Engineering Management Journal Vol.14 No.2 June 2002

27

4CC: A FRAMEWORK FOR MANAGING SOFTWARE PRODUCT
DEVELOPMENT

Kristian Rautiainen, Casper Lassenius, and Reijo Sulonen
Helsinki University of Technology

Abstract

Managing software product devel opment ischallenging, especially
for small companiesin which abalance hasto be struck between
development flexibility and management control while working
under tight scheduleand resource constraints. Whilethereexists
several approachesto software processimprovement, such asthe
CMM and SPICE reference frameworks, these models focus on
the software processfor customer projectsin large organizations.
Small product-oriented companies require a more holistic and
practical view to software engineering management that combines
businessand devel opment considerationsand hasacl ear product
focus. This article presents a general framework for managing
software product development in small organizations. The
framework combines business and process management through
four cyclesof control: (1) strategic rel ease management provides
the interface between business management and product
development; (2) release project management handles the
development of individual product versions; (3) iteration
management dealswith theincremental devel opment of product
functionality within release projects, and, (4) mini-milestonesare
used for daily or weekly task scheduling and monitoring to get an
indication of system status during development. Theframework
can beused both to assessthe current state of developmentinthe
organization, aswell asablueprint for improving or reengineering
product devel opment management.

Introduction

It iswidely understood that deploying an appropriate software
processcanimprovetheeffectivenessand efficiency of software
development, and several prescriptive processmodelsexist (e.g.,
Royce, 1970; Boehm, 1988; Jacobson, Booch, and Rumbaugh,
1999). Several approachesfor software processimprovement have
also been developed during the last decade, with the Capability
Maturity Model for Software (SW-CMM) from the Software
Engineering I nstitute being most well-known and used (Carnegie
Méellon University, 1994).

Small companies—with lessthan 50 devel opers—however,
oftenfind it hard both to all ocate resources to software process
improvement and totailor existing process model sor improvement
approachesto their needs. The software process and reference
model s provide agood basisfor software processimprovement,
but they also provide excessive overhead if deployedin full, as
shown, e.g., by astudy on the perceptions of the CMM by small
organi zations(Brodman and Johnson, 1994). Thefindingsindicate
that small organizationsfind it hard to tailor such modelsto their
needs and to motivate their personnel to use them. Since the
CMM was devel oped with large organizations and largeteamsin
mind, applying it to small organizationsislike shooting flieswith
acannon.

Another shortcoming of these approachesfrom the point of
view of asmall product-focused software company isthat they
fail to adequately address necessary business constraints and
the fact that different processes might be needed in different
situations. Furthermore, the models have their background in
customer project business, whichisdifferent from product-oriented
businessinseveral ways.

Incontrast to traditional approachesto software development
which emphasize planning, control, and documentation, several
new “agile” software development models have been proposed
(e.g., Schwaber and Beedle, 2002; Beck, 2000; Highsmith, 2000).
Empirical studies have shown that many companies, both large
and small, in the Internet software and PC software businesses
useflexibleand adaptabl e processes (Cusumano and Selby, 1995;
Cusumano and Y offie, 1998; 1999). Such flexible approacheshave
also been found to lead to increased customer satisfaction
although they carry apenalty dueto inherent problems of rapid
development (MacCormack, Verganti, and lansiti, 2001).

About the Authors

Kristian Rautiainen received hisM Sc at Helsinki University
of Technology (HUT) in 1996 and is currently working on his
DSc (Tech) degree. He hasbeen teaching software processes
at HUT since 1998 and hisresearchinterestsinclude software
processes and software engineering management. He is
currently exploring how to manage software product
developmentin SMEs.

Casper Lassenius is an acting professor of software
engineering at HUT. Hereceived hisMSc (Eng) fromHUT in
1996 and is currently finalizing his DSc (Tech) degree on
performance measurement in software development
organizations. His research interests include software and
product development in company networks, software product
development management and software processmodel ling and
enactment support.

Reijo Sulonen is professor of computer science at HUT
since1980. Hereceived hisM Sc (Eng) and DSc (Tech) degrees
fromHUT. Heisamember of board and advisory committees
inanumber of high-tech companies. He hasbeen amember of
the European I T Prize Committeesince 1997. Hehas published
numerous articles on different areas of computer science and
its applications in industry in areas relating to electronic
publishing, computer supported collaborativework, and product
datamanagement.

Contact: Kristian Rautiainen, Helsinki University of
Technology, Software Businessand Engineering I nstitute, PO
Box 9600, FIN-02015 HUT, Finland; phone +358-9-451-5063;
kristian.rautiainen@hut.fi

Refereed management tool manuscript. Accepted by Hans Thamhain, special issue editor. Previous version presented at 35th Annual Hawaii

International Conference on System Sciences.



28

In order to successfully manage software product
development in small companies, aholistic approach combining
business and devel opment aspects and providing acombination
of control and flexibility isneeded.

Inthisarticlewe present aframework for managing software
product development in small companies. Theframework isbased
onour previousresearch onimproving thecontrollability of product
development, during which weidentified the basic components of
acontrol system for managing product development, aswell asa
literature study covering software process models, reference
frameworks, and agile devel opment methodol ogies. In addition,
we have used interviews, discussions, and observations made
with the parti cipating companiesin our ongoing research project.

Therest of thearticleisstructured asfollows: (1) we present
theresearch goalsand methodol ogy, (2) we present theframework,
and (3) we conclude with presenting our initial deployment
experiencesaswell asimplicationsfor further work.

Research Goals and Methodology

The research presented in this article follows a constructive
research approach (Kasanen, Lukka, and Siitonen, 1993) and is
thefirst result of athree-year research project aiming at devel oping
tools, methods, and practices for successful management of
software product development in small companies. Themainfocus
of our research is on the software development process and in
finding links between the business model(s) the company has
chosen and the software processes and software engineering
practices needed to support them. Weaim at identifying, modeling,
and adopting aminimal set of practicesand processes heeded to
successfully manage software product development. Thus, our
goals are directed more toward simplicity, minimalism, practical
relevance, and implementability than comprehensiveness and
perfectionism.

Theresearch has been performed in close cooperation with
four Finnish software product companies, guaranteeing practical
relevance and implementability of the models we develop. The
companiesarein mass-market types of business, meaning that the
degreeof customer tailoringissmall.

Theproducts, however, are not shrink-wrapped, and inthree
of the cases some tail oring has to be made when the product is
installed. One of these companies also hasan ASP solution for
end-users. Two of the companies are in afiercely competitive,
extremely fast-paced business environment in which first-mover
advantagesareenormous. The companies make several rel eases
of each product, and their way of working is iterative and
incremental. Thereleasecyclesare short, ranging from one month
toaweek, if counting the bug fix releases.

The 4CC Framework

Overview. The4CC or Four Cyclesof Control framework combines
business management and software product development, and
takes both along-term and short-term view to software product
release management. Theframework takesinto consideration the
type, timing, and content of different product releases, going all
theway downto daily or weekly buildswithin release projectsfor
pacing and control. Theframework providesacommon language
and understanding of theway software product development can
be organized and brings a degree of control into it, at the same
time accomodating flexibility and fast response to change.

Engineering Management Journal Vol.14 No.2 June 2002

Exhibit 1. The four cycles of control framework

Sales &
\ Marketing/
Professional

Services
\
Strategic Release .
CEO Release Project :\t/lzr;ttlon Mini¥filestones

Management Mgmt

Product
Development/

Customer

Services

Requirements Engine ering

Design and Im ple mentation

Verification and Validation

Product Management

Exhibit 1 provides an overview of the framework, depicting
thefour cycles of control and some of the software engineering
activities that span all of the cycles. The radius of a cycle
symbolizes the time perspective taken, the larger the radius, the
longer thetime perspective.

Each cycleincludesactivitiesfor planning what thecycleto
itsright is supposed to accomplish, thus giving constraints and
goalswithinwhich to work and which to monitor at thenext level.
Thecycletotheright thenindependently planshow to reach the
goalswithinthegiven constraintsand givesfeedback on progress
tothecycleonitsleft.

The leftmost cycle, strategic release management, is the
interface between busi ness management and product devel opment
and takesalong-term view to rel ease management. Thedifferent
stakeholders of the product deal with the available information
and make decisions about the content, type, and timing of each
individual release, the usage of the company’s product
development resources, and the most important technology
choices. Strategic release management is an ongoing cyclic
activity. Thegroup of stakeholderscan meet regularly, for instance
at theend of eachiteration cycle, or whenaneed arises, for example
stemming from changesin the marketsor problemsintherelease
projects.

Release project managementisconcerned withtheindividual
release projects. The productsare developed inrelease projects
inaniterativeand incremental fashion. Beyond the usual project
management activities, rel ease project management hasto consider
thenumber of iteration cyclesto beexecuted aswell asthe content
and schedule of those cycles. Thebasicideaof aniterativeand
incremental development processisto deliver product versions
early tofacilitate early user feedback. Atthe sametimetechnical
feedback on system performance or other non-functional aspects
can be made available. The feedback is used in planning the
subsequent iteration cycle(s). The length of a release project
could rangefromthreeto twelve months, depending on the nature
of the business.

Iteration management concerns the individual iteration
cycles. Themainissueisthedetailed task planning for theiteration
cycle, aiming at achieving atested and stable product at the end
of the cycle. Part of the detailed task planning is to plan the



Engineering Management Journal Vol.14 No.2 June 2002

schedule of the mini-milestones that are used to pace and
synchronize the development effort. Iteration cycles typically
rangefrom oneto three months.

Frequent integration of the system, or mini-milestones, such
as daily or weekly builds, are used to get a better indication of
system status during development. It is a mechanism for
synchronizing the effort of the devel opment team.

Thearrowsat the bottom of Exhibit 1 depict theactua software
engineering activitiesthat span al cycles. Thelevel of detail and
emphasis of the activities vary in each cycle. For instance,
requirementsengineeringisat ahighlevel of abstractioninstrategic
release management, where market needs and business
opportunitiesareidentified and sets of featuresand functionality
are elicited, prioritized, and scheduled into different release
projects. The release projectstake these asinput and schedule
theminto thedifferent iteration cycles, specifying somemoredetail
into them and so on. In the same way, on the strategic release
management level, product management can be seen as
management of thedifferent product versionsinthe market and as
the source code control, etc., on the mini-milestonelevel.

Strategic Release Management. The leftmost control cycle,
strategic rel ease management, istheinterface between business
management and product development. It incorporates along-
termview to product and technology planning. Themain purpose
of strategic rel ease management isto plan therelease cyclesand
thepreferred and prioritized content, type (e.g., mgjor release, minor
release, or servicepack, emergency fix) and timing of eachindividual
release. Theoverall strategic ambitionsand goal s of the company
have to be considered, together with the availability and
competences of the people that do the actual work. Strategic
rel ease management all ocates resourcesto product devel opment
and alsoto servicesrequiring attentionfrom product devel opment,
such as maintenance or integration into customer systems and
tailoring. Magjor technology decisions, including architectural
decisions, that span beyond the life cycle of a certain release
project are made. These include decisions about the product
platform or corecomponentsof theproduct. Product linedecisions
are also of concern here, especially when acompany grows and
diversifiesitsproduct offering.

Requirementsengineering at the strategi c rel ease management
level is concerned with eliciting, specifying, and prioritizing
requirementsfrom different stakehol ders, based on market needs
and business opportunities. Requirementsengineering formsthe
maininterfacetotheindividual release projects. Exhibit 1 givesan
example of some of the possible stakeholders or stakeholder
representativesthat might beinvolved. Thevariety of stakeholders
and their different areas of expertise propose a challenge: the
requirements or the features to match the requirements that are
discussed should be presented in a way that everyone
understands. Thevision statement used at Microsoft (Cusumano
and Selby, 1995) provides away of communicating the purpose
and goals of the product. The vision statement is used to give
structure to the development effort, at the same time
accommodating change and flexibility during the development
process. A rough effort estimation should be attached to the
requirements or features to enable consideration of resource
implicationsto therelease projects.

The strategic rel ease management cycle createsand maintains

29

an aggregated release project plan or product and technology
road map (Wheelwright and Clark, 1995). The plan showswhen
different types of releases are scheduled to take place, which
combined with therequirementsand product vision showsroughly
the content of each release. Thedeveloperscan be, e.g., working
onimproving the product platform, devel oping new featuresto an
existing product, installing the product at the customer’ ssite, or
developing anentirely new product. Theimplication of different
types of work is that it should be managed, controlled, and
resourced differently, and this must be considered in resource
allocation.

In avery small company asingle person most likely actsin
multiplerolesand strategic rel ease management isdone by asfew
as three to four people. There should be regular meetings, for
instance at the end of iteration cyclesto check the situation and
updatethe plans.

Release Project Management. The next control cycle, release
project management, isconcerned with individual release projects
inwhich theactual product versionsare created. The purpose of
release project management is to make sure that the assigned
product release getsdone.

The main activity of release project management isto plan
and specify therel ease proj ect according to the prioritiesspecified
instrategic rel ease management. Thisincludesplanning thelength,
content, and number of iteration cyclesin aproject. Theproduct
isbuiltinsuchaway that feedback can be gained ontheprogress
of development. Depending on whether the release deadline is
more important than completing all the features of the product,
release project management makes decisions about adding or
prolonging iteration cycles, adding resources or dropping features.
Features are dropped if they cannot be finished in time for the
release. Having a prioritized list of features facilitates this.
Resources can seldom beadded in asmall company and therisk of
prolonging the project if resourcesareadded inthemiddleof itis
high (Brooks, 1999).

USDP suggest an “ architecture-first” approach in planning
and performing theiterations. The purposeistofind and develop
abaseline architecture that will facilitate implementing features
now and in the future. MacCormack’s findings support that
investments in architectural design are associated with better
performing projects, with good performanceindicated by product
quality as perceived by the user (MacCormack, Verganti, and
lansiti, 2001). Another considerationisperceivedrisk. Thegreater
the perceived risk impact, the earlier the feature should be
implemented. In this way there is enough time to react to the
possibly realized risk and gain better control of the project. The
prioritization of features done in strategic release management
must also be considered, ensuring that the most important
features— probably the oneswith the highest perceived business
value—aredeveloped asearly aspossible.

Asanexample, ineXtremeProgramming (Beck, 2000), software
development isseen as* an evolving dial og between the possible
andthedesirable.” A practicecalled“the Planning Game” brings
together thetwo players: Development and Business. Business
describes the requirements as “stories” and Development
estimates how long the different stories will take to implement.
Then Business prioritizesthe storiesand fixesthe date or scope of
the next rel ease based on the resource budget from Devel opment.



30

Theoutput of release project management consists of plans
for theiteration cyclesand feedback on project progressto strategic
release management. Theplanscontain, for instance, theiteration
schedul e, budget, and scope. The feedback to strategic release
management contains among other things discrepancies to the
plans.

Asarule of thumb, we suggest that the length of arelease
project should lie between 3 and 12 months, depending on the
type of release and the characteristics of the business.

Iteration Management. The purpose of iterations and iteration
management is to build a stable, working product in increments
that can be used to get feedback, both technical and user.

Ineachiteration, aset of usecasesor featuresareidentified,
specifiedin detail, designed, implemented, and tested. At theend
of eachiterationthereshould beaworking product. Thisfacilitates
revisiting strategic release management to check the market
situation and decide on the focus and features to be devel oped
during the next iteration. Thisapproach hasbeen found good for
developing high-quality products in an environment with high
uncertainty and rapidly changing requirements (MacCormack,
Verganti, and lansiti, 2001).

To gain more control of the development effort, iteration
management plansand pacesthe development into smaller chunks,
mini-milestones. These could be, for instance, daily or weekly
builds including regression testing, in which the system is
integrated, i.e., the efforts of the different people or teams are
synchronized. Inthisway thereisup-to-dateinformation about
system statusat regular intervalsto help find early warning signs
that the plansare not going to be met.

Anexampleof thisapproach can befound at Microsoft, where
large projects are divided into multiple incremental cyclesat the
end of which a“shipment” of the product ismadeto stabilizethe
product (Exhibit 2).

Thisway Microsoft can fall back on the previous shipment if
the next cycle fails. Feature teams or individual engineers
synchronize their work by building and testing the product on a
daily basis. Thefound defectsarefixedimmediately. Theprocess
has been accordingly named Synchronize-and-Stabilize
(Cusumano and Y offie, 1999).

Exhibit 2. The synchronize-and-stabilize process
(redrawn from Cusumano and Yoffie, 1999)

Product vision |

Functional specification —— —— |

Development

Development
subcycle

Development
subcycle

subcycle

Buffer time
Feature

Buffer time
Beta release

Buffer time
Alpha release

Ul freeze
Code complete
* Final test

° Final debug
* Stabilize

complete |
Beta release

Final release

Engineering Management Journal Vol.14 No.2 June 2002

XP approaches incremental development by doing the
development invery short iterations, lasting oneto three weeks.
Highsmith (2000) talksabout time-boxing projectsasamechanism
for managersto force periodic convergence of asystem. All this
implies that a certain amount of freedom and flexibility can be
giventothedevelopersduring theiteration cycle, aslong asthe
system is stabilized at the end, thus adding controllability by
showing the exact status of the system at that pointintime.

The output of iteration management is a detailed task plan
and mini-milestone schedule. Theoutput of aniteration cycleisa
working product increment that haspart of thefunctionality of the
final product. Iteration management gives feedback to release
proj ect management about discrepanciesin the plansduring the
iterationcycle.

Typically, aniteration cycleisonetothreemonthsinduration.
Experiencein the companieswework with hasshownthat if there
ismorethan three months between tangibl e results of the product
development effort, product devel opment easily runsout of control.
Theshorter theiteration cycle, thefewer requirement changesare
likely to happen. Oneof themain principlesin Scrumisthat during
a so-called 30-day sprint (which is equal to an iteration cycle)
requirements are frozen and added to the product backlog for
considerationfor future sprints (Schwaber and Beedle, 2002). This
makesit possiblefor the development team to concentrate on the
task at hand without constant change pressure.

Mini-milestones. The purpose of mini-milestonesistointegrate
and synchronizetheeffortsof individual sand teamsin theproduct
development project. Mini-milestonescan beinstantiated, e.g., in
the form of daily builds, asin the case of Microsoft (Cusumano
and Selby, 1995). At Microsoft the daily build-test cycle makes
early detection of defectspossible. If something breaksthesystem,
the defect must have been introduced the same day, which makes
finding the defect easier.

XP approaches the daily build-daily test cycle more
aggressively using continuousintegration at aminimum of oncea
day and presenting theideaof “test first.” Theideaistowritea
unit test for every production method that could possibly break.
Thetestsarewritten beforethecode, al so serving asaspecification
or explanationfor the methods. The unit testsmust be passed at
all times giving confidence in changing the code, sincethetests
should pick up defectsintroduced to the system.

Theoutput of mini-milestonesisthedifferent work products
that constitutethe product and feedback toiteration management
onthe progressof development.

Mapping Existing Process Modelsto the 4CC. Inthe previous
sections we have included examples on practices that existing
process models offer for the different control cycles. Exhibit 3
summarizes some of the key elements of three existing process
models mapped to the concepts of the 4CC framework. Thethree
models were chosen as representative examples of existing
approachesto managing software product devel opment.

Synchronize-and-Stabilizeisthe most comprehensive of the
three, clearly covering all the cycles of the 4CC framework. The
two other models, Scrum and XP are examples of agile process
models.

The mapping shows that existing process models can to a
great extent bedescribed throughthe4CC framework. Themapping



Engineering Management Journal Vol.14 No.2 June 2002

31

Exhibit 3. A mapping of the key elements of exisiting process models to the concepts of the 4CC framework

Conceptsin 4CC Strategic release Release project Iteration
process model\ management management management Mini-milestones
Synchronize-and- - Multiyear product - Prioritized list of - Development - Daily build process
stabilize plans desired features subcycle
(Cusumano and - Vision statement - Outline functional - Stabilization period
Selby, 1995) and product goals specification (feature integration,
- Program reviews - Alpha and beta testing, problem fixing)
releases - Final product
- Feedback from stabilization
internal and external - Buffer time
users
Scrum - Product backlog - Release backlog - Sprint backlog - Daily Scrum meetings
(Schwaber and - Sprint planning
Beedle, 2002) meetings
- Sprint reviews

XP (Beck 2000)

- Planning game
- Metaphor

- Small releases - Continuous integration

- On-site customer

a so showsthat the existing model s put different emphasisonthe
different cycles, and that strategic rel ease management ismissing
from eXtreme Programming. The other models also have their
limitationsand none of the model shave even been proposed to be
used in all kinds of software projects. If detail was added to the
modelsand the key el ements of the modelsin Exhibit 3—such as
themodel’ sareaof applicability—thetable might beused asatool
for selecting engineering practicesfor projectsinacompany. The
4CCwouldthenbeusedto givestructureto organizing theproduct
development management of the company showing the major
decision pointsand organizational design and the existing models
and best engineering practices could be used to provide more
detall.

Lessons Learned

To date, we have partly applied the 4CC framework in four small
software development organizations. This section summarizes
thelessonswe havelearned from that work.

Deploying theframework setsthefoundation for establishing
acommon language in the organization, which we see as one of
the most valuable and tangible results of applying “process
thinking.” Theimportance of acommon language concernsboth
the process and the product. For example, when we started
developing a product roadmapping process for conducting
strategic rel ease management, we observed that different people
were using different termsfor the product parts, even within the
product development team. Creating a conceptual model of the
product that all people could agree upon and understand facilitated
moremeaningful discussionsand decision-making concerningthe
product and itsfuturerel eases.

One of the companieswe have worked with reportsthat the
implementation of the 4CC framework has hel ped them structure
the boundaries of decision-making within the organization. The
framework also made communication about the product

devel opment processto the customerseasier.

Deploying the 4CC framework has encountered some
resistanceto change, which wasexpected. Therenever seemsto
be enoughtimefor improvement activities. To battlethisresistance
concrete suggestionsfor paths of improvement should be provided.

Discussion and Further Work

We have presented aframework for managing software product
development in small companies. Theframework isstill tentative,
with several important aspects missing. As an example,
measurement is not yet explicitly discussed. On that front we
have been working on atool set for the creation, management, and
use of ameasurement system. We plan to continue and integrate
our earlier work on measurement into thisframework.

Theissuesin the 4CC are by no means new. Management
and strategy literature contains many exampleson how to device
astrategy for acompany, how to formulateaproduct strategy, and
so on. Also, an iterative process approach to software
development wasalready ahot topicinthelate 1980s. What has
been givenlessattentionintheliterature, however, iscombining
these two domains, linking business management to software
product development, which is one of the goals of the 4CC
framework. Onthat front thereisstill alot of groundto cover, for
instance in finding and expressing the link between business
modelsand process models.

Weplanon adding moredetail to theframework aswe deepen
our understanding of the challenges of managing software product
development, aswell asfind workable solutions. Thedetailswill
be prioritized and heuristics developed for matching tools and
techniquesto different situations and needs. Oneway to do this
is to describe existing process model s through the concepts of
the4CC, partly likein Exhibit 3 but with moredetail. Similarly, the
processes of companies can be described to help discover how
the engineering activitiesand processes could be structured and



32

integrated over and between the control cycles. Our intentionis
not to develop new process models but to apply and combine
good practices from existing ones in small software product
companies. Thiswill also helpinadding detail to the 4CC.
Aninteresting question for further work isthe scalability of
the framework as a company grows. Cockburn’s ideas of
methodol ogy families(Cockburn, 2002) are appealing and wewant
tolook into what it might mean interms of our framework.

References

Beck, Kent, Extreme Programming Explained, Addison-Wesley
(2000).

Boehm, Barry, “A Spiral Model of Software Development and
Enhancement,” Computer, 21:5(May 1988), pp. 61—-72.

Brodman, Judith G., and Donna L. Johnson, “What Small
Businesses and Small Organizations Say About the CMM,”
Proceedings of ICSE-16 (May 1994), pp. 331-340.

Brooks, Jr., Frederick P., The Mythical Man-Month: Essays on
Software Engineering, Anniversary Edition, Addison
Wedley Longman, Inc. (1999).

Carnegie Méllon University, Software Engineering I nstitute, The
Capability Maturity Model: Guidelines for Improving the
Softwar e Process, AddisonWesley Longman, Inc. (1994).

Cockburn, Aligtair, Agile Softwar e Devel opment, Addison-Wesl ey
(2002).

Cusumano, Michael A., and Richard W. Selby, Microsoft Secrets,
The Free Press (1995).

Engineering Management Journal Vol.14 No.2 June 2002

Cusumano, Michael A., and David B. Yoffie, Competing on
Internet Time, TheFreePress(1998).

Cusumano, Michael A., and David B. Yoffie, “ Software
Development on Internet Time,” Computer, 32:10 (October
1999), pp. 60-69.

Highsmith, 111 James A., Adaptive Software Development: A
Collaborative Approach to Managing Complex Systems,
Dorset House Publishing (2000).

Jacobson, Ivar, Grady Booch, and James Rumbaugh, The Unified
Softwar e Devel opment Process, Addison Wesley Longman,
Inc. (1999).

Kasanen, Eero, Kari Lukka, and Arto Siitonen, “ The Constructive
Approach in Management A ccounting Research,” Journal
of Management Accounting Research, 5:Fall (1993),
pp. 243-264.

MacCormack, Alan, Roberto Verganti, and Marco lansiti,
“Developing Productson “Internet Time”: The Anatomy of a
Flexible Development Process,” Engineering Management
Review, 29:2 (Second Quarter 2001), pp. 90-104.

Royce, Walter W., “Managing the Development of Large Software
Systems,” Proceedingsof Wescon (August, 1970), pp. 1-9.

Schwaber, Ken, and Mike Beedle, Agile Software Development
with Scrum, PrenticeHall (2002).

Wheelwright, Steven C., and Kim B. Clark, Revolutionizing
Product Devel opment: Quantum Leapsin Speed, Efficiency,
and Quality, TheFreePress(1995).



