
Engineering Management Journal Vol. 14 No. 2 June 2002 27

About the Authors
Kristian Rautiainen received his MSc at Helsinki University
of Technology (HUT) in 1996 and is currently working on his
DSc (Tech) degree. He has been teaching software processes
at HUT since 1998 and his research interests include software
processes and software engineering management. He is
currently exploring how to manage software product
development in SMEs.

Casper Lassenius is an acting professor of software
engineering at HUT. He received his MSc (Eng) from HUT in
1996 and is currently finalizing his DSc (Tech) degree on
performance measurement in software development
organizations. His research interests include software and
product development in company networks, software product
development management and software process modelling and
enactment support.

Reijo Sulonen is professor of computer science at HUT
since 1980. He received his MSc (Eng) and DSc (Tech) degrees
from HUT. He is a member of board and advisory committees
in a number of high-tech companies. He has been a member of
the European IT Prize Committee since 1997. He has published
numerous articles on different areas of computer science and
its applications in industry in areas relating to electronic
publishing, computer supported collaborative work, and product
data management.

Contact: Kristian Rautiainen, Helsinki University of
Technology, Software Business and Engineering Institute, PO
Box 9600, FIN-02015 HUT, Finland; phone +358-9-451-5063;
kristian.rautiainen@hut.fi

Refereed management tool manuscript. Accepted by Hans Thamhain, special issue editor. Previous version presented at 35th Annual Hawaii
International Conference on System Sciences.

Abstract
Managing software product development is challenging, especially
for small companies in which a balance has to be struck between
development flexibility and management control while working
under tight schedule and resource constraints. While there exists
several approaches to software process improvement, such as the
CMM and SPICE reference frameworks, these models focus on
the software process for customer projects in large organizations.
Small product-oriented companies require a more holistic and
practical view to software engineering management that combines
business and development considerations and has a clear product
focus. This article presents a general framework for managing
software product development in small organizations. The
framework combines business and process management through
four cycles of control: (1) strategic release management provides
the interface between business management and product
development; (2) release project management handles the
development of individual product versions; (3) iteration
management deals with the incremental development of product
functionality within release projects, and, (4) mini-milestones are
used for daily or weekly task scheduling and monitoring to get an
indication of system status during development. The framework
can be used both to assess the current state of development in the
organization, as well as a blueprint for improving or reengineering
product development management.

Introduction
It is widely understood that deploying an appropriate software
process can improve the effectiveness and efficiency of software
development, and several prescriptive process models exist (e.g.,
Royce, 1970; Boehm, 1988; Jacobson, Booch, and Rumbaugh,
1999). Several approaches for software process improvement have
also been developed during the last decade, with the Capability
Maturity Model for Software (SW-CMM) from the Software
Engineering Institute being most well-known and used (Carnegie
Mellon University, 1994).

Small companies—with less than 50 developers—however,
often find it hard both to allocate resources to software process
improvement and to tailor existing process models or improvement
approaches to their needs. The software process and reference
models provide a good basis for software process improvement,
but they also provide excessive overhead if deployed in full, as
shown, e.g., by a study on the perceptions of the CMM by small
organizations (Brodman and Johnson, 1994). The findings indicate
that small organizations find it hard to tailor such models to their
needs and to motivate their personnel to use them. Since the
CMM was developed with large organizations and large teams in
mind, applying it to small organizations is like shooting flies with
a cannon.

4CC: A FRAMEWORK FOR MANAGING SOFTWARE PRODUCT
DEVELOPMENT

 Kristian Rautiainen, Casper Lassenius, and Reijo Sulonen
Helsinki University of Technology

Another shortcoming of these approaches from the point of
view of a small product-focused software company is that they
fail to adequately address necessary business constraints and
the fact that different processes might be needed in different
situations. Furthermore, the models have their background in
customer project business, which is different from product-oriented
business in several ways.

In contrast to traditional approaches to software development
which emphasize planning, control, and documentation, several
new “agile” software development models have been proposed
(e.g., Schwaber and Beedle, 2002; Beck, 2000; Highsmith, 2000).
Empirical studies have shown that many companies, both large
and small, in the Internet software and PC software businesses
use flexible and adaptable processes (Cusumano and Selby, 1995;
Cusumano and Yoffie, 1998; 1999). Such flexible approaches have
also been found to lead to increased customer satisfaction
although they carry a penalty due to inherent problems of rapid
development (MacCormack, Verganti, and Iansiti, 2001).

Engineering Management Journal Vol. 14 No. 2 June 200228

In order to successfully manage software product
development in small companies, a holistic approach combining
business and development aspects and providing a combination
of control and flexibility is needed.

In this article we present a framework for managing software
product development in small companies. The framework is based
on our previous research on improving the controllability of product
development, during which we identified the basic components of
a control system for managing product development, as well as a
literature study covering software process models, reference
frameworks, and agile development methodologies. In addition,
we have used interviews, discussions, and observations made
with the participating companies in our ongoing research project.

The rest of the article is structured as follows: (1) we present
the research goals and methodology, (2) we present the framework,
and (3) we conclude with presenting our initial deployment
experiences as well as implications for further work.

Research Goals and Methodology
The research presented in this article follows a constructive
research approach (Kasanen, Lukka, and Siitonen, 1993) and is
the first result of a three-year research project aiming at developing
tools, methods, and practices for successful management of
software product development in small companies. The main focus
of our research is on the software development process and in
finding links between the business model(s) the company has
chosen and the software processes and software engineering
practices needed to support them. We aim at identifying, modeling,
and adopting a minimal set of practices and processes needed to
successfully manage software product development. Thus, our
goals are directed more toward simplicity, minimalism, practical
relevance, and implementability than comprehensiveness and
perfectionism.

The research has been performed in close cooperation with
four Finnish software product companies, guaranteeing practical
relevance and implementability of the models we develop. The
companies are in mass-market types of business, meaning that the
degree of customer tailoring is small.

The products, however, are not shrink-wrapped, and in three
of the cases some tailoring has to be made when the product is
installed. One of these companies also has an ASP solution for
end-users. Two of the companies are in a fiercely competitive,
extremely fast-paced business environment in which first-mover
advantages are enormous. The companies make several releases
of each product, and their way of working is iterative and
incremental. The release cycles are short, ranging from one month
to a week, if counting the bug fix releases.

The 4CC Framework
Overview. The 4CC or Four Cycles of Control framework combines
business management and software product development, and
takes both a long-term and short-term view to software product
release management. The framework takes into consideration the
type, timing, and content of different product releases, going all
the way down to daily or weekly builds within release projects for
pacing and control. The framework provides a common language
and understanding of the way software product development can
be organized and brings a degree of control into it, at the same
time accomodating flexibility and fast response to change.

Exhibit 1 provides an overview of the framework, depicting
the four cycles of control and some of the software engineering
activities that span all of the cycles. The radius of a cycle
symbolizes the time perspective taken, the larger the radius, the
longer the time perspective.

Each cycle includes activities for planning what the cycle to
its right is supposed to accomplish, thus giving constraints and
goals within which to work and which to monitor at the next level.
The cycle to the right then independently plans how to reach the
goals within the given constraints and gives feedback on progress
to the cycle on its left.

The leftmost cycle, strategic release management, is the
interface between business management and product development
and takes a long-term view to release management. The different
stakeholders of the product deal with the available information
and make decisions about the content, type, and timing of each
individual release, the usage of the company’s product
development resources, and the most important technology
choices. Strategic release management is an ongoing cyclic
activity. The group of stakeholders can meet regularly, for instance
at the end of each iteration cycle, or when a need arises, for example
stemming from changes in the markets or problems in the release
projects.

Release project management is concerned with the individual
release projects. The products are developed in release projects
in an iterative and incremental fashion. Beyond the usual project
management activities, release project management has to consider
the number of iteration cycles to be executed as well as the content
and schedule of those cycles. The basic idea of an iterative and
incremental development process is to deliver product versions
early to facilitate early user feedback. At the same time technical
feedback on system performance or other non-functional aspects
can be made available. The feedback is used in planning the
subsequent iteration cycle(s). The length of a release project
could range from three to twelve months, depending on the nature
of the business.

Iteration management concerns the individual iteration
cycles. The main issue is the detailed task planning for the iteration
cycle, aiming at achieving a tested and stable product at the end
of the cycle. Part of the detailed task planning is to plan the

Exhibit 1. The four cycles of control framework

Req uiremen ts En gine ering

Desig n and Im ple mentation

Verificatio n and Validation

Product Man agemen t

...

Sales &
Marketing

Professional
Services

CEO

Product
Development

Customer
Services

Strategic
Release
Management

Release
Project
Mgmt

Iteration
Mgmt

Mini-milestones

Engineering Management Journal Vol. 14 No. 2 June 2002 29

schedule of the mini-milestones that are used to pace and
synchronize the development effort. Iteration cycles typically
range from one to three months.

Frequent integration of the system, or mini-milestones, such
as daily or weekly builds, are used to get a better indication of
system status during development. It is a mechanism for
synchronizing the effort of the development team.

The arrows at the bottom of Exhibit 1 depict the actual software
engineering activities that span all cycles. The level of detail and
emphasis of the activities vary in each cycle. For instance,
requirements engineering is at a high level of abstraction in strategic
release management, where market needs and business
opportunities are identified and sets of features and functionality
are elicited, prioritized, and scheduled into different release
projects. The release projects take these as input and schedule
them into the different iteration cycles, specifying some more detail
into them and so on. In the same way, on the strategic release
management level, product management can be seen as
management of the different product versions in the market and as
the source code control, etc., on the mini-milestone level.

Strategic Release Management. The leftmost control cycle,
strategic release management, is the interface between business
management and product development. It incorporates a long-
term view to product and technology planning. The main purpose
of strategic release management is to plan the release cycles and
the preferred and prioritized content, type (e.g., major release, minor
release, or service pack, emergency fix) and timing of each individual
release. The overall strategic ambitions and goals of the company
have to be considered, together with the availability and
competences of the people that do the actual work. Strategic
release management allocates resources to product development
and also to services requiring attention from product development,
such as maintenance or integration into customer systems and
tailoring. Major technology decisions, including architectural
decisions, that span beyond the life cycle of a certain release
project are made. These include decisions about the product
platform or core components of the product. Product line decisions
are also of concern here, especially when a company grows and
diversifies its product offering.

Requirements engineering at the strategic release management
level is concerned with eliciting, specifying, and prioritizing
requirements from different stakeholders, based on market needs
and business opportunities. Requirements engineering forms the
main interface to the individual release projects. Exhibit 1 gives an
example of some of the possible stakeholders or stakeholder
representatives that might be involved. The variety of stakeholders
and their different areas of expertise propose a challenge: the
requirements or the features to match the requirements that are
discussed should be presented in a way that everyone
understands. The vision statement used at Microsoft (Cusumano
and Selby, 1995) provides a way of communicating the purpose
and goals of the product. The vision statement is used to give
structure to the development effort, at the same time
accommodating change and flexibility during the development
process. A rough effort estimation should be attached to the
requirements or features to enable consideration of resource
implications to the release projects.

The strategic release management cycle creates and maintains

an aggregated release project plan or product and technology
road map (Wheelwright and Clark, 1995). The plan shows when
different types of releases are scheduled to take place, which
combined with the requirements and product vision shows roughly
the content of each release. The developers can be, e.g., working
on improving the product platform, developing new features to an
existing product, installing the product at the customer’s site, or
developing an entirely new product. The implication of different
types of work is that it should be managed, controlled, and
resourced differently, and this must be considered in resource
allocation.

In a very small company a single person most likely acts in
multiple roles and strategic release management is done by as few
as three to four people. There should be regular meetings, for
instance at the end of iteration cycles to check the situation and
update the plans.

Release Project Management. The next control cycle, release
project management, is concerned with individual release projects
in which the actual product versions are created. The purpose of
release project management is to make sure that the assigned
product release gets done.

The main activity of release project management is to plan
and specify the release project according to the priorities specified
in strategic release management. This includes planning the length,
content, and number of iteration cycles in a project. The product
is built in such a way that feedback can be gained on the progress
of development. Depending on whether the release deadline is
more important than completing all the features of the product,
release project management makes decisions about adding or
prolonging iteration cycles, adding resources or dropping features.
Features are dropped if they cannot be finished in time for the
release. Having a prioritized list of features facilitates this.
Resources can seldom be added in a small company and the risk of
prolonging the project if resources are added in the middle of it is
high (Brooks, 1999).

USDP suggest an “architecture-first” approach in planning
and performing the iterations. The purpose is to find and develop
a baseline architecture that will facilitate implementing features
now and in the future. MacCormack’s findings support that
investments in architectural design are associated with better
performing projects, with good performance indicated by product
quality as perceived by the user (MacCormack, Verganti, and
Iansiti, 2001). Another consideration is perceived risk. The greater
the perceived risk impact, the earlier the feature should be
implemented. In this way there is enough time to react to the
possibly realized risk and gain better control of the project. The
prioritization of features done in strategic release management
must also be considered, ensuring that the most important
features— probably the ones with the highest perceived business
value—are developed as early as possible.

As an example, in eXtreme Programming (Beck, 2000), software
development is seen as “an evolving dialog between the possible
and the desirable.” A practice called “the Planning Game” brings
together the two players: Development and Business. Business
describes the requirements as “stories” and Development
estimates how long the different stories will take to implement.
Then Business prioritizes the stories and fixes the date or scope of
the next release based on the resource budget from Development.

Engineering Management Journal Vol. 14 No. 2 June 200230

The output of release project management consists of plans
for the iteration cycles and feedback on project progress to strategic
release management. The plans contain, for instance, the iteration
schedule, budget, and scope. The feedback to strategic release
management contains among other things discrepancies to the
plans.

As a rule of thumb, we suggest that the length of a release
project should lie between 3 and 12 months, depending on the
type of release and the characteristics of the business.

Iteration Management. The purpose of iterations and iteration
management is to build a stable, working product in increments
that can be used to get feedback, both technical and user.

In each iteration, a set of use cases or features are identified,
specified in detail, designed, implemented, and tested. At the end
of each iteration there should be a working product. This facilitates
revisiting strategic release management to check the market
situation and decide on the focus and features to be developed
during the next iteration. This approach has been found good for
developing high-quality products in an environment with high
uncertainty and rapidly changing requirements (MacCormack,
Verganti, and Iansiti, 2001).

To gain more control of the development effort, iteration
management plans and paces the development into smaller chunks,
mini-milestones. These could be, for instance, daily or weekly
builds including regression testing, in which the system is
integrated, i.e., the efforts of the different people or teams are
synchronized. In this way there is up-to-date information about
system status at regular intervals to help find early warning signs
that the plans are not going to be met.

An example of this approach can be found at Microsoft, where
large projects are divided into multiple incremental cycles at the
end of which a “shipment” of the product is made to stabilize the
product (Exhibit 2).

This way Microsoft can fall back on the previous shipment if
the next cycle fails. Feature teams or individual engineers
synchronize their work by building and testing the product on a
daily basis. The found defects are fixed immediately. The process
has been accordingly named Synchronize-and-Stabilize
(Cusumano and Yoffie, 1999).

XP approaches incremental development by doing the
development in very short iterations, lasting one to three weeks.
Highsmith (2000) talks about time-boxing projects as a mechanism
for managers to force periodic convergence of a system. All this
implies that a certain amount of freedom and flexibility can be
given to the developers during the iteration cycle, as long as the
system is stabilized at the end, thus adding controllability by
showing the exact status of the system at that point in time.

The output of iteration management is a detailed task plan
and mini-milestone schedule. The output of an iteration cycle is a
working product increment that has part of the functionality of the
final product. Iteration management gives feedback to release
project management about discrepancies in the plans during the
iteration cycle.

Typically, an iteration cycle is one to three months in duration.
Experience in the companies we work with has shown that if there
is more than three months between tangible results of the product
development effort, product development easily runs out of control.
The shorter the iteration cycle, the fewer requirement changes are
likely to happen. One of the main principles in Scrum is that during
a so-called 30-day sprint (which is equal to an iteration cycle)
requirements are frozen and added to the product backlog for
consideration for future sprints (Schwaber and Beedle, 2002). This
makes it possible for the development team to concentrate on the
task at hand without constant change pressure.

Mini-milestones. The purpose of mini-milestones is to integrate
and synchronize the efforts of individuals and teams in the product
development project. Mini-milestones can be instantiated, e.g., in
the form of daily builds, as in the case of Microsoft (Cusumano
and Selby, 1995). At Microsoft the daily build-test cycle makes
early detection of defects possible. If something breaks the system,
the defect must have been introduced the same day, which makes
finding the defect easier.

XP approaches the daily build-daily test cycle more
aggressively using continuous integration at a minimum of once a
day and presenting the idea of “test first.” The idea is to write a
unit test for every production method that could possibly break.
The tests are written before the code, also serving as a specification
or explanation for the methods. The unit tests must be passed at
all times giving confidence in changing the code, since the tests
should pick up defects introduced to the system.

The output of mini-milestones is the different work products
that constitute the product and feedback to iteration management
on the progress of development.

Mapping Existing Process Models to the 4CC. In the previous
sections we have included examples on practices that existing
process models offer for the different control cycles. Exhibit 3
summarizes some of the key elements of three existing process
models mapped to the concepts of the 4CC framework. The three
models were chosen as representative examples of existing
approaches to managing software product development.

Synchronize-and-Stabilize is the most comprehensive of the
three, clearly covering all the cycles of the 4CC framework. The
two other models, Scrum and XP are examples of agile process
models.

The mapping shows that existing process models can to a
great extent be described through the 4CC framework. The mapping

Exhibit 2. The synchronize-and-stabilize process
(redrawn from Cusumano and Yoffie, 1999)

Product vision

Functional specification

Development
subcycle

Buffer time
Alpha release

Development
subcycle

Buffer time
Feature
complete

Beta release
UI freeze

Code complete
• Final test
• Final debug
• Stabilize
Final release

Development
subcycle

Buffer time
Beta release

Engineering Management Journal Vol. 14 No. 2 June 2002 31

also shows that the existing models put different emphasis on the
different cycles, and that strategic release management is missing
from eXtreme Programming. The other models also have their
limitations and none of the models have even been proposed to be
used in all kinds of software projects. If detail was added to the
models and the key elements of the models in Exhibit 3—such as
the model’s area of applicability—the table might be used as a tool
for selecting engineering practices for projects in a company. The
4CC would then be used to give structure to organizing the product
development management of the company showing the major
decision points and organizational design and the existing models
and best engineering practices could be used to provide more
detail.

Lessons Learned
To date, we have partly applied the 4CC framework in four small
software development organizations. This section summarizes
the lessons we have learned from that work.

Deploying the framework sets the foundation for establishing
a common language in the organization, which we see as one of
the most valuable and tangible results of applying “process
thinking.” The importance of a common language concerns both
the process and the product. For example, when we started
developing a product roadmapping process for conducting
strategic release management, we observed that different people
were using different terms for the product parts, even within the
product development team. Creating a conceptual model of the
product that all people could agree upon and understand facilitated
more meaningful discussions and decision-making concerning the
product and its future releases.

One of the companies we have worked with reports that the
implementation of the 4CC framework has helped them structure
the boundaries of decision-making within the organization. The
framework also made communication about the product

development process to the customers easier.
Deploying the 4CC framework has encountered some

resistance to change, which was expected. There never seems to
be enough time for improvement activities. To battle this resistance
concrete suggestions for paths of improvement should be provided.

Discussion and Further Work
We have presented a framework for managing software product
development in small companies. The framework is still tentative,
with several important aspects missing. As an example,
measurement is not yet explicitly discussed. On that front we
have been working on a toolset for the creation, management, and
use of a measurement system. We plan to continue and integrate
our earlier work on measurement into this framework.

The issues in the 4CC are by no means new. Management
and strategy literature contains many examples on how to device
a strategy for a company, how to formulate a product strategy, and
so on. Also, an iterative process approach to software
development was already a hot topic in the late 1980s. What has
been given less attention in the literature, however, is combining
these two domains, linking business management to software
product development, which is one of the goals of the 4CC
framework. On that front there is still a lot of ground to cover, for
instance in finding and expressing the link between business
models and process models.

We plan on adding more detail to the framework as we deepen
our understanding of the challenges of managing software product
development, as well as find workable solutions. The details will
be prioritized and heuristics developed for matching tools and
techniques to different situations and needs. One way to do this
is to describe existing process models through the concepts of
the 4CC, partly like in Exhibit 3 but with more detail. Similarly, the
processes of companies can be described to help discover how
the engineering activities and processes could be structured and

Exhibit 3. A mapping of the key elements of exisiting process models to the concepts of the 4CC framework

Concepts in 4CC Strategic release Release project Iteration
process model\ management management management Mini-milestones

Synchronize-and- - Multiyear product - Prioritized list of - Development - Daily build process
stabilize plans desired features subcycle
(Cusumano and - Vision statement - Outline functional - Stabilization period
Selby, 1995) and product goals specification (feature integration,

- Program reviews - Alpha and beta testing, problem fixing)
 releases - Final product
- Feedback from stabilization
 internal and external - Buffer time
 users

Scrum - Product backlog - Release backlog - Sprint backlog - Daily Scrum meetings
(Schwaber and - Sprint planning
Beedle, 2002) meetings

- Sprint reviews

XP (Beck 2000) - Planning game - Small releases - Continuous integration
- Metaphor
- On-site customer

Engineering Management Journal Vol. 14 No. 2 June 200232

integrated over and between the control cycles. Our intention is
not to develop new process models but to apply and combine
good practices from existing ones in small software product
companies. This will also help in adding detail to the 4CC.

An interesting question for further work is the scalability of
the framework as a company grows. Cockburn’s ideas of
methodology families (Cockburn, 2002) are appealing and we want
to look into what it might mean in terms of our framework.

References
Beck, Kent, Extreme Programming Explained, Addison-Wesley

(2000).
Boehm, Barry, “A Spiral Model of Software Development and

Enhancement,” Computer, 21:5 (May 1988), pp. 61–72.
Brodman, Judith G., and Donna L. Johnson, “What Small

Businesses and Small Organizations Say About the CMM,”
Proceedings of ICSE-16 (May 1994), pp. 331–340.

Brooks, Jr., Frederick P., The Mythical Man-Month: Essays on
Software Engineering, Anniversary Edition, Addison
Wesley Longman, Inc. (1999).

Carnegie Mellon University, Software Engineering Institute, The
Capability Maturity Model: Guidelines for Improving the
Software Process, Addison Wesley Longman, Inc. (1994).

Cockburn, Alistair, Agile Software Development, Addison-Wesley
(2002).

Cusumano, Michael A., and Richard W. Selby, Microsoft Secrets,
The Free Press (1995).

Cusumano, Michael A., and David B. Yoffie, Competing on
Internet Time , The Free Press (1998).

Cusumano, Michael A., and David B. Yoffie, “Software
Development on Internet Time,” Computer, 32:10 (October
1999), pp. 60-69.

Highsmith, III James A., Adaptive Software Development: A
Collaborative Approach to Managing Complex Systems,
Dorset House Publishing (2000).

Jacobson, Ivar, Grady Booch, and James Rumbaugh, The Unified
Software Development Process, Addison Wesley Longman,
Inc. (1999).

Kasanen, Eero, Kari Lukka, and Arto Siitonen, “The Constructive
Approach in Management Accounting Research,” Journal
of Management Accounting Research , 5 :Fall (1993),
pp. 243–264.

MacCormack, Alan, Roberto Verganti, and Marco Iansiti,
“Developing Products on “Internet Time”: The Anatomy of a
Flexible Development Process,” Engineering Management
Review, 29:2 (Second Quarter 2001), pp. 90–104.

Royce, Walter W., “Managing the Development of Large Software
Systems,” Proceedings of Wescon (August, 1970), pp. 1–9.

Schwaber, Ken, and Mike Beedle, Agile Software Development
with Scrum, Prentice Hall (2002).

Wheelwright, Steven C., and Kim B. Clark, Revolutionizing
Product Development: Quantum Leaps in Speed, Efficiency,
and Quality, The Free Press (1995).

