A Case Study of Two Configurable Software
Product Families

Mikko Raatikainen, Timo Soininen, Tomi Mannistd, and Antti Mattila

Software Business and Engineering Institute (SoberIT)
Helsinki University of Technology
P.O. Box 9600, FIN-02015 HUT, Finland

{Mikko.Raatikainen, Timo.Soininen, Tomi.Mannisto, Antti.Mattila}@hut.fi

Abstract. A configurable software product family allows the deploy-
ment of individual products without customer-specific design or pro-
gramming effort. Despite the fact that such software product families
have recently gained research interest, there are only few empirical stud-
ies on them. This paper presents some results of a descriptive case study
undertaken in two companies that develop and deploy configurable soft-
ware product families. The similarities found in comparisons between
characteristics of the configurable software product families were remark-
able, although the companies, products, and application domains were
different. The study shows that the configurable software product family
approach is already applied in the industry. Furthermore, the approach
seems to be a feasible and even efficient way to systematically develop a
family of products and manage the variability within it.

1 Introduction

The software product family approach aims at producing a set of products that
are developed on a basis of a common software product family architecture and
a set of shared assets [1]. The shared assets and the software product family
architecture are developed for reuse in a development process and reused to
build products in a prescribed way in a deployment process [2], [3]. One class
of such software product families is the configurable product base [4], for which
we use the term configurable software product family (CSPF), meaning that at
least a significant part of deployment is performedby configuring, for example,
by setting parameter values or by selecting components or modules without
programming,.

The CSPF approach is considered in [4] the most systematic software prod-
uct family approach and is appealing because it seems to promise an efficient
and systematic deployment of products. However, there are only a few reported
empirical research results on the nature and benefits of the CSPF approach,
the established methods and practices for such an approach, and the problems
encountered when applying the approach.

We have carried out a descriptive case study in five Finnish companies in
order to characterize the state of the software product family approach in prac-
tice [5]. In the study, we found two companies that apply the CSPF approach. In

this paper, we describe how the two companies apply the CSPF approach from
the points of view of the characteristics of, the adoption of, the variability within,
the deployment process of, and the configuration-tool support for a CSPF, as
well as the after-sales and maintenance of products deployed from the CSPF.
The results indicate that the CSPF approach is applicable in the industry. There
were remarkable similarities between the companies, although the CSPFs were
developed independently from each other, and for different application domains.

The rest of the paper is organized as follows. In Section 2, we present the
research method. In Section 3, the characteristics of the companies and their
CSPFs are described, while in Section 4, they are compared with each other. In
Section 5, the results are discussed particularly in the light of the characteristics
of the CSPF approach and the factors influencing its feasibility. Section 6 pro-
vides a comparison of the results to related work, while, in Section 7, the validity
and reliability of the results are discussed. Finally, Section 8 draws conclusions
and presents some ideas for future work

2 Research Method

The research design was a descriptive case study [5] undertaken in a number
of companies. The objectives of the study were to characterize the state of the
software product family approach in Finnish industry in practice. For the study,
we looked for companies that potentially had a software product family.

To form an initial theory for the study, i.e., to gain a preliminary under-
standing of the software product family approach, we conducted a literature
study of previous research results. Before starting the interviews, we developed
a set of mostly open-ended and qualitative interview questions. The structure of
the interviews was broken down into business, artifact, process, and organiza-
tional (BAPO) concerns, similar to the one described in [6], but we replaced the
word ’architecture’ with the word ’artifact’ in order to emphasize that the term
referred to several kinds of assets in addition to only software architecture. The
BAPO analysis framework was used for triangulation purposes in order to find
out different points of views on the software product family approach.

Data was collected in an interview and additional documentation analysis in
each company at the turn of the year 2002, in a validation session a few months
later, and through enabling the responders to read and comment on the reports
we had written, including this paper.

In Company A, we interviewed a product manager, who was present when
interviewing on business and process issues for about two hours, the manager
of the deployment process, who was present for about half an hour when inter-
viewing on deployment process issues, and a software engineer responsible for
developing the CSPF, who was present for about two hours during the interview
on artifact-specific issues. In addition, the chief architect was present all the
time.

In Company B, we conducted the interview in two sessions. In the first ses-
sion, we interviewed the architect about the business issues for a half an hour,

the quality manager about the primary development process and organizational
issues for one hour, and finally the architect, again together with a software
engineer, about artifact-specific issues for two and a half hours. In the second
session, we interviewed a business area manager about business issues and the
deployment process for two hours.

In the interviews, we skipped some questions that seemed unimportant for the
particular company, changed wordings and the order of the questions, and asked
additional clarificatory questions, questions that deepened the topic under dis-
cussion and summarized comments into question format to generalize responses
and enable the responders to correct our misinterpretations and misunderstand-
ings. We tape-recorded the interviews and took notes, and later transcribed the
interviews.

A few months later, we held an about 3-hour validation session in each com-
pany. In these sessions, we presented our findings to the company and asked
questions to clarify issues that had remained unclear. We tape-recorded valida-
tion sessions.

We analyzed data from each company, first separately, and then across cases [7].
The analysis was based on a discussion of the impressions of researchers who were
present at the interviews, as well as on the recordings, received documentation,
written notes and transcripts of the interviews. The notes from the validation
session were added afterwards. In the analysis, we used ATLAS.ti [8], which is
an application designed for qualitative data analysis. The results of the analysis
were validated in the validation sessions and by enabling the responders to read
this report. For further details on the research method, see [9].

3 Companies

In this section, the characteristics of the companies are described first in Sec-
tion 3.1 and their CSPF are illustrated in more depth in terms of the charac-
teristics of the CSPF - variability, deployment, configurator, and after-sales and
maintenance - in the following two sections.

3.1 The Companies

In Table 1, the major characteristics of each company and its products are
given. The application domain refers to the application domain for which the
CSPF is developed. In fact, Company A also operates and develops products
for other closely related domains, although the focus is on the CSPF, whereas
Company B operates only in the medical information management domain and
does not develop products other than the CSPF. The number of employees and
software engineers is the total number of people working within the companies.
In Company A, several of the employees also work with other products, but
most of the time they work with the CSPF studied; this is especially true of the
software engineers. The type of CSPF refers to the kind of product the CSPF is.
The operating environment of the CSPF is the software platform that a delivered

product based on the CSPF installs and operates when in use. Total size of code
in the CSPF means the total number of lines of code that is associated with
shared assets in the CSPF; each delivery contains all or part of the assets and,
in addition, a possible small amount of product specific code. The programming
language refers to the programming languages that the companies have used in
developing the CSPF.

Table 1. Characteristics of the companies

Company A Company B
Application domain Factory automation Medical information
management
Employees 200 130
Software engineers 25 35
Type of CSPF Software augments Software product
electronics and mechanics
Operating environment PC, MS Windows PC, MS Windows
Total size of code 0.5 MLOC Over 1 MLOC
Programming language Visual basic, C++ C++

3.2 Company A

General Characteristics Company A produces factory automation products.
The company delivers about 50 products a year and assumes the number of
annual deliveries stays relatively stable in the long term. The product is an
investment good that is used for years or even decades. The company has decades
of experience in the application domain as it has developed products for the same
domain.

Before the CSPF approach, similar products were delivered in projects for
each customer separately and each project used the source code and other deliv-
erables of earlier projects non-systematically copy-pasting as a basis for a new
delivery. In the mid 1990’s, Company A realized the opportunity to improve the
effectiveness of the deliveries by systemizing the reuse of common parts between
the projects; following this through, they ended up developing the CSPF. An-
other objective during the initiation of the CSPF approach was to systemize
variability to a generic configurable product that enabled efficient deployment.
At the time of the initiation, Company A had some experience of developing a
software product family because a similar approach had been applied to other
products in the application domain as well.

A delivered product based on the CSPF is integrated to work with existing
systems in the customer-environment, intermediating between, managing, and
cooperating with the systems. Depending on the customer’s order, a product

includes a varying amount of features so that some tasks in the factory can be
performed automatically using the system. A delivery includes mechanical and
electronic systems that are controlled by software derived from the CSPF. The
application domain of the CSPF is well understood and relatively stable. The
interfaces in the application domain are relatively stable and to some extent
standardized.

The employees in the software development department (Figure 1) have roles
according to the domain engineering model [1] in which the work is divided be-
tween those developing the software product family and those doing the deploy-
ment projects. According to the responders, a few employees work in both roles.
Both developers and deployers are all located close to each other in the same
office premises.

; : ' A company studied

|:| An organizational unit

Developers
- N

¢ _ . Deployers

Fig. 1. Software development organization in Company A

The responders estimated that Company A has been able to double the num-
ber of product deliveries in a year with roughly the same number of employees as
a result of adopting the CSPF approach. Furthermore, the CSPF approach was
seen as the only reasonable way to develop products. They even went as far as
to state that the CSPF approach is the only reasonable way to do the business,
despite the initial investment that was needed for building the CPSF. However,
the company had not done a more precise analysis of, for example, the return
on the investment of the CSPF.

Variability Variability in the CSPF is achieved by configuring and tailoring.
For Company A, configuring means setting parameter values without developing
or modifying the source code. Tailoring, on the other hand, involves modifications
that require developing new source code or modifying the existing source code.

The company divided configurable variability into wertical and horizontal
variability. Vertical variability concerns the existence of major functions, which
are large entities adding significant functionality to a product. In total, a prod-
uct can contain about a dozen major functions that can enable some tasks in
the factory to be performed automatically using the system. Horizontal vari-
ability typically involves adapting products to the customer-environment and
preferences ranging from system-level features, such as the type of alarm when

something goes wrong in the factory, to detailed issues, such as the numeric
values specifying the length and width dimensions of the physical environment.

Vertical variability (Figure 2) is organized into five stacks, each containing
a few major functions and a base that contains major functions common to
all products. A customer can select the major functions needed for her purposes
from the stack, while the base is included in all products. The order of the major
functions in the stacks specifies how a selection can be done: The functions are
selected such that all functions from the lowest to the desired level in the same
stack have to be selected, although there may not be holes in the stack, resulting
in one function not being selected, while a function above it is selected.

Stack 1 Stack 2 Stack 3
major major major
function1.3 function2.3 function3.3
. major major major
Ver_tlce_al_ function1.2 ‘ function2.2 ‘ ‘ function3.2 ‘
variability - - -
major major major
function1.1 ‘ function2.1 ‘ ‘ function3.1 ‘
The base

Fig. 2. The vertical variability stacks in Company A. The actual number of major
functions is not exactly the same in the figure as in the CSPF studied

Tailoring typically involves introducing new interfaces to exchange data with,
or report data to, another system; it rarely adds new features or modifies the
existing features. Typically, tailoring is accomplished by adding new modules to
the CSPF. Therefore, even if a product is tailored, the product is, and has to
be, configured, as the configuring affects the parts of the product that are not
changed in tailoring.

All deployed products are, in practice, based on the same source code. Pa-
rameter values specify what parts of the code are executed and which of the
major functions or features are enabled.

The responders pointed out that there is a risk that customers might re-
quire more tailoring, beyond the scope achievable by configuring, and that this
might lead to large scale changes to the CSPF that may, in turn, lead to further
problems in the maintenance of the CSPF. However, such a problem had not
occurred so far.

Deployment In a deployment process (Figure 3), a product is first tailored
if necessary, after that, auxiliary software and the product are installed on a
PC. After the product is installed, it is configured by changing parameter values
using a specific configuration tool. The product is tested with its mechanical and
electronic systems integrated in order to ensure that it works as required; finally,
it is shipped to the customer.

The CSPF (Tailoring) Configuring and shipping to
a customer

[
I [D O O

18 L X

Legend:

L An asset developed in tailoring
|:] A major function

Configuration database

Fig. 3. Deployment process in Company A. The number of major functions in the
figure is not exactly the same as in the actual CSPF

The parameter values are initially set to default values. The responders es-
timated that the number of parameter values set in a deployment is typically
about 200, although, as a minimum, the number may be closer to 100. A check-
list that contains guidelines as to which parameter values have to be checked
in configuring is used to ensure that all necessary parameter values are checked
and set.

Tailoring is performed in addition to configuring in the case of only ap-
proximately 30% of the delivered products. Tailoring is usually very simple and
routine and takes from a few days to a few weeks for two software engineers.

The responders stated that an employee who has experience on deploying
products based on the CSPF sets most parameter values correctly in deploy-
ment and the dependencies between parameter values, for example, are clear
to her from the context. Configuring needs primarily deep application domain
knowledge, but hardly any software engineering knowledge. In fact, the employ-
ees who deploy products have their background in automation, not in software
engineering. The responders estimated that a new employee needs at least three
months of experience in the application domain and with the CSPF before she
has a good enough understanding to be able to configure the system correctly
by herself.

Deployment takes roughly one person-day, half of which is spent on con-
figuring. Even with tailoring, the software part of the delivery typically takes
such a short time that software development is not a bottleneck in the total
process, which also includes mechanical and electronic manufacturing processes.
The total process takes from weeks to a few months.

Configurator The configurator is a software application that Company A has
developed for configuring. The configurator is used to resolve horizontal and

vertical variability by setting and storing the parameter values in a configuration
database. The configurator has a graphical user interface.

The configurator is developed for a particular CSPF and is not usable in
any other CSPF without reprogramming; this is because it includes parts that
were specific to the CSPF such a configuration database scheme and checks to
ensure that parameter values were set correctly according to rules that were
embedded into the configurator. The configurator checked the correctness of
some parameter values and their combinations but only for a small subset. Thus,
the checks that the configurator carries out do cover the correctness of some, but
not all, parameter values and therefore it is possible to specify a non-working
product using the configurator. A configuration explanation, which is a textual
description in natural language, is attached to each parameter to describe, for
example, what kind of effect the parameter has on the product, what the possible
parameter values are and what the parameter values mean. The user interface
for setting parameter values is developed using typical graphical user interface
components such as text fields, combo-boxes and radio buttons.

Configuring in the configurator is done by setting optional values, selecting
alternatives from a set of alternatives, or specifying numeric values. To enable
an optional parameter value means that, for example, some feature exists in a
product. For alternative parameter values, there are typically about five possible
values; selecting an alternative means, for example, selecting one of a set of
similar features for use. For numbers, there is a field where a value, such as
an integer, has to be entered and an allowed range for the number. A numeric
parameter can, for example, specify the physical length and width dimensions
of the physical environment of the facility where the product is located.

After-sales and maintenance The typical customer buys a product and then
uses it without changes for years. Updates to newer main versions of the CSPF
are made in some cases, but it is relatively rare. In fact, Company A does not see
selling new features to old customers as a viable business model. A more typical
product update for customers is made if a serious bug is noticed in the CSPF
and the update includes a fix for the bug. Updating, either to a newer version or
as a bug fix, is easy if a product is not tailored, because in that case all customers
have the same code. Company A does not guarantee that it is possible to update
a tailored product, at least not with as low a price as non-tailored ones. However,
tailoring typically does not change a product to such an extent that it could not
be easily updated if necessary. Nevertheless, by requiring tailoring, a customer
may complicate updating her software.

A product can also be reconfigured later. Reconfiguring means that a pa-
rameter value is set to a different value, when, for example, something in the
customer-environment changes. However, reconfiguring is only rarely carried out.
Customers could, in principle, reconfigure the product by themselves, but the
configurator is password-protected. Company A, does not give access to the
customer, probably for both business and technical reasons, such as wishing to

earn money from reconfiguring and wishing to prevent customers configuring a
product improperly.

3.3 Company B

General Characteristics A system delivered by Company B consists of several
products for the medical domain. Dozens of systems are sold each year and each
customer is typically sold several similar systems. The customers use the systems
for years. Company B was founded in the early 1990’s for emerging markets, and
expects these markets to continue to grow.

The CSPF was developed from scratch when the company was founded in
the early 1990’s. From the very beginning, Company B had as an objective the
development of a generic configurable system that is deployable efficiently and
without source-code modification. Since its initial development, the CSPF has
been further developed and new features have been added.

A delivered system based on the CSPF presents, monitors, produces, an-
alyzes, and stores data regarding customer business processes that are safety-
critical. The functionality of each product that consists of a system is different
and focuses on different aspects of the application domain. The products com-
plement each other such that one, for example, performs analysis for data, one
combines data from multiple sources, and one stores data. The products in a
system share data, data models, architectural principles, and some other minor
assets. The system has interfaces to other systems in the customer-environment,
enabling it to exchange data with them. It is also possible to customize the
kind of data handled and how is it presented in the system. The application
domain is relatively young, but nonetheless quite stable, standardized, and even
governmentally regulated.

The organizational structure in Company B (Figure 4) follows the domain
engineering model [1]. The CSPF is developed in a development organizational
unit, while separate deployment organizational units and partner companies de-
ploy systems. Furthermore, the CSPF development organization is in a single
location, whereas the deployment organizations are located in several locations
and countries and separated geographically from each other and from the devel-
opment unit.

Company B has never applied another approach to develop software, and
therefore there is no analysis of, for example, the benefits of the CSPF approach
compared with some other software development approach. Nevertheless, the
responders reported that they saw the CSPF approach as the best way to develop
the products in Company B.

Variability A system delivered on the basis of the CSPF is only varied by
configuring, that is, without developing or modifying the source code. The con-
figurable variability in the CSPF can be broken down into high-level and low-
level variability. In addition, separate products or components that complement
the system, but which are separate and not included in the system, might be
developed by a deployment organization in a deployment project.

i ' 1. _.i Acompany studied
: |:| An organizational unit
.- ' - - . o Developers

- N
S S —— ~—-"11 t__ Deployers

Fig. 4. Software development organization in Company B

At the high level, variability pertains to selecting a particular set of products
for a system. In principle, a customer can select any subset of about ten products,
but, in practice, combinations are not arbitrary because one of the products
forms a basis for the others and is always included in a system. Only the selected
products of a system are delivered and installed for a customer.

At the low level, variability pertains to adapting a system to the customer-
environment by configuring. Configuring sets parameter values that influence,
for example, the kind of external devices a system interacts with, as well as the
kind of data and the form in which the data is presented.

The source code in the CSPF is practically never changed for a single cus-
tomer. If assets in the CSPF have to be changed in such a way that the source
code is modified according to a single customer’s requirements, then the modifi-
cations are immediately put into use for all other customers, as well as for part of
the CSPF. Thus there is no customer-specific code, but the CSPF may be further
developed to meet customer requirements. However, deployment organizations
may develop additional components or products on their own to complement the
CSPF. The degree of separation between the development and deployment or-
ganizations is such that the development organization does not even necessarily
know about the additional components or products implemented by the deploy-
ment organization and the deployment organization does not have access to the
source code. These components or products, for example, export data, perform
some special data handling or wrap an interface in order to be compatible with
the existing customer-environment. Therefore, development that resembles tai-
loring takes place occasionally in deployment projects, even though the CSPF
itself is not tailored.

The responders estimated that 30% of CSPF development effort is put into
developing configurability. If the CSPF were not to meet customer requirements,
the possible effort wasted on developing configurability and the fixed and labo-
riously changeable scope of the CSPF due to not allowing source code modifica-
tion, and thus being inflexible compared to competitors, were perceived by the
responders as the greatest threats for the success of the CSPF.

Deployment Deployment (Figure 5) begins with selecting a set of products
for a system. Then the system is shipped to a customer and installed with

auxiliary software. Finally, the system is configured using a configurator tool.
A deployment project typically deploys several similar systems for the same
customer.

The CSPF Selecting products Installing and
and shipping to configuring
a customer

Legend

L ._.1 Asystem

|:| A product

Configuration files

Fig. 5. Deployment process in Company B. The number of products in the figure does
not correspond to the actual CSPF.

The company has developed a default configuration in which the parameter
values are set to default values in order to avoid the need to set all parameter
values from scratch. Despite the default configuration, in order to specify the
correct, configuration for each customer, hundreds or even thousands parameter
values still need to be set.

Developing additional components or products in a way that resembles tailor-
ing as noted earlier is not, strictly speaking, included in the deployment project,
but they are developed in a separate project.

Finding a correct configuration relies on application domain knowledge and
testing the configuration. Deployment projects include application domain ex-
perts and experts with computers, such as system administrators, but not nec-
essarily software engineers who develop software.

A deployment project takes from a few days to a few weeks for two experts
and often includes not only installing and configuring a system but also set-
ting up, or at least making modifications to, customer infrastructure, including,
for example, PCs and network. Deployment is completed at the customer site.
System deployment is straightforward, whereas finding out the customer require-
ments takes more time. In fact, finding out customer requirements, specifying the
environment, and training users may extend the total project duration, including
deployment, by up to several months.

Configurator One of the products in the CSPF is an in-house developed con-
figurator that is a tool with a graphical user interface developed for configuring a
system. The configurator is used to configure the low-level variability by setting
and storing the parameter values in configuration files.

There are a few checks to ensure that parameter values are set correctly,
but the configurator does not check that all parameter values are set correctly.
The configurator is not usable without modifications in other CSPFs because
it is developed for a particular CSPF, including its CSPF-specific configuration
checks, for example. A more in-depth configurator is described in a manual of
over 300 pages.

After-sales and maintenance Company B considers updates as a business op-
portunity and, in practice, requires a maintenance contract from every customer.
Whenever a new version of the CSPF is released, it is delivered to customers
who have the update contract. Because the CSPF itself is never tailored, the
customers have the same source code, so updating is relatively easy.

A system can be reconfigured, which means setting parameter values to dif-
ferent values in order to readapt a system to a changed environment, for example.
The set of products included in the system cannot be changed by reconfiguring.
Reconfiguring primarily requires an understanding of the application domain
and of how the system works, not software engineering skills. Even end users
can use the configurator to reconfigure the system; reconfiguring is therefore
common.

4 Comparison

In this section, we compare the characteristics of the CSPFs studied. A summary
of the comparison is presented in Table 2.

4.1 Similarities

Similarities between the CSPF approaches studied were striking, despite the
differences between the companies, products, and application domains. Both
companies saw that their business was to deliver adaptable software rapidly to
their customers, and according to customer requirements.

Both companies have applied the CSPF approach for about a decade and
the success of the CSPF approach have forced them to make compromises that
were also perceived as threats; these included, for example, fixing the scope of
the CSPF, relaxing the demand for new features and fulfilling every customer-
specific requirement that needs code modifications. However, the responders in
both companies saw that the conscious decision to develop a CSPF was advan-
tageous, despite this meaning that some of the flexibility in satisfying customer
requirements compared with modifying the source code would be lost. Neverthe-
less, neither of the companies had any quantitative data to support the benefits
of the CSPF approach.

Table 2. Comparison of the characteristics of the CSPFs

Company A Company B

Adopting Evolutionary, old products Revolutionary, new SPF

CSPF

Organization Roles according to domain engi- Units according to domain engi-
neering model in the same premises neering model and separated geo-

graphically
Deliveries 50 Dozens
Deployment Tailoring, installing, configuring, Selecting products, shipping, in-
process shipping stalling, configuring

Configuring About 10 major functions, hun- About 10 products, thousands pa-
dreds parameter values in adapting rameter values in adapting to envi-

to environment ronment
Tailoring 30% of deployments Not allowed, additional products
Delivered Everything Only code for the selected products

code

Configurator In-house developed, GUI, modify In-house developed, GUI, modify
parameter values, not general pur- parameter values, not general pur-
pose. Configuration rules embedded pose. Configuration rules embedded
in the configurator, don’t check en- in the configurator, don’t check en-

tire validity of a configuration tire validity of a configuration
Parameter In a database In configuration files
values
Configuring Company A itself Deployment organizations of Com-

pany B, partners, customers
Knowledge Application domain knowledge, no Application domain knowledge, no
needed for software engineering skills required software engineering skills needed
configuring
Reconfiguring Rare, Company A reconfigures Typical, customers can reconfigure
Updates Rare Update contract for new versions
nearly always

Both companies were roughly the same size and had a similar organizational
structure, which followed the domain engineering model. The operating environ-
ments of both the CSPFs were PCs running the Microsoft Windows operating
system. The number of annual deliveries was roughly the same, i.e., a few dozens.

The application domain and interfaces with the environment were relatively
stable in both CSPFs. Fundamental properties of the products did not change
rapidly and application domain experts employed with the companies were able
to predict variability reasonably well and communicate it to software engineers.

The deployment project in both companies took a relatively short time for
the software, when considering the size of the delivered code and the fact that it
always included as an essential part the configuring that was carried out without
modifying the existing source code, or developing a new one. In fact, the time

taken by configuring was quite short compared with, for example, hardware
manufacturing, training, the sales process, and requirements specification.

Deployment was conducted in both companies by first selecting about ten
large functional entities: In Company A, the entities were the configurable major
functions in the stacks for a product, and in Company B, the entities were the
products for a system. Second, in both companies, a product was configured
to adapt to the customer-environment by setting numerous parameters using
a configurator. The parameter values were separated from the source code and
were initially set to default values in both CSPFs.

Neither of the companies typically changed the source code during deploy-
ment, for example, in programming, compiling or linking time, but configuring
was performed on the executable code by setting parameter values.

For configuring, both companies had, in principle, a very similar configurator.
The configurators were developed in-house and had a graphical user interface.
The configurators were developed for the particular CSPF and could not be used
in any other CSPF without modifications.

The configurators were easy to use and provided guidance for the user, who
primarily needed an understanding of the target environment and application
domain, but no more than basic software engineering skills. In configuring, the
configurators modified the parameter values, but did not guarantee that all pa-
rameter values were set correctly; configuration rules to check the correctness of
parameter values were embedded in the configurators in both CSPFs.

In both companies, their use of the configurators during deployment relied
heavily on the user’s experience in the application domain and on testing the
configuration, as it was possible that parameter values were set incorrectly.

Finally, in both companies, deployed products or systems could be reconfig-
ured in the customer’s environment using the configurator.

4.2 Differences

The main differences between the CSPFs studied seemed in many cases to lie
in the different decisions made with regard to equally feasible choices. In fact,
when we explicitly asked about these differences, the responders told us that
they could have decided in a way similar to the other company.

The CSPF adoption strategy was probably the most notable difference. Com-
pany A followed the evolutionary strategy for old products [1], whereas Com-
pany B followed the revolutionary strategy for a new product family [1].

Company A expected its markets to be relatively stable, whereas Company B
expected the markets to have a large growth potential.

Although the organization model in both companies was similar, in Com-
pany A, deployers and developers were separated by role level, whereas, in Com-
pany B, they were separated into different organizational units and geographi-
cally.

Company A had explicitly defined how major functions for a product can
be selected. Company B allowed, in principle, an arbitrary selection of products
for a system, but, in practice, one of the products was always selected in a way

similar to the base in Company A. In Company A, all customers received all the
code of the CSPF, while the parameter values determined whether a piece of
code was to be executed, whereas, in Company B, only the code of the installed
products was shipped to a customer.

In Company A, a database was used, while, in Company B, configuration
files were used to store the parameter values.

Unlike Company B, Company A allowed tailoring. However, even in the case
of Company A, tailoring took place typically on the interfaces, while the basic
functionality of a product remained untouched. Furthermore, most deployment
projects in Company A were completed without tailoring. In the case of Company
B, new products or components, in addition to a deployed system, could be
developed in addition to the system. However, in fact, customers typically got
the same code and parameter values specified by the configuration in both cases.

Configuring in Company A took only half a day, whereas in Company B
it typically took from a few days to a few weeks longer. Nevertheless, in both
companies, understanding the application domain and the customer-environment
was more challenging than configuring.

Company A configured the products itself, whereas Company B or its part-
ners did an initial configuration and customers were able to reconfigure systems
later. The reason for this difference was a business decision based on the charac-
teristics of the application domain and business model, not on technical grounds.
For similar practical reasons, Company A configured the products at its own fa-
cilities, whereas, in Company B, systems were configured at the customer’s site.

After-sales and maintenance strategies were completely different. Company A
did not allow a customer to reconfigure a product and did not see updates
or reconfiguring as a core business. Company B allowed reconfiguring and saw
updating and maintaining the systems as a business strategy.

5 Discussion

5.1 Characteristics of the CSPF Approach

The results in this study show that the CSPF approach is, in practice, applied in
the industry. To the best of our knowledge, the companies had developed their
CSPFs independently of each other. Since the companies operate in very different
application domains, their successful use of the CSPF approach is probably not
tied to a specific application domain but a similar approach can be applied in
other application domains as well.

The responders in both companies indicated that the CSPF approach pro-
vided a competitive advantage compared with competitors who modify and de-
velop the source code in deployment projects. For both companies, the CSPF
approach seemed an efficient way to systemize the software development and
enable an efficient control of versions and variants in a set of systems. They
even went as far as to state that the CSPF approach is the only reasonable way
to do business, regardless of the initial investment needed to build the CPSF.

However, neither of the companies had estimates of investment payback times or
other economic justifications when compared with, for example, project-based
software development.

An intuitively appealing opportunity in the CSPF approach is the kind of
reconfiguring that allows variability-binding operation time, in which binding is
not fixed in the sense that the selected parameter value can be changed, as is
noted to be a tendency in [10]. The CSPF approach enabled the companies to
delay variability binding to installation and even operation time. Nevertheless,
reconfiguring was effectively taken advantage of only in Company B.

What clearly differentiated the CSPF approach from the other software prod-
uct family approaches in the three other companies in the case study was that
the configurators were one of the key enablers for very efficient deployment. The
fact that two companies had developed a tool for configuration on their own
exemplifies the feasibility of developing and using configurators. Furthermore, in
the companies, configurators seemed to be essential enablers for a large number
of different parameters values that customize software for customers. These pa-
rameter values were set correctly even though the configurators did not check all
aspects of the correctness of configuration, because the people using them were
experts in the application domain and tested the system after configuring. In
fact, by using the configurators, the companies were able to deploy products in
such a way that, in practice, there is no software engineering knowledge needed.

Both companies had parameterized variability and separated parameter val-
ues from the source code to the configuration files in Company A and to the
configuration database in Company B. Another approach could be to change
the source code, for example, or compile time parameters, but if configuring
is performed to non-executable code it would, in fact, probably not allow re-
configuration as flexibly as in the case of Company B. Furthermore, in both
companies, because separate storage for parameter values is used, configuration
is independent from implementation in the sense that software can be changed
to another improved version, which does not include many new features, and the
configuration and software remain operational even after the change.

5.2 Applicability of the CSPF approach

In the two companies studied, there seemed to be several factors that had a
positive influence on the success of the CSPF approach. However, due to the
relatively small sample size and lack of more detailed data obtained by, for
example, observing the operations in the companies in more depth, rigorous
analysis of the influence they had is not possible. The following discussion should
therefore be treated as speculative in nature and the issues therein as hypotheses
to be tested.

The number of deliveries that was large enough to make the CSPF approach
feasible for these companies in these application domains is probably a necessary
but not sufficient prerequisite for the CSPF approach to be economically feasible;
this is because of the investment required for developing the configurator and
configurability.

Application domain understanding was emphasized often in both compa-
nies: Developing configurability and configuring seem to be especially reliant on
knowledge of the application domain.

It also seems that the application domain and interfaces to the environment
should be as near stable as possible so there are no frequent changes to the
fundamentals and so the new variability can be predicted reasonably well.

A clear separation of development and deployment organizationally, at least
in roles, seemed to be beneficial, even in small organizations. In both companies,
parameter values separated from the source code seemed to be a feasible way to
achieve variability.

We did not find any special relationship between special software engineering
skills, such as those specific to product family development and very advanced
process models, methods, modelling and implementation tools, the CSPF ap-
proach adopting strategy, or application domain or company maturity at the
time of the initiation of the CSPF approach and the success of the CSPF ap-
proach. In fact, it seemed that most of the software developers had their work
and educational background in the application domain rather than in software
engineering. Neither of the companies had developed a large repository or li-
brary of assets from which an applicable asset could be selected, but all assets
that existed were included in the CSPF, and parameters were used to achieve
variability. To develop the CSPFs, the companies did not use any special prod-
uct family oriented tools or methods but, rather, state-of-the-practice tools and
methods that probably could be found in any other company such as Microsoft
Visio, Word, and IDE, and UML for modeling.

The possible drawbacks of the CSPF approach seemed to pertain mainly to
the evolution of the CSPF. Evolution was seen as especially unpromising as far
as the ability to meet customer requirements by configuring was concerned. If the
configuring was not enough to meet customer requirements, the need for tailoring
would increase. Alternatively, in the worst case, the scope of the CSPF would
not be right and configuring would be useless, meaning that the considerable
effort put into developing the CSPF would be wasted. The respondents felt
that evolving software seems to be hard to manage and that keeping software
configurable even increased the burden.

6 Related Work

There are some empirical studies on companies that exhibit a great deal of vari-
ability and are at least on the threshold of developing a CSPF, for example,
CelsiusTech [11] and MarketMaker [3]. These companies have not systemized
their SPF approach or developed configurators to the extent that the companies
in this study have. However, because changing dozens of lines in configuration
files is "burdensome, error-prone, and annoying", a need for a tool that sets
parameter values was identified in MarketMaker. Apparently, a similar config-
urator as that developed by the companies in this study would be the kind of
tool MarketMaker is hoping to have, although does not necessarily need. In ad-

dition, Securitas had developed a configuration tool Win512 [1], but there are
not enough details available for detailed comparison.

Component-based software engineering [12] focuses on components, their
composition and integration, while in the generative approach [13], products
are constructed automatically on the basis of a precise specification; both these
approaches are comparable to the CSPF approach. In fact, it seems both these
could be used to develop a CSPF. However, the companies studied used neither
the component based nor generative approach. When comparing the approaches,
a drawback of the generative approach may be that it does not allow as much flex-
ibly as the reconfiguring in the companies studied; this is because it requires the
generation of the code again, and updating software, because not all customers
have the same code. In the case of the component-based approach, it seems that
components need to be parameterized in order to achieve similar customization,
as in the companies studied in setting parameter values; the result of this might
be a need for a configurator similar to that used in the companies in this study.

Linux Familiar, which is a Linux distribution for PDA devices, has been
successfully modeled using a logic-based product configurator [14]. Futhermore,
configuring in Linux is based on selecting components, while the companies in
this study used almost only parameter values for this purpose.

BigLever [15] uses an approach that is similar to the CSPF approach and
has developed a tool for deploying products. However, the lack of details of the
aspects described in this paper makes detailed comparison difficult.

Configurable product families, or configurable products have also been stud-
ied in the field of mechanical and electronic products [16] and there are some
initiatives to combine the results with software engineering [17], [18], [19].

7 Validity and Reliability

Case study as a qualitative method forces us to delve into the complexity of the
problem as a whole, rather than to abstract it away [7]. Therefore, the quality
of qualitative research pertains to how well the phenomenon under study has
been understood. [20]. However, Yin [5] suggests the use of construct, internal
and external validity and reliability to judge the quality of a case study.
Construct validity pertains to establishing measures correct for the concept
being studied. To ensure construct validity, we based our initial understanding of
the software product family approach on the results presented in the literature,
used multiple responders in the interviews and documentation, carefully stored
and used as much original data, such as transcripts, as possible, held validation
sessions in the companies and allowed the companies to see and comment on the
report before publishing. However, a possible weakness in the construct validity
is that the study lasted a relatively short time, did not include observing the
operations in the companies in more depth, and therefore could not cover all
the details, and because a part of the data was based on only one source, our
triangulation did not cover everything. However, we felt that the atmosphere in

the interviews was open and trustworthy, while responders did not hesitate to
answer our questions honestly.

The internal validity relates to causal relationships. We do not consider these
relevant to this study because we have concentrated on describing the CSPF
approach and tried not to make claims for causal relationships.

External validity means establishing the correct domain to which results can
be generalized. Since only five software product families not randomly chosen
were studied, two of these being CSPFs, we cannot make statistical generaliza-
tions as to the commonality of the CSPF approach in the industry. However, we
believe that some of the commonalities found between the two CSPFs described
are generalizable and would be found in other possible CSPFs as well.

Reliability means that operations of the study can be repeated with simi-
lar results. In order to ensure reliability, we used tools designed for qualitative
data analysis and developed rigorous procedures, including interview questions,
analysis framework, and data storage that could be followed to conduct similar
research again.

8 Conclusions and Future Work

We described some results of a descriptive case study of the configurable soft-
ware product family approach in two companies that had developed the approach
independently. The study shows that the configurable software product family
approach can be a feasible and even efficient way to systematically develop a
family of products and to manage the variability within it. When compared, the
characteristics of the configurable software product families turned out to be
strikingly similar. The application domain and interfaces with the environment
were relatively stable and the fundamentals of the product did not change; vari-
ability could be predicted reasonably well by application domain experts and
could be bound by configuring.

Similarities were also found in the deployment and variability of the software
product family, and in organizing software development. An application domain
expert carried out deployment using a configurator tool. Variability included
selecting a set of about ten major functional entities and adapting according to
hundreds of parameter values. Organizationally, developers and deployers were
clearly separated.

The clearest differences between the companies were to be found in the prod-
uct family adoption approach and the after-sales strategy. The first company,
which used the evolutionary approach to replace existing products, did not con-
sider after-sales as a business strategy, and did not allow reconfiguring. The
second company, which used the revolutionary approach for new products, al-
lowed reconfiguring, and wanted customers to buy after-sales services.

On the basis of the results in this study, it is suggested that the configurable
software product family approach may well be an important phenomenon for
further study. A more detailed study and comparison of the similarities and dif-
ferences between companies that have, and do not have, a configurable software

product family should be carried out to elicit more indications of the potential
applicability, success factors, and benefits of the configurable software prod-
uct family approach. In addition, in both configurable software product families,
there were hundreds of parameters with many possible values; the two companies
studied had developed in-house configurators to assist in setting the parameter
values and to do some error-checking of them. Despite the fact that the two
companies had developed their configurators by themselves, it would seem to
be advantageous to develop generic variability management and configuration
methods and tools to model the variability evidenced by the parameters, and to
assist in setting them correctly in deployment, in order to help companies that
aim at developing a configurable software product family.

Acknowledgements

We gratefully acknowledge the financial support of Technology Development
Centre of Finland and Academy of Finland (grant number 51394).

References

1. Bosch, J.: Design and Use of Software Architecture. Addison-Wesley (2000)

2. Weiss, D., Lai, C.T.R.: Software product-line engineering: a family based software
development process. Addison Wesley (1999)

3. Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns.
Addison-Wesley (2001)

4. Bosch, J.: Maturity and evolution in software product line: Approaches, artefacts
and organization. Lecture Notes in Computer Science (SPLC2) 2379 (2002) 257—
271

5. Yin, R.K.: Case study Research. 2nd edn. Sage (1994)

6. van der Linden, F.: Software product families in europe: The esaps and cafe
projects. IEEE Software 19 (2002) 41-49

7. Seaman, C.B.: Qualitative methods in empirical studies of software engineering.
IEEE Transactions on software engineering 25 (1999) 557-572

8. Scientific Software Development, ATLAS.ti User’s Manual and Reference, version
4., http://www.atlasti.de/.

9. Raatikainen, M.: A research instrument for an empirical study of software product
families. Master’s thesis, Helsinki University of Technology (2003)

10. van Ommering, R., Bosch, J.: Widening the scope of software product lines -
from variation to composition. Lecture Notes in Computer Science (SPLC2) 2379
(2002) 328-346

11. Bass, L., Clements, P., Klein, D.V.: Software architecture in practice. Addison-
Wesley (1998)

12. Szyperski, C.: Component Software. ACM Press (1999)

13. Czarnecki, K., Eisenecker, U.W.: Generative Programming. Addison-Wesley (2000)

14. Kojo, T., Soininen, T., Ménnistd, T.: Towards intelligent support for managing
evolution of configurable software product families. Lecture Notes in Computer
Science (SCM-11) 2649 (2003) 86-101

15. Biglever Software inc, http://www.biglever.com.

16.

17.

18.

19.

20.

Faltings, B., Freuder, E.C.: Special issue on configuration. IEEE intelligent systems
& their applications (1998) 29-85

Maénnists, T., Soininen, T., Sulonen, R.: Product configuration view to software
product families. In: Proceedings of Software Configuration Management Work-
shop (SCM-10) of ICSEO1. (2001)

Hein, A., MacGregor, J.: Managing variability with configuration techniques. In:
International Conference on Software Engineering, International Workshop on Soft-
ware Variability Management. (2003)

Hotz, L., Krebs, T.: Supporting the product derivation process with a knowledge-
based approach. In: International Conference on Software Engineering, Interna-
tional Workshop on Software Variability Management. (2003)

Maxwell, J.A.: Understanding and validity in qualitative research. Harvard Edu-
cational Review 62 (1992) 279-300

