
1

Configuring Software Products with Traditional Methods –
Case Linux Familiar

Katariina Ylinen1, Tomi Männistö1 and Timo Soininen1

1 Helsinki University of Technology, Software Business and Engineering

Institute SoberIT, P.O. Box 9600, FIN-02015 HUT, Finland. Email:
{Katariina.Ylinen, Tomi.Mannisto, Timo.Soininen}@hut.fi

Abstract. Recently, the software industry has begun to adopt a
product family approach. Support tools for tailoring configurable
product families have been developed for some time for mechanical
and electronics products. However, it is not clear that the modeling
languages designed for these configurators are suitable for software
product configuration. In this paper, we investigate this problem by
modeling a Linux Familiar operating system distribution with a
configuration modeling language aimed at representing the structure
of physical products. Findings from this case study suggest that the
language is largely suitable for software product configuration.
However, some phenomena in the product strongly suggest that
modeling them as functions, features or resources and optimality
criteria familiar from the configuration domain would be useful. In
addition, there is some evidence that deeper modeling of versions of
components and reconfiguration knowledge, not usually covered by
configuration models, should be supported.

1 INTRODUCTION
Configurable product families have been an important phenomenon
in the mechanical and electronics product domains for some time.
In these domains, called traditional products for short, it has been
noted that it is possible to satisfy a wide range of customer require-
ments with relatively low costs by designing the products to be
routinely configurable. Systems that support tailoring such prod-
ucts, configurators, have been extensively developed and studied
[4]. Recently, the software industry has to some extent adopted the
point of view that designing software product families and deliver-
ing variations of them rather than customizing individual products
can be far more cost-effective [1]. However, it is not clear that
configurators supporting traditional products are suitable for soft-
ware product configuration. The software community has ap-
proached product families from a different perspective and
developed its own modeling methods and methods for tailoring the
products [15,16] .

In this paper, we investigate whether there are any differences
between the two domains of traditional products and software by
means of a concrete case study. We try to model a Linux Familiar
operating system distribution [13] with a configuration modeling
language aimed at representing the structure of physical products
[11, 14]. The three research questions we ask are: Is the configura-
tion modeling language adequate for representing the Familiar
configuration knowledge? If not, what are the most important miss-
ing elements? And finally, which of the common concepts used for
modeling configurable traditional products [5] could be used to
make the models more useful?
The rest of the paper is organized as follows: We first briefly review
and compare the two domains of product configuration and soft-
ware families and analyze their similarities and differences in sec-
tion 2. We then present the case product and the related

configuration problem and present an analysis of the configuration
knowledge for the product in section 3. We present a way to model
the configuration knowledge of the case product using a language
for modeling traditional products in section 4. The findings of our
case study are presented and discussed in section 5. Finally, in sec-
tion 6 we present our conclusions and identify some topics for fur-
ther research.

2 BACKGROUND
This section briefly describes the domains of product configuration
in both traditional industry and in the software industry and then
compares the frameworks used in them to find their similarities and
differences.

2.1 Physical Product Configuration

For a configurable product family, each product individual is
adapted to the requirements of a particular customer order on the
basis of a predefined configuration model, which describes the set
of legal product variants [6,7]. A configuration, that is, a specifica-
tion of a product individual is produced from the configuration
model and particular customer requirements in a configuration task.

Knowledge based systems for configuration tasks, product con-
figurators, are an important application area of artificial intelligence
techniques for companies selling products adapted to customer
needs [9,10]. Product configuration tasks and configurators have
been investigated for at least two decades [11].

 Conceptualization of configuration knowledge synthesizing
these approaches is reported in detail in [7,17].

2.2 Software Product Configuration

The software professionals often claim that the methods and proc-
esses of traditional industry do not apply to software development
and products. It has been suggested that the product configuration
concepts and methods used for the physical products are not directly
applicable in the software industry [2]. According to Brooks [6],
software has four special features that make it special: complexity,
conformity, changeability and invisibility.

Even though modern physical products may also be complex and
invisible in nature, they are constructed of a limited number of parts
that are replicated. In a software product variant, there are usually
no two parts equal to another.

In the past, much of the configuration-related software manage-
ment research has focused on the software configuration manage-
ment (SCM). In SCM, the focus has primarily, although not
completely, been on managing the evolution of the source code files

2

[7]. Most SCM systems today only manage the software systems as
a set of files instead of as configurable product components [7].

The research of configuring final software products has only re-
cently become an increasingly important challenge while the indus-
try has slowly adopted a goal of producing product families instead
of single products. A related field, which aims at modeling product
families, is the research on architectural descriptions [17]. Even
though the primary goal of ADLs has not been the product configu-
ration task, it can be noted that they have adopted significantly
similar concepts as the traditional configuration research.

While formal methods for software product configuration have
been absent, there has been separate efforts for configuring single
products. Most of the software companies implement configurabil-
ity by producing one big product with all variants included. The
configuration task is then done using, for example, preprocessor
directives or makefiles to define the specific product variant [2].

Another result of software invisibility is that in software prod-
ucts, it is often impossible to know the correct order of installation,
if there are limitations to this. This may often be as complex in the
physical products as well. The difference lays in the usage – soft-
ware products are often installed at the same time as they are con-
figured. The installation and configuration process is, especially in
consumer products, assumed to happen at the same time and at least
semi-automatically. This has led to a situation where installation
programs do the configuration and vice versa.

The adequacy of the configuration knowledge present in the
packages of Debian distribution has been a subject for study before
[3, 12]. The approach has been developing a new rule-based lan-
guage for modeling the packages and dependencies, and then im-
plementing this using a logic-program-like rule based system. We,
on the other hand, aim at applying the high-level modeling concepts
of physical product configuration to modeling Linux Familiar.

3 FAMILIAR CONFIGURATION PROBLEM

Linux Familiar was chosen as the case since it is developed for a
handheld computer, Compaq iPAQ, and therefore faces resource
limitations, such as the amount of memory available. Whereas op-
erating systems on PCs can be installed with all bells and whistles
included, the handheld devices make prioritization of installed
components necessary. There are currently about 1700 Familiar
packages available in the distribution, only a subset of which fits
into a device at the same time. The packages vary in nature from
necessary Linux kernel packages to application packages. Linux
was chosen instead of other handheld operating systems due to its
openness, as it was easier to study.

Linux is a monolithic operating system. The part implementing
the core functionality of the operating system such as the thread
management, file system etc. is called the Linux kernel [9]. The
kernel itself is an interesting entity from the configuration perspec-
tive, since it has built-in support for dynamic reconfiguration. How-
ever, this feature has been implemented for mainly memory
management use and is left out of the scope of this paper. We focus
our attention on package management, that is, a higher-level con-
figuration management of the whole distribution.

The Familiar Distribution is derived from the Debian distribu-
tion, which means the configuration attributes share the same con-
cepts. Both distributions consist of a large amount of software
components, called packages. Packages consist of several files,
which can be either executables or other files as well. In Debian, as
well as in most widespread Linux distributions, there is a package
management system, which manages the installation and removal of

packages in the system. In Debian, this program is called dpkg and
it manages configuration constraints like dependencies and conflicts
between packages, virtual packages and installation order. It can
also be used to create and purge packages.

Due to the size constraints dpkg is not a part of Familiar but a
lighter version of it called ipkg has been developed. Ipkg shares the
basic functionality in package installation and removal but lacks
most of the configuration validity functions. Therefore, the com-
parison with the traditional configurator is made against dpkg fea-
tures. Familiar packages are equipped with configuration
information of the same syntax, and they can still be used as an
example of the input data.

The configuration language of Familiar / Debian is fairly simple.
It is a list of the package information in pure text format. There are
two fields attached to all packages: version and the package name.
In addition, it lists all constraints known for the package. The con-
straint clauses also refer to a package name and optionally to its
version. An example of the fields concerning configuration in a
Familiar package description:

Package: xlibs
Priority: optional
Version: 4.0.2-13
Replaces: xlib, xbase (<< 3.3.2.3a-2), xlib6 (<< 3.3.2.3-2)
Provides: libxpm4
Depends: xfree86-common (>> 4.0), libc6 (>= 2.2.1-2)
Conflicts: xlib, xlib6 (<< 3.3.2.3-2), xlib6g (<< 4.0)

Figure 1

The different types of these packages is explained in more detail

in section 3.1. The nature of the different relationships between the
packages is analyzed in section 3.2.

3.1 Package Types

Currently, three types of packages can be identified in the system.
The package types are virtual, concrete and task packages.

A virtual package is an abstract package that does not actually
exist and, the functionality of which can be provided with one or
more concrete packages. The virtual packages do not appear on the
package lists as package definitions and therefore cannot have rela-
tionships to other packages. Instead, some of the concrete packages
refer to a virtual package as they provide its functionality.

In Debian, the developer community strictly controls the virtual
package names and the full list of available virtual packages can be
found at the developer web site [10]. The same virtual package
names are used in Familiar, although it seems that the control is a
bit lighter and there are some additional, non-documented ones as
well. An example of a typical definition of virtual package (x-
terminal-emulator) in a Familiar package description looks like this:

The concrete packages are the actual packages that can be in-
stalled or uninstalled on the device and that have relationships to
other packages on the system. The concrete packages consist of one
or more files to be saved on the file system. These files can be ei-
ther executables or other files, for example text files.

The third package type, task package, is a package that consists
of several other packages. It has no own separate functionality but
just the collection of the packages it contains. The package does not
withhold any important functionality itself but has several depend-
encies to other packages, so that installing the package requires then
installing the whole set. The task packages seem to consist of a set
of different packages that together implement certain functionality.
The task packages in Familiar are separated from concrete packages

3

with a naming convention. The package names have prefix “task-“.
The task packages are made to make basic installations easier for
the end user by collecting a potentially important set of related
packages into one package.

3.2 Relationships

As mentioned earlier, the package descriptions include constraint
clauses. Every package has a listing of these as presented in exam-
ple in figure 1. The clause first describes the nature of the relation-
ship and then a list of package names and their versions.

There are seven different kinds of constraint types:
• Depends <package B> - this package requires package B to

be installed on the device to function correctly.

• Pre-depends <package B> - it is required that package B is
installed on the device before this package can be installed.

• Conflicts <package B> - this package should not be present
in the same configuration with package B.

• Provides <package B> - this package provides all the func-
tionality and files present in package B.

• Replaces <package B> - the installation of this package re-
moves or overwrites files of package B.

• Recommends <package B> - the package B is recommended
when it is presumable that the users would like to have it in
the configuration with this package.

• Suggests <package B> - the package B is suggested to get
better use of the package.

Of these, the constraints recommends and suggests are not
relevant for checking the configuration validity but only useful hints
for the user for configuration optimization. It can be also noted that
the pre-depends clause is used to gain correct installation order
but does not differ from depends when used to check the configu-
ration validity.

For all the different relationships, there can be many packages
listed and in that case the relationship holds for all the packages in
the list. That is, the commas between the package names can be
interpreted as Boolean AND. For depends, there can also be a
Boolean OR, which is indicated by “ | ” in the list. The precedence
rules are not very clear and we are not sure for which elements the
OR statement refers to in some occasions. It is not, however, a big
problem since there are not many OR statements currently in the
package descriptions.
Depends is a simple relationship. When a package depends on

another, the other must also be installed on the system. When
checking the configuration validity, pre-depends is also treated the
same way.

There are also some interesting exceptions in the use of “De-
pends” relation, which we consider more or less misuse and not
usage rules. For example, the package xlibs depends on its own
older version. This means there are also some incremental packages
– the newer version is not actually a new version of the package but
some additional features for it.
Conflicts is just as simple. When a package is in conflict with

another, they should not be installed on the same system. There is,
however, a minor problem in the language and the configurator,
dpkg, considering this. As a package is installed in the system, only
the relationships of the installed package are checked. In case there
is a package in the system conflicting this new package, it may not
get noticed. This is due to the fact that as the conflict has been no-

ticed, it is highly probable that it only has been declared in the de-
scription of one of the packages but not in both. This means that
either the conflict information must be duplicated to both of the
package descriptions or the functionality of dpkg should be changed
so that it would check all package descriptions of the packages
installed on the system to check the configuration validity.
Provides has been designed for managing packages, which in

some way implement functionality available in some other package.
Unlike the other configuration clauses, the provides has been used
quite systematically but it has two different tasks. One of them is
the usage for version control when package naming has changed
during versions. The newer version provides the older one, and it
seems that the potential dependencies from other packages to the
older version will not get broken. Provides allows the coexistence
of the provided and the providing package in a configuration. In the
case of renaming an existing package when making a new version,
it must be separately specified with a conflict clause that the ver-
sions should not be present in a configuration at the same time.
Provides is also used for virtual packages – several concrete

packages can provide some virtual package functionality, and many
of them can coexist on the configuration [3]. For example, a con-
crete package rxvt, which is an emulator program emulating the x-
terminal, has a row: “Provides: x-terminal-emulator” in its package
definition. The x-terminal-emulator is a virtual package, and pack-
ages like rxvt (a basic x-terminal emulator) or rxvt-aa (an x-terminal
emulator with anti-aliased fonts support) could coexist on the sys-
tem both implementing the virtual x-terminal emulator package.

An example of the virtual package use of Provides in Familiar
package description is presented in picture 2.

Package: rxvt
Version: 1:2.6.3-8-fam6
Provides: x-terminal-emulator
Depends: libc6 (>= 2.1.97), xlibs (>= 4.0.1-11)
Conflicts: suidmanager (<< 0.50)

Package: rxvt-aa
Version: 1:2.6.3-8-fam6
Provides: x-terminal-emulator
Depends: libc6 (>= 2.1.97), xlibs (>= 4.0.1-11), libxft, libxrender
Conflicts: suidmanager (<< 0.50)

Figure 2

Replaces is quite ambiguous and is therefore used in various

ways, some of which can be clearly interpreted as designer errors. It
is also the most dangerous one in use, since there is no such system
functionality that would remove the replaced package beforehand.
As there is no proper information on which way the replacement
exactly takes place, there is no guarantee on what will happen to the
files installed originally with the package being replaced. In prac-
tice, the replacement is therefore only used in some cases when user
tries to install two conflicting packages. In these cases, when one of
these packages is marked as replacing the other, the installer in
Debian prefers the replacing one [3].
Replaces is used, as already stated, very differently in different

packages. In some packages, it is used similarly as provision clause.
As the replacing package should replace, by definition, some of the
files of the replaced package, it is also dangerous that there is no
solution so far for the case when a user would try installing the
replaced package back to the system. The replacement clause is
again only written in the other package and thus overwriting the
same files back again would most probably break the system. This
may be one reason for the fact that the replacement has not been

4

often used in actual replacing of packages. One example of an un-
explainable use of this relationship is the package set util-linux
(2.11b-2-fam2), fileutils (4.0.43-1) and shellutils (2.0.11-5). Both
fileutils and shellutils replace an older version of util-linux. Still,
they seem not to provide the functionality specified in the util-linux
description. There are no other relationships between these pack-
ages.

We conclude that the most common use for replacement is that
the replacing package provides at least some of the functionality of
the replaced one, but it is not promised that it works the same way.
This means the dependencies from other packages to the replaced
package will get broken when it gets replaced, unlike in the case of
provision. This cannot, however, be generalized for all packages
due to the very varying use of the concept.

4 FAMILIAR AFTER MAPPING
In this section, the new configuration model for Linux Familiar is
introduced. The syntax of the used language is presented in section
4.1 and the mapping of components and relationships are presented
in sections 4.2 and 4.3, respectively.

4.1 Modeling Language

We use a language based on a subset of a general configuration
ontology [5] to try to model the Familiar configuration information
to gain understanding of how suitable the concepts of the language
are for modeling software.

The used language, called PCML, is introduced in [11]. The
main concepts of PCML are component types, their compositional
structure, properties of components, and constraints. Component
types define intensionally the characteristics (such as parts) of their
individuals that can appear in a configuration. A component type is
either abstract or concrete. Only an individual directly of a concrete
type is specific enough to be used in an unambiguous configuration.
A component type defines its direct parts through a set of part defi-
nitions. A part definition specifies a part name, a set of possible
part types and a cardinality. A component type may define proper-
ties that parameterize or otherwise characterize the type. A property
definition consists of a property name, a property value type and a
necessity definition. Component types are organized in a taxonomy
or class hierarchy where a subtype inherits the property and part
definitions of its supertypes in the usual manner.

Constraints associated with component types define conditions
that a correct configuration must satisfy. The first level building
blocks of the constraint language are references to access parts and
properties of components, and constants such as integers. Refer-
ences can be used in succession, e.g. to access a property of a part.
Boolean returning tests are constructed out of references, constants,
and arithmetic expressions. Tests also include predicates that allow
checking if a particular referenced individual exists or is of a given
type. Property references can be used with constants in arithmetic
expressions that can be compared with the usual relational operators
to create a test. Test can be further combined into arbitrarily com-
plex Boolean expressions using the standard Boolean connectives.

4.2 Components

The component types we define for Linux Familiar configuration
are the package types we identified in section 3.1. In addition, we
define a component type defining the whole system, of which the
packages are parts. We define a type hierarchy, in which there is

one supertype package, of which all packages are subtypes. Pack-
age is an abstract component type with one property, version,
which is of value type string. Both concrete and virtual packages are
subtypes of this component type. It is a subtype of the root compo-
nent type of the language, Component.

The virtual component types are defined as abstract, as there
should be no occurrences of component individuals of them in a
valid configuration. The conceptual meaning of the abstract compo-
nent is seen as the same as that of the virtual package. All the vir-
tual packages are modeled as subtypes of the Package component
type. The concrete packages implementing a virtual package, are
subtypes of the virtual package in question. Other concrete pack-
ages will all be subtypes of the component type Package.

Some of the data on the packages that is needed on configuration
time are modeled as properties for concrete packages. These are
priority, size, installed-size, and version. Priority will be modeled
with the concept of cardinality. When a package is obligatory (pri-
ority: required), its cardinality is 1 and when optional, it is 0 to 1.
Virtual packages will not have these properties since this informa-
tion is not available for them.

4.3 Relationships

Relationships between the packages are modeled as constraints in
the configuration model. The relationships are translated as follows:

A Depends B constraint <constraint_name> A implies B
A Pre-Depends B constraint <constraint_name> A implies B
A Conflicts B constraint < constraint_name> not (A and

B)
A Provides B
(virtual packages)

subtyping, A is a subtype of an abstract
component type B

A Provides B
(change of name
between versions)

subtyping and conflict, A is a subtype of B
and constraint <constraint_name> not (A
and B)

As many of the relationships also involve version numbers, they

must be taken into account in the constraints. Constraints involving
version numbers are modeled as the following example demon-
strates (conflict):
 A Conflicts B (>= 2.2.1)

constraint <constraint name>

not(A and B and

<part name for B>.B:version >= “2.2.1”)

4.4 A Sample

Figure 3 presents a sample of the model created with PCML:

configuration model TestModel

 # The concrete package type

 component type Package

 abstract

subtype of component

 property version value type string

 # The virtual package x_terminal_emulator

 component type x_terminal_emulator

 abstract

 subtype of Package

5

Package rxvt implementing x-terminal-emulator

 component type rxvt

 subtype of x_terminal_emulator

 property version

 value type string constrained by $

in list ("1:2.6.1", "1:2.6.3-8-fam6")

. . .

component type OSystem

 part x_terminal_emulator

 allowed types x_terminal_emulator

 cardinality 0 to 1

 constraint only_one_version_rxvt

 present(x_terminal_emulator) and

 x_terminal_emulator individual of rxvt

 and x_terminal_emulator.rxvt:version

= "1:2.6.1"
Figure 3

In this example, we use the same virtual package as in figure 2,

‘x_terminal_emulator. Two concrete packages, rxvt and rxvt-aa,
implement its functionality. There are two versions of each avail-
able, but for a valid configuration, only the older version of rxvt is
accepted.

5 DISCUSSION AND FUTURE WORK

Linux Familiar does not represent the configuration aspects of all
software products. However, it is an easily studied real-world ex-
ample of configurable software. On the basis of the modeling ap-
proach defined earlier, it seems that the methods of physical product
configuration are at least partially applicable to software products as
well. The differences between these domains are not so remarkable
that entirely new methods and modeling languages need to be de-
veloped for software configuration.

Using a modeling language like PCML seemed adequate for
modeling the most important aspects of Linux configuration. The
ability to model virtual packages as entities on their own with rela-
tionships to one another can be considered a good additional fea-
ture, as long as we have correctly understood the concept. If,
however, the virtual package concept has been developed for de-
scribing the functionality offered by different packages, modeling
them as features or functions [5] could be more useful. Those con-
cepts correspond semantically better to what seems to be modeled
with virtual packages and provide more flexibility in defining rela-
tionships between virtual and concrete packages. For now, as each
virtual package is implemented by one package only (although there
are several alternatives), it can be stated that the use of abstract
component types and subtyping is a reasonable choice. This should,
however, be studied further.

On the basis of this case study, there is no indication that the dif-
ferences between the traditional industry and software domains,
referred to by Brooks [6], are of big relevance with respect to prod-
uct configuration. Invisibility, conformity and complexity did not
have an impact in the case product. On the basis of this single case
study, it seems that changeability may be more important and a
difference between the domains. A single software component can
easily have quite a large number of versions. However, Linux is
somewhat a special case in this respect as more functional versions
are released for users than in a typical commercial software product.
Therefore, it should be studied further if the number of versions

really is big for software products in general and what sort of chal-
lenges this may present for the modeling task. In our case, there
were no complex and large version spaces, which means that no
conclusions could be done of the issue.

Modeling conflicts was easier using PCML. For example, the
modeling of conflicts was simplified. The model then became more
manageable as the problems presented in section 3.2 ceased to exist.

The usefulness of cardinality of packages in software configura-
tion was questioned when the mapping of the concepts was made.
In this case, there were only optional and required packages and
therefore a concept of optionality could be used instead of cardinal-
ities. On the other hand, modeling distributed systems may require a
more elaborate cardinality, as a component type may be instantiated
(i.e., installed) on several different devices. Thus, we cannot con-
clude that cardinality would be useless for software configuration
modeling.

In the case of a handheld device, a concept for modeling the con-
figuration size would have been useful. In PCML, Such a concept is
not present and some problems can be expected when the disk of
the device becomes full. The size information was available for all
the packages but there were no means used to calculate the configu-
ration size in this case study. However, the resource balancing
based approach to modeling incorporated into the ontology of Soin-
inen et al [5] could be useful to capture this phenomenon.

5.1 Problems and Challenges Raised in Our
Mapping

We faced a few challenges when modeling Linux Familiar package
descriptions with PCML. We next discuss the challenges with the
modeling and the challenges with the input data in more detail.

Dangling references and reconfiguration. In the package de-
scriptions of Linux Familiar, there were a remarkable number of
references to packages, which were not present in the package list.
PCML does no allow references to non-existent parts, and thus,
such constraints were simply removed. This did not produce a prob-
lem for the configuration task, as the relationships were mainly
conflicts and the conflicting, lacking package was not available to
be installed to the device. However, this becomes a problem for the
reconfiguration task. The package list of Familiar distribution is on
the Internet and it only lists the packages currently available. Pack-
ages that are no longer available are removed from the list. When
reconfiguring the system, the new package to be installed may have
a conflict with a package already installed on the device but no
longer listed in the model. In this case, the conflict would be ig-
nored according to our model and it would be possible to install an
invalid configuration. This is an issue that needs further studies.

Feature modeling. There were some packages included in Fa-
miliar, whose names started with “task-“. These packages consisted
of a set of different packages to make some basic installations easier
for the end user. For example, package task-x includes all the pack-
ages that together implement the Linux graphical user interface
called X. They should be studied further, as it seems that they pro-
vide a form of feature or function modeling.

Installation order. There were no means to model this informa-
tion using PCML. When modeling the Familiar package listing with
PCML, the installation order part of the information of disappeared.
It can be argued that the installation process is separate from the
configuration process and that the information should not be in the
model in the first place. However, in the case of software, it can be
claimed that these processes are commonly intertwined and the
separation should not be done. In addition, modeling the informa-

6

tion on installation order seems to be closely connected to recon-
figuration, as it is essential to capture the configurations and the
transitions from one configuration to another. This topic requires
further work.

Configuration optimization. In section 3.2, the package rela-
tionships recommends and suggests were briefly mentioned. These
can be seen as related to configuration optimization. One solution
[12] would be to install the packages recommended and suggested
every time a package recommending them is installed. This strategy
of maximizing the configuration is not the best solution when con-
figuring software for handheld devices. The limited size of the
device does not encourage installing all recommended and sug-
gested packages automatically without consulting the user. On the
other hand, simply ignoring these relationships and thus minimizing
the configuration, as was done in our approach, leaves this informa-
tion totally unused. It should be studied further in which way the
information should be used appropriately.

Replacement, reconfiguration. We also left out the concept of
replacement from our model. The input data varied so wildly with
regard to this respect and we could not reliably conclude what
meaning the replaces relationship should be given. The main inter-
pretations is, as explained in section 3.2, that the replacing package
provides the functionality of the mentioned package but also over-
writes it at least partially. This operation then may break existing
dependencies from other packages. In addition, if the user wants to
install the replaced package back on the system, again rewriting
some files, she may break the whole system as the replaces relation-
ship is only defined in one direction. In this case study, we did not
research this problem further and we see this as a reconfiguration
problem to be studied.

Implication and reconfiguration. Using classical implication to
model the depends relationship does not seem to correspond to the
way dpkg operates. When user removes a package from the system,
dpkg checks that the removal does not break any existing depend-
encies. However, the packages installed initially just to satisfy the
constraints of this package, normally due to depends- relationships,
remain on the system. After a while, it is possible that the system
consists of a large amount of packages, which have no justification
for their existence. In a system with limited size, they easily waste
resources. In order to capture this justification aspect, a new
connective is needed in the constraint language that has similar
properties as the rules in the weight constraint language used for
formalizing configuration knowledge in [14].

Input version numbers. The version numbering of Familiar is
quite versatile and due to the many different conventions in use, it is
possible that in some cases a simple string comparison of version
numbers may produce false results. This is, however, a problem that
can only be solved by changing the version numbering conventions
and cannot be simply solved by a modeling language.

6 CONCLUSIONS
We have presented a case study of modeling a configurable soft-
ware product family, Linux Familiar, with a configuration modeling
language designed for representing the structure of a physical prod-
uct. Findings from this case study suggest that configuration model-
ing of a software product can be carried out to large extent using
such a language. Thus it can be used as a basis for modeling and
configuring software product families without a need to develop a
radically new language for this purpose. However, there remain
some important areas where further research is needed. In the case
product, some phenomena strongly suggested that modeling them as
functions or features, resources and optimality criteria, familiar

from the configuration domain, would increase the understandabil-
ity and usefulness of the models. In addition, there is some evidence
that deeper models of versions of components and reconfiguration
knowledge, not usually covered by configuration models, should be
supported. In addition to researching these modeling questions, the
case study should be continued by completing the model and by
empirically testing its validity and the efficiency of the configurator
support. In order to investigate whether the findings of this case
study can be generalized, more software products from different
application domains should also be investigated.

ACKNOWLEDGEMENTS
We gratefully acknowledge the financial support of Technology
Development Centre of Finland and Academy of Finland (grant
number 51394). In addition, we thank Juha Tiihonen and Andreas
Anderson for providing the configurator used in this research and
for their help in using it.

REFERENCES
[1] J.Bosch, Design and use of software architectures - adopting and evolv-

ing a product-line approsch, Addison-Wesley, 2000.
[2] T.Männistö, T.Soininen, and R.Sulonen, ‘Modelling configurable prod-

ucts and software product families’, in: IJCAI’01 Workshop on con-
figuration, 2001.

[3] T.Syrjänen, A rule-based formal model for software configuration.
Master’s thesis.(2000). Helsinki University of Technology:

[4] D.Sabin and R.Weigel, ‘Product configuration Frameworks—A survey’,
IEEE intelligent systems & their applications, 13, 42-49, (1998).

[5] T.Soininen, J.Tiihonen, T.Männistö, and R.Sulonen, ‘Towards a General
Ontology of Configuration’, AI EDAM, 12, 357-372, (1998).

[6] F.P.Brooks, No silver bullet -- Essence and accident in software devel-
opment, IFIP, 1986.

[7] J.Estublier, ‘Software configuration management: A roadmap’, in: Pro-
ceedings of 22nd International Conference on Software Engineering
(ICSE00), The future of software engineering, ACM Press, 2000.

[8] T.Syrjänen, ‘Version spaces and rule-based configuration management’,
in: IJCAI’01 Workshop on configuration, 2001.

[9] I.T.Bowman, R.C.Holt, and N.V.Brewster, ‘Linux as a case study: Its
extracted software architecture’, in: Proceedings of ICSE’99, 1999.

[10] http://www.debian.org/doc/packaging-manuals/virtual-package-names-
list.txt

[11] J.Tiihonen, T. Soininen, I. Niemelä and R. Sulonen, ‘Empirical testing
of a weight constraint rule based configurator’ In Proceedings of the
ECAI Workshop W02 on Configuration, 2002

[12] T. Syrjänen: ‘Optimizing Configurations’ In Proceedings of the ECAI
Workshop W02 on Configuration, 2000

[13] http://handhelds.org/familiar/
[14] T. Soininen, I. Niemelä, J. Tiihonen and R. Sulonen. ‘Representing

Configuration Knowledge With Weight Constraint Rules’. In Proceed-
ings of the AAAI Spring 2001 Symposium on Answer Set Program-
ming: Towards Efficient and Scalable Knowledge Representation and
Reasoning, 2001.

[15] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, ’The
Koala Component Model for Consumer Electronics Software’, IEEE
Computer, 33, 78-85, 2000

[16] K. Czarnecki and U. W. Eisenecker, Generative Programming, Addi-
son-Wesley, 2000

[17] N.Medvidovic and R.N.Taylor. ‘A classification and comparison frame-
work for software architecture description languages’, IEEE Transac-
tions on software engineering, 26, 70-93, 2000

