewing them as configurable products. We
presented a conceptualisation for modelling evolution of such product families
that is based on a subset of a de-facto standard ontology of product configuration.
This subset was extended with concepts for modelling evolution: revision, effec-
tivity and status. With these concepts the compositional structure and evolution
of a software product family can be modeled. We further described a first proto-
type implementation of an intelligent tool that allows modelling a configurable
software product family on the basis of the conceptualisation, and, supports
the user in interactively producing a correct configuration with respect to the
model. The implementation is based on an existing general purpose configurator
prototype and thus it is not product or application domain specific.

To show the feasibility of both the modelling method and its implementation,
we use a Debian Familiar Linux package configuration task over many releases
as an example. Preliminary results from the implementation show that the mod-
elling language can be used to model evolution of such a product family relatively
easily and that the implementation performs acceptably. However, several topics
for further research remain. It is not clear that the modelling method is appli-
cable for all software product families. In particular, the concepts for modelling
evolution were relatively simple and may need to be strengthened to incorporate
more complex semantics for example generic objects and the evolution of the en-
tire model. Furthermore, it may be that some dependencies between components
of a product family were easier to model if concepts for modelling interfaces and
connections between components were included. In addition, as the configuration
problem solving can be computationally very expensive, more thorough testing
of the efficiency of the implementation should be carried out. These issues should
be investigated by more empirical research into modelling different types of soft-
ware product families and testing the implementation more thoroughly on those
and also on the Linux distribution discussed in this paper. This would proba-
bly require and result in further developments to the conceptual foundation and
improving the usability and efficiency of the prototype implementation.

Acknowledgements

We gratefully acknowledge the financial support of Technology Development
Centre of Finland. We also thank Andreas Anderson and Juha Tiihonen for
providing the configurator used in this research and for their help in using it.

References

1. Bosch, J., Evolution and Composition of Reusable Assets in Product Line Archi-
tectures: a Case Study, Proc. 1.st Working IFIP Conf. on SW Architecture, (1999)



2. Clements, P., Northrop, L., Software Product Lines: Practices and Patterns,
Addison-Wesley, (2001)

3. Svahnberg, M., Bosch, J., Evolution in Software Product Lines: Two Cases, Journal
of Software Maintenance - Research and Practise 11(6), (1999) 391–422

4. Estublier, J., Software Configuration Management: A Roadmap, ICSE - Future of
SE Track, Ireland,(2000) 279–289

5. Conradi, R., Westfechtel, B., Configuring Versioned Software Products, in: ICSE’96,
Proc., LNCS, Vol. 1167, Springer, (1996) 88–109

6. Belkhatir, N., Cunin, P.Y., Lestideau V., Sali, H., An OO framework for Configu-
ration of Deployable Large Component based Software Products, OOPSLA 2001

7. Soininen, T., An Approach to Knowledge Representation and Reasoning for Product
Configuration Tasks, PhD thesis, Acta Polytechnical Scandinavica, No. 111, (2000)

8. Faltings B, Freuder EC, editors., Special Issue on Configuration. IEEE intelligent
systems & their applications; 13(4), (1998) 29–85

9. Darr T, McGuinness D, Klein M, editors., Special Issue on Configuration Design.
AI EDAM; 12(4), (1998)

10. Soininen, T., Tiihonen, J., Männistö, M., Sulonen, R., Towards a General Ontology
of Configuration, AI EDAM 12(4), (1998) 357–372

11. Tiihonen, J., Soininen, T., Niemelä, I., Sulonen, R., Empirical Testing of a Weight
Constraint Rule Based Configurator, ECAI 2002 Configuration Workshop, (2002)

12. Hicks, J., Nelson, R., Familiar v0.6 Installation Instructions
http://handhelds.org/familiar/releases/v0.6/install/install.html

13. Männistö, T., Soininen, T. and Sulonen, R., Product Configuration View to Soft-
ware Product Families, SCM-10 held at ICSE 2001, Canada, (2001)

14. Mahler, A., Lampen, A., An integrated toolset for engineering software configura-
tions, SIGPLAN Software Engineering Notes, 13(5), USA, (1988)

15. Soininen, T., Niemelä, I., Tiihonen, J., Sulonen, R., Representing Configuration
Knowledge With Weight Constraint Rules, AAAI Spring 2001 Symposium, USA,
(2001)

16. Simons, P., Niemelä, I., and Soininen, T., Extending and implementing the stable
model semantics, Artificial Intelligence, 138(1-2), (2002) 181-234

17. Männistö, T., A Conceptual modelling Approach to Product Families and their
Evolution, PhD thesis, Acta Polytechnical Scandinavica, No. 106, (2000)

18. Zeller, A., Configuration Management with Version Sets, PhD thesis, Technical
University of Braunschweig, (1997)

19. van der Hoek, A., Heimbigner, D., Wolf, A.L., Capturing Architectural Configura-
bility: Variants, Options and Evolution, CU-CS-895-99, Univ of Colorado, (1999)

20. van der Hoek, A., Mikic-Rakic, M., Roshandel, R., Medvidovic, N., Taming Archi-
tectural Evolution, ESEC/FSE 2001, (2001) 1–10

21. van der Hoek, A., Hall, R., S., Heimbigner, D., Wolf, A., L., Software Release
Management, ESEC/FSE 1997, (1997) 159–175

22. van Ommering, R., van der Linden, F., Kramer, J., Magee, J., The Koala Compo-
nent Model for Consumer Electronics Software, IEEE Computer 33(3), (2000)

23. Syrjänen, T., A rule-based formal model for software configuration, Master’s thesis,
Helsinki University of Technology, (2000)

24. Ylinen, K., Männistö, T. and Soininen, T., Configuring Software with Traditional
Methods - Case Linux Familiar, ECAI 2002 Configuration Workshop, (2002)


