
1

Practical XP Experiences

Jari Vanhanen
SoberIT

http://www.soberit.hut.fi/sems/

228.11.2002 Jari Vanhanen

Presentation Outline

q Introduction
v the context of the cases

q Case 1
q Case 2
q Summary

2

328.11.2002 Jari Vanhanen

Case Descriptions

q Two projects from ”T-76.115 Software Project”–course at HUT

q Based on
v numerous informal discussions

Ø mentoring
v reported data

Ø realized hours per task
Ø LOC

v final reports
Ø analysis of experimented XP practices

q Focus on practical experiences gained from the used XP
practices

428.11.2002 Jari Vanhanen

T-76.115 Software Project Course

q Complete software project

q Real customers

q 7 persons in each group
v 3+ year computer science

students
v most have work experience

q Fixed schedule and effort
v 7 months
v 200h per person
v ~8hrs/week/person

q Fixed process framework
v traditionally RUP

Ø customized by the projects
v XP pilots 2001-02

Ø XP complemented with some
mandatory reporting and
documentation

3

528.11.2002 Jari Vanhanen

XP Practices [Beck 1999]

q Simple, well-known practices

q How could XP work?
v practices support each other’s

weaknesses
v exponential change cost is

collapsed (simple design, tests,
refactoring)

q Practices
v planning game
v small releases
v testing
v continuous integration
v metaphor
v simple design
v refactoring
v pair programming
v collective ownership
v coding standard
v on-site customer
v 40-hour week

Case 1: Plastic Pony

4

728.11.2002 Jari Vanhanen

Case 1: Overview

q Project
v graphical www-sitemap editor

for Accenture
v 1500 hours
v 7 persons

q Technologies
v Java (JFC, JGraph), XML

q Development tools
v JDK, JUnit, CVS, Ant

q Project Management tools
v forced by the course

Ø MS Project
Ø time reporting system
Ø metrics visualization tool

v Wiki
Ø web collaboration tool

q No previous XP experience

828.11.2002 Jari Vanhanen

Case 1: Unit Testing

q Adoption goal
v strictly XP

q Tests were written but not
before the real code
v test-first hard with

experimental, continuously
changing code

q Confidence on tests improved as
the project progressed
v new tests for found bugs

Ø replaces bug reporting

q JUnit
v useful and working tool

q JFCUnit
v good concept
v buggy implementation

q Most important benefits
v bugs caused by refactoring

found soon
v own new code verified

immediately

q Not much aid for communication
v code comments, pair

programming, and coding
standard more important

5

928.11.2002 Jari Vanhanen

Case 1: Acceptance Testing

q Adoption goal
v strictly XP

q Developers specified test cases, customer accepted them
v the gap between customers real expectations and tests narrowed using

trial-and-error method

q All test cases automated
v GUI testing easier than expected

Ø no previous experience
Ø 25% of programming effort in early iterations

q Acceptance tests survived a major architectural refactoring of code

1028.11.2002 Jari Vanhanen

Case 1: Amount of Test Code

q Final release
v real code 56%
v acceptance tests 32%
v unit tests 12%

q In the 6th iteration
refactoring invalidated
lots of unit tests
v new architecture was

hard to unit test
v tested using old

acceptance tests

LOC

ITERATION

6

1128.11.2002 Jari Vanhanen

Case 1: Refactoring

q Adoption goal
v strictly XP

q Refactoring was done more than
in traditional projects
v XP encouraged doing re-thinking

and re-design
v less stress when changing code

due to tests

q Noticing the need for refactoring
was based on coders own
experience and intuition
v code smells not explicitly

searched for

q One major architectural
refactoring
v necessary for Undo-feature
v was a success

q Refactoring took even 30-40%
of coding effort in some
iterations
v putting more time in up-front

architectural design might have
been more productive

1228.11.2002 Jari Vanhanen

Case 1: Pair Programming

q Adoption goal
v use for all non-trivial code

q Total coding effort 700h
v pair programming 2*205h
v lack of common working times

and place

q Pleasant way of working
v easy to adopt

q Tiredness affects also the pair
negatively

q Helps learning tools and
techniques
v getting started quickly
v does not give a general

understanding of a topic

q Expressing coding ideas by
”passing the keyboard” is easier
that verbalizing the ideas

q Major prerequisite for collective
ownership
v knowledge transfer of design

and code
v easier to start working with

unfamiliar code

7

1328.11.2002 Jari Vanhanen

Case 1: On-site Customer

q Adoption goal
v customer is constantly ready to answer email-questions

q Sufficient communication very hard in this kind of setting
v no common workplace
v busy customer

q Ways to improve communication
v team actively pushed information to the customer
v online demos and telephone discussions
v one of the developers played the role of the customer

1428.11.2002 Jari Vanhanen

Case 1: Planning Game

q Adoption goal
v strictly XP
v 3 week iterations
v no task level cards

Ø stories ½-5 days
Ø task planning done though

q User stories
v 35 written in the beginning
v 39 written later
v 47 got implemented

q No customer on-site
v sometimes customer expected

more polished solutions than
those delivered

q Accepting tasks
v passivity

Ø external stress
Ø lower priority project

v turned around as more time
became available

q Hard to follow effort spent
v especially during iteration
v no fixed working times
v enthusiasm

Ø personal budget not fixed

8

1528.11.2002 Jari Vanhanen

Case 1: Continuous Integration

q Adoption goal
v integrate and commit to CVS

after each coding session
v code must work

Ø exceptions allowed

q ”No integration at all”
v continuous activity

q Latest version always available
in CVS
v good for a distributed project

like this

q Shortens time to achieve
delivery level quality
v collective ownership

1021Mozilla1

1420X-Smiles 1

1325PlasticPony (case1)

Removed AddedProject

1These open source projects were already in their
polishing phase.

Average commit size (lines of code)

1628.11.2002 Jari Vanhanen

Case 1: Simple Design

q Adoption goal
v strictly XP

q Design was done incrementally when needed
v code was refactored when it became hard to add more features

using the old design

q Sometimes the practice was misunderstood
v simplest != code anything quickly

Ø must be easy to understand and change later
v solutions that were confusing (too clever) to the others

Ø not enough refactoring was done

9

1728.11.2002 Jari Vanhanen

Case 1: Other Practices

q Small releases
v two releases
v seven three-week iterations
v positive experience

Ø one cornerstone of XP

q Metaphor
v quite technical

Ø pages, processes,
transitions, ...

Ø technical customer
v communication tool

q Collective ownership
v most used in refactoring
v everyone did not reach equal

familiarity with all code
Ø short project

q 40-hour-week/sustainable pace
v not applicable/not used

1828.11.2002 Jari Vanhanen

Case 1: Product Documentation

q Requirements specification
v 1 page overview of the system
v user stories

q Source code
v unit tests
v acceptance tests

10

1928.11.2002 Jari Vanhanen

Case 1: Project Evaluation

q Customer very satisfied
v results did not exactly match original plans
v results matched the current needs in the end of the project

q Overall
v (one of) the best projects in the course (24 projects)
v winner of the course’s Quality Award

q Group contained very skilled people
v the role of used process in the success?

Case 2: RAID

11

2128.11.2002 Jari Vanhanen

Case 2: Overview

q Project
v defect tracking system for

SoberIT/HUT
v 7 persons
v 1200 hours

q Technologies
v J2EE, JSP

q Development tools
v JDK, CVS, Junit, Ant

q Project management tools
v forced by the course

Ø MS Project
Ø time reporting system
Ø metrics visualization tool

q No previous XP experience

2228.11.2002 Jari Vanhanen

Case 2: Practices

q Planning game
v customer wrote a lot of stories

early
Ø 88 user stories
Ø too detailed for planning
Ø too large for a small project

v was difficult in the beginning of
the project
Ø new way of planning
Ø unfamiliar technology (J2EE)
Ø dependencies between

stories were problematic
v later the practice worked well

and was effective in controlling
project’s direction

q Small releases
v good visibility of progress
v demos anytime
v earlier releases did not have

minimum amount of valuable
functionality
Ø small project

q On-site customer
v physically not available
v quite good communication

Ø but mainly with a sub team
only

12

2328.11.2002 Jari Vanhanen

Case 2: Testing

q Unit tests were useful for finding bugs during development and
especially while refactoring

q Writing tests before the code was considered a profitable practice
v however, it was neglected often when it was hard to come up with a

good design without building small spikes

q Customer specified acceptance tests
v group run them at the end of each iteration
v external testers run the test once

Ø a couple of new issues were raised
Ø testing by customer herself would have been important

v tests should have been updated during development

2428.11.2002 Jari Vanhanen

Case 2: Amount of Test Code

q Final release
v 6100 LOC
v Unit tests 19%
v Real code 81%

13

2528.11.2002 Jari Vanhanen

Case 2: Practices

q Refactoring
v everything was rewritten once a

little at a time

v special cases were rewritten to
be more simple and generic
Ø some too elegant solutions

v significant for maintaining code
ready for further development

v communicating code changes in
a distributed project was
problematic

q Simple design
v subtle balancing when

evaluating implementation cost
now or later

v sometimes more effort was
spent earlier, if it supported
most probably coming stories

q Metaphor
v ”forms in bureaucracy”
v most use in

Ø GUI design
Ø specifying report states

2628.11.2002 Jari Vanhanen

Case 2: Practices

q Pair programming
v finding common time hard
v good and recommended practice

Ø knowledge transfer
Ø more quality through review

v trivial code developed alone
Ø required less effort
Ø pairing when questions

appeared

q Coding standard
v standard defined in the

beginning did not work perfectly
Ø JSP new to everyone

q Collective ownership
v everyone knew the code on a

general level
v still some ”personal” ownership

emerged
v others were asked to make

certain changes
Ø caused by distributed

development

q Continuous integration
v worked well
v 3 pairs working with the same

classes without problems

14

2728.11.2002 Jari Vanhanen

Case 2: General Experiences

q Favorable characteristics for XP
project
v small
v not too complicated
v vague requirements

q Most XP practices felt natural
and worked well in this project

q A pleasant experience and we
are ready to try it again

q XP does not work well with a
distributed team
v same room and common

working times required

q Work should be more intensive
v now about 8hrs/week
v takes time to restart work

2828.11.2002 Jari Vanhanen

Case 2: Product Documentation

q Technical overview
v 3 pages

q Installation guide
q User stories
q Acceptance tests
q Acceptance test report

q Open bugs and development ideas

15

2928.11.2002 Jari Vanhanen

Case 2: Project Evaluation

q Customer
v Goal1 for the product: ”Good basis for further development”

Ø most important stories were implemented
Ø high quality of implementation
Ø ->goal reached

q Group
v very educational project

Summary

16

3128.11.2002 Jari Vanhanen

Average Effort Distribution – All Projects

0,0

5,0

10,0

15,0

20,0

25,0

30,0

co
din

g

pa
ir c

od
ing

de
sig

n
tes

tin
g

do
cu

men
tati

on

pro
jec

t m
an

.

meet
ing

s

stu
dy

ing

lec
tur

es infr
a

%

USDP (N=22)

XP (N=2)

3228.11.2002 Jari Vanhanen

Conclusions

q Generally the feedback about
process was more positive from XP
groups than from RUP groups

q Easy context for adopting XP
v people prepared to try new things
v starting development from scratch

q Difficult context for using XP
v distributed team
v long, ”part-time” project

q Best experiences from
v testing
v pair programming
v small releases
v continuous integration

q Problems with
v simple design
v adopting test first

17

3328.11.2002 Jari Vanhanen

References

q Beck. Extreme Programming Explained. Boston, Addison-
Wesley, 2000.

q http://www.soberit.hut.fi/T-76.115/index.html
q http://www.soberit.hut.fi/T-76.115/01-

02/palautukset/groups/PlasticPony/lu/palautus.html
q http://www.soberit.hut.fi/T-76.115/01-

02/palautukset/groups/RAID/lu/palautus.html

