
UNIVERSITY OF OULU

DEPARTMENT OF INDUSTRIAL ENGINEERING AND MANAGEMENT

MASTER’S THESIS

Enhanced tool support for daily work management
in agile software development

Author: Antti Haapala
Supervisor: Pekka Kess
Instructor: Ville Heikkilä
Date: July 2010



OULUN YLIOPISTO Abstract of thesis
Faculty of technology
Department

Department of Industrial Engineering and Management
Laboratory

Author

Haapala, Antti Kalevi
Supervisor

Kess, P., Professor

Name of the thesis

Enhanced tool support for daily work management in agile software development

Subject

Industrial engineering and management
Level of studies

Master’s thesis
Time

July 2010
Number of pages

75+19

Abstract

This thesis examines the features of a software tool that is needed for managing efficiently the daily work in
agile software development methods, using the constructive research approach. Although agile software
development is becoming more and more popular, agile software development management tools are
lacking necessary capabilities for managing daily work in these methods. A part of current agile software
development guidebooks are critical of existing software tools, and view them as inappropriate and inflexible
for daily work management, compared to index cards or spreadsheet programs. Other sources emphasize
that information systems are essential in some working environments.

The most popular agile software development methods, Scrum and Extreme Programming are
examined. In the theoretical part the daily work practices of these methods and recommended tools are
identified from the practitioner guidebooks. Based on the results of literature review, the support for identified
daily work management practices in the open source Agilefant tool is reviewed prior to enhancing the support.

The requirements of case companies for daily work management were elicited in the user story
format using the requirements workshop method. Acquired user stories were grouped into consistent
features; these features were prioritized by the representatives in case companies using modified 100-dollar
method. The results of prioritization were used to select a top priority features for deeper analysis and
possible implementation.

10 practices and 5 different tools for daily work management were identified in the guidebooks.
According to analysis, the support for most practices was insufficient in Agilefant. The workshop
resulted in 26 different features that were not present in Agilefant; the ”team view” was considered
the most important in the prioritization. 14 most important features, representing 80 % of votes cast
are analyzed further: the analysis evaluates the candidate features based on the identified practices;
a design for their implementation in the tool is proposed. Of these features, ”consolidated story and
task list”, ”work queue”, ”task splitting” and ”strategy-to-action (bottom-up)” were implemented in Agilefant.

The results of this research can be utilized for example as a roadmap when creating a new soft-
ware tool for agile software development management, but also to review the support for essential daily
work management practices in existing tools.

Library location

Science and Technology Library Tellus, University of Oulu

Additional information

Keywords: Agile software development, product development, daily work management, project
management, management information systems



OULUN YLIOPISTO Tiivistelmä opinnäytetyöstä
Teknillinen tiedekunta
Osasto

Tuotantotalouden osasto
Laboratorio

Tekijä

Haapala, Antti Kalevi
Valvoja

Kess P., Professori

Työn nimi

Parannettu päivittäisen työn hallinnan työkalutuki ketterässä ohjelmistokehityksessä

Oppiaine

Tuotantotalous
Työn laji

Diplomityö
Aika

Heinäkuu 2010
Sivumäärä

75+19

Tiivistelmä

Diplomityössä selvitetään tehokkaaseen ketterien ohjelmistokehitysmenetelmien päivittäisen työn hallintaan
tarvittavia ohjelmistotyökalun ominaisuuksia konstruktiivisen tutkimuksen tutkimusongelmana. Vaikka
ketterän ohjelmistokehityksen suosio kasvaa alati, on nykyisten ketterän sovelluskehityksen työkalujen tuki
päivittäisen työn hallinnalle puutteellinen. Osa menetelmäkirjallisuudesta suhtautuu niihin ristiriitaisesti
ja ne nähdään epätarkoituksenmukaisina ja joustamattomina päivittäisen työn hallinnassa suhteessa
arkistokortteihin tai taulukkolaskentaohjelmiin. Kuitenkin toiset lähteet korostavat ohjelmistotyökalujen
olevan välttämättömiä useissa toimintaympäristöissä.

Ketteristä ohjelmistokehitysmenetelmistä käsitellään suosituimpia, Extreme Programmingia ja
Scrumia. Teoriaosuudessa näiden menetelmien päivittäisen työn hallinnan käytännöt ja suositellut työkalut
selvitetään menetelmäkirjallisuuteen pohjautuen. Tuloksien pohjalta evaluoidaan avoimen lähdekoodin
Agilefant-työkalun tuki päivittäisen työn hallinnan käytännöille ennen tuen parannusta.

Tapausyrityksien vaatimukset päivittäisen työn hallintaan selvitettiin käyttäjätarinamuodossa
vaatimustyöpajamenettelyllä; saadut käyttäjätarinat ryhmiteltiin yhtenäisiksi ominaisuuksiksi, jonka jälkeen
tapausyrityksien edustajat priorisoivat ne muunnetulla 100:n dollarin menetelmällä. Priorisoinnin perusteella
valittiin osajoukko tarkempaa analyysia varten.

Menetelmäkirjallisuudesta tunnistettiin 10 päivittäisen työn hallinnan käytäntöä ja 5 eri työkalua.
Analyysin perusteella Agilefant tuki useimpia käytäntöjä puutteellisesti. Työpajan pohjalta saatiin 26 eri
ominaisuutta, joita ei ollut Agilefantissa. Näistä ”tiiminäkymä” arvostettiin priorisoinnissa tärkeimmäksi.
14 tärkeintä ominaisuutta saivat 80 % äänistä, ja näitä analysoitiin tarkemmin. Analyysissa arvioidaan
ehdotettuja ominaisuuksia kirjallisuuden pohjalta sekä esitetään niille mahdollinen toteutus työkaluun.
Näistä Agilefantiin toteutettiin uusina ominaisuuksina ”yhdistelty tarina- ja tehtävälista”, ”työjono”,
”tehtävän pilkkominen” ja ”strategiasta toimintaan (alhaalta ylös)”.

Tutkimuksen tuloksia voidaan käyttää toisaalta tiekarttana ketterän ohjelmistokehityksen työkaluja
laadittaessa, toisaalta myös arvioitaessa olemassa olevien työkalujen tukea päivittäisen työn hallinnan
tarpeellisille käytännöille.

Säilytyspaikka

Oulun yliopisto, Tiedekirjasto Tellus

Muita tietoja

Avainsanat: Ketterä ohjelmistokehitys, tuotekehitys, päivittäisen työn hallinta, projektinhallinta,
johtamisen tietojärjestelmät



Preface

This thesis has been written for and funded by the ATMAN project (Approach and Tool
support for development portfolio MANagement) at the Software Business Research
Group of Software Business and Engineering Institute at the Aalto University School
of Science and Technology. The three-year ATMAN project is jointly funded by the
Finnish National Technology Agency TEKES and participating software companies
(F-Secure, PAF, eCraft, IPSS, Napa, Mipro and Tekla). The goal of ATMAN project is “to
help the Finnish Software Industry better link business strategies and long-term product
development planning with daily work through managing the developers’ efforts as an
explicit portfolio and providing an understanding of the needed tool support”.

I want to express my gratitude to all those people who guided me in the creation of this
thesis, especially Lic. Sc. Jarno Vähäniitty for getting me started on this field, M. Sc. Ville
Heikkilä for valuable insights and helpful instruction, and all other personnel at Software
Process Research Group and SoberIT. I would also like to thank Reko Jokelainen and Pasi
Pekkanen for a crash course into J2EE world and the technology of Agilefant, and the
workshop participants and those interviewees who participated into feature prioritization;
without them the empirical part of this thesis would not have been as fruitful.

Special thanks go to Donald Knuth for the TEX typesetting program, to the creators of
LATEX2e for the excellent macro package, to the LYX team for their wonderful WYSIWYG
TEX editor, and to the Inkscape project for the free vector drawing program. I cannot
imagine how I would have managed without these valuable tools.

In Oulu, Finland, on July 1, 2010

Antti Haapala



Abbreviations

4CC The Four Cycles of Control model
AHP Analytical Hierarchy Process
BL Backlog
BLI Backlog Item
DW Daily Work
EL Effort Left
ES Effort Spent
IID Iterative and Incremental Development
J2EE Java 2 Platform, Enterprise Edition
OE Original Estimate
NPD New Product Development
PG Planning Game
PWC Pairwise Comparisons
SQL Structured Query Language
SP Story Point
XP Extreme Programming



List of Tables

1 Books considered for the book review . . . . . . . . . . . . . . . . . . . . . 17

2 The management practices discussed in the sources . . . . . . . . . . . . . . 22
3 The tools proposed by the reviewed books . . . . . . . . . . . . . . . . . . . 39

4 Final results of the prioritization. . . . . . . . . . . . . . . . . . . . . . . . . 47



List of Figures

1 The research process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 The structure of the Scrum and Extreme Programming team . . . . . . . . . 23
3 The mini-waterfall anti-pattern . . . . . . . . . . . . . . . . . . . . . . . . . 24
4 The iteration with cross-functional self-organizing team . . . . . . . . . . . . 25
5 Scrum sprint process overview . . . . . . . . . . . . . . . . . . . . . . . . . 26
6 Iteration plan in a sprint backlog . . . . . . . . . . . . . . . . . . . . . . . . 28
7 An iteration plan represented on a task board. . . . . . . . . . . . . . . . . . 29
8 Conceptual model of Scrum sprint-level concepts . . . . . . . . . . . . . . . 30
9 Conceptual model of Extreme Programming iteration-level concepts . . . . . 30
10 An example of iteration burn-down graph from Agilefant. . . . . . . . . . . . 35
11 External overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
12 Internal overload without external overload . . . . . . . . . . . . . . . . . . 36

13 Conceptual model of Agilefant . . . . . . . . . . . . . . . . . . . . . . . . . 42

14 The cumulative value of features in priority order . . . . . . . . . . . . . . . 48
15 Distribution of the number of votes given by each interviewee to features . . . 49

16 The consolidated task and story list . . . . . . . . . . . . . . . . . . . . . . . 51
17 The ordering comparisons for stories and tasks without stories in the

consolidated list view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
18 The work queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
19 The Edit menu for a task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
20 The task splitting dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
21 Contexts of work items on the daily work view . . . . . . . . . . . . . . . . 55
22 The context popup for a story in consolidated story list view . . . . . . . . . 56
23 Enhanced iteration burndown diagram . . . . . . . . . . . . . . . . . . . . . 60



Contents

ABSTRACT
TIIVISTELMÄ
PREFACE
ABBREVIATIONS
LIST OF TABLES
LIST OF FIGURES

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 Agile methods and agile software development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Agilefant, a proof-of-concept tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Research problem, approach and research questions . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Research process and methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 Overview of the research process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Selection of the book sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
2.3 The book review process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Analysis of daily work support in the prior version of Agilefant . . . . . . . . . . . . . 17
2.5 Daily work management workshop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Multi-stakeholder backlog prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Analysis, design and implementation of selected features . . . . . . . . . . . . . . . . . . .20

3 Management of work within iterations according to book and article review . . . . . . . 21
3.1 Definition of terms and high-level concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Practices of daily work management in practitioner guidebooks . . . . . . . . . . . . . 29
3.3 Summary of team tools according to the book review . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Conclusions on the literature requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Analysis of the software tool before enhanced support for daily work . . . . . . . . . . . . . 41
4.1 Support for visual management of work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Support for assigning responsible members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
4.3 Support for selection of next task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Support for measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Support for status tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6 Support for status update meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.7 Support for load measuring and balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.8 Support for impediment tracking and handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.9 Support for stable teams and dedicated team members . . . . . . . . . . . . . . . . . . . . . 45
4.10 Support for maintaining focus and establishing cadence. . . . . . . . . . . . . . . . . . . . 45



4.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5 The results of daily work management workshop and prioritization. . . . . . . . . . . . . . .46

5.1 Results of the experience exchange workshop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Results of the prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Selection of features for detailed analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Analysis, design and proof-of-concept implementation of selected features . . . . . . . .50
6.1 Implemented new features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Proposed designs for remaining features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.1 Book review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Discussion on the acquisition of empirical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3 Discussion on the design and implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
7.4 Discussion on the validity of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.1 Answers to research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2 Contribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
8.3 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Appendix I Proposed new features and their constituent user stories . . . . . . . . . . . . . . . 75
Appendix II Prioritization instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Appendix III Complete list of features and stories / Prioritization spreadsheet . . . . . . . 78
Appendix IV Stories not included in prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Appendix V Companies and individuals answering the prioritization . . . . . . . . . . . . . . . 92
Appendix VI Individual voting results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



1 Introduction

This thesis concerns the management of every-day efforts of software developers in agile
software development teams. Currently, the management tools that are considered most
usable by a majority of agile software development practitioner literature are pencils,
index cards, whiteboards and spreadsheet files. The aim of this thesis is, if not remove,
then at least to narrow the gap between these low-technology tools and management
information systems. This chapter starts with an introduction to agile methods and daily
work management (1.1), which is followed by the motivation of this thesis (1.2). The
specific case tool under study, Agilefant, is presented in Section 1.3. Finally, the research
problem, approach and research questions are introduced in Section 1.4.

1.1 Agile methods and agile software development

The history of software development has seen two competing project management
paradigms — the single-pass sequential development paradigm, which is also known as the
waterfall model, and the iterative and incremental development (Larman & Basili 2003).
Even though Royce (1970) had criticized the straightforward sequential development in
his famous article, the single-pass sequential model was still for the following two decades
considered the ideal model for software development. Only in the 1990s the IID paradigm
started gaining wider support. (Larman & Basili 2003.) In February 2001, seventeen
experts on light-weight IID processes convened in Utah and produced a declaration, the
Agile Manifesto (Fowler & Highsmith 2001), which defines the four common values
of the methods they represented. Thereafter those light-weight IID methods which also
support these values have been called agile methods (Larman & Basili 2003). Of these
agile methods, Scrum and Extreme Programming are currently most widely adopted
(VersionOne, Inc 2010).

1.1.1 Daily work management in agile methods

Rautiainen et al. (2002) have presented the Four Cycles of Control model for software
development governance. In 4CC, the topmost control cycle is the strategic release
management, which divided into multiple release cycles. Each release cycle consists of
several iteration cycles, and each iteration cycle is divided into mini-milestones. Each
outer cycle includes the planning of its immediate inner cycles, and monitoring their
execution. The inner cycles in turn provide feedback to the immediate outer cycles. The
length of a mini-milestone is usually one day or one week at maximum. (Rautiainen et al.



10

2002.)
In this thesis the concept daily work is defined as all the work that the agile development

teams and their individual team members shall do within these mini-milestone cycles to
produce a software increment that fulfills iteration goals. The mini-milestones are planned
in advance and represented in an iteration plan. The concept daily work management
shall be defined as all management and coordination practices that development teams
and individual developers employ during these mini-milestones, including feedback to
the iteration cycle. The goal of daily work management is to maximize the sustainable
velocity at which the team and individual developers can produce value in the software
increment during the iteration. This definition includes the refining of iteration plan, as
it is considered to be feedback to the iteration cycle; however, it specifically excludes
management decisions that change the scope of iteration or release; as these are considered
belonging to the higher cycles instead.

1.1.2 Scrum

Takeuchi & Nonaka (1986) had studied the new product development in non-software
technology projects, and based on their empirical findings proposed that the old model of
new product development, where the “product development process moved like a relay
race, with one group of functional specialists passing the baton to the next group”, should
be replaced by a new new product development game, wherein a single multidisciplinary
team would be responsible for the product development through all these phases; the
phases would also be overlapped, or the entire process integrated so that one cannot
distinguish the phases from one another. Takeuchi and Nonaka compared this product
development game to rugby union.

Schwaber (1995) and Beedle et al. (1999) transferred the ideas of Takeuchi &
Nonaka into the field of software engineering, combining it with the ideas of IID in
software development into a new model called Scrum, (a metaphor from the rugby union
terminology). According to Beedle et al. (1999) several rigorous process models such as
the Capability Maturity Model are incorrect, because in promoting repeatable and defined
processes these models tend to assume that factors inside and outside factors are repeatable
or defined. In their view, one should not try to remove uncertainties but use a process
model that can adapt to outside chaos. The Scrum process described by Schwaber (1995)
is not only iterative and incremental process, but also empirically managed. During the
development phase the self-organizing development teams work in fixed-length iterations
called sprints. When sprinting, a team has no defined process. Furthermore sprints are not
linear like waterfall, but they consist of numerous non-predetermined interactions between
team members. Also, because explicit process knowledge is not available, the team will
gradually refine its own development process through trial and error and by employing
tacit knowledge. The process is also inherently risk-driven, and open, allowing the project
scope and direction to be changed after every sprint. (Schwaber 1995.)

1.1.3 Extreme Programming

While Scrum is more a general project management framework which can be used for
other kinds of project management (Schwaber 2004), Extreme Programming is strictly a
discipline for software development. Extreme Programming prescribes twelve software
engineering practices; some of them are more management oriented, such as onsite



11

customer, planning game, 40-hour week and short releases, whereas others are more
specifically software development oriented, such as refactoring, pair-programming, or
continuous integration. Extreme Programming is too an empirically managed model, with
releases taking place in short iterations; the Extreme Programming team does not either
have a defined workflow during the iteration; the only constraint is that all programming
work should be done in pairs. (Beck 1999.)

Though in principle close to Scrum, it deviates by promoting the software engineering
practices extensively, whereas in Scrum it is the duty of the self-organizing team to choose
their preferred engineering practices. Scrum also emphasizes the need of continuously
widening the constraints of team work, or removing impediments in Scrum terminology;
this is not emphasized at all in Extreme Programming. (Schwaber & Beedle 2001, Beck
1999.) Due to the complementary nature of these two methods regarding management and
engineering practices, they are often combined in software development organizations
(VersionOne, Inc 2010).

1.2 Motivation

Originally the coordination of daily work in agile software development methods was
accomplished through using simple management tools. Post-it notes on the wall depicting
various engineering tasks and customer requirements, hand-drawn measurement charts on
whiteboard, or spread-sheet files stored on a network drive were the primary management
tools and information systems, along with flexible management practices such as daily
stand-up meetings, follow-up meetings, impediment removal, task estimation and subtle
status tracking. (Beck 1999, Schwaber & Beedle 2001).

The existing agile software development literature on Scrum and Extreme Programming
is still divided on the relative advantages and disadvantages of specialized management
information systems. A portion of professional agile software development guidebooks
advocate the use of specialized software for managing the teamwork within an iteration
(Auer & Miller 2001, Leffingwell 2007), some books ignore the issue altogether (Schwaber
2004), while some take a negative stance against replacing the simple management tools
with any kind of technical solution (Beck & Andres 2004). Larman & Vodde (2008)
denounce many of the existing agile project management software tools, because in their
opinion they are biased towards easy reporting while being cumbersome to use by the
actual team members. Still these simple management tools are not sufficient in larger-scale
agile organizations, as additional work is needed to reflect back the progress of the team in
product backlog (Lehto & Rautiainen 2009). Reports also show that some kind of software
tool is necessary when the team and its members are working on more than one project at
a time (Scotland 2003), or if the development team is distributed (Sutherland et al. 2007).

Thus to be a replacement for existing methods, an agile software development
management tool has to be designed to be more efficient for managing the daily work and
mini-milestones than the pencil and paper, or spreadsheets. To accomplish this, the details
of daily work management in agile software development methods have to be thoroughly
studied. Furthermore, to ensure that the design is relevant in practical setting, it has to be
ensured that the solutions satisfy the needs of actual users of the management system.
This sets the premise for the research methodology and the research problem of this thesis.



12

1.3 Agilefant, a proof-of-concept tool

The ATMAN project has produced a proof-of-concept software tool for agile software
development called Agilefant. It is mainly used for validating the research results of
the project (Vähäniitty & Rautiainen 2008). The foundation of Agilefant is backlog
management; backlogs are containers of future work to be done on the software product.
In Agilefant, the product development is managed in a hierarchy of backlogs consisting of
product, project and iteration backlogs. These backlogs correspond to 4CC (Rautiainen
et al. 2002) strategic release management, release and iteration cycles respectively. Several
views are provided to inspect different aspects of this data and to modify it; these include a
specialized backlog view for each kind of backlog, the timesheets view that is used to
log work time and generating reports, and the project portfolio view that can be used to
prioritize simultaneous release projects in the project portfolio.

Agilefant is realized as a J2EE web application that can be deployed on any compatible
servlet container. The data is stored into an SQL database; Agilefant is built to primarily
support the MySQL database. The users can interface with Agilefant using an up-to-date
version of any of the popular web browsers. Agilefant employs JavaScript client-side
programming, which makes the user interface responsive. Most views are updated
automatically to reflect the concurrent edits made by other users. This effectively provides
the user with a real-time picture of the current state of development efforts on each view
without manual refreshes.

As a readily available, open-source and feature-complete research tool, Agilefant shall
be used to validate the results of this thesis. Agilefant has already been adopted by several
companies, thus providing an existing user base for testing the new approaches to daily
work management.

1.4 Research problem, approach and research questions

The goal of this thesis is to construct a set of new features for a software tool to better
support the team-level efforts at agile software development organizations and those
organizations that are transitioning to agile. The research problem of this thesis is “How to
support effective daily work management in an agile software development management
tool?” The research problem is further refined with following research questions:

Q1 What are the specific practices of managing the daily work of a self-organizing
team and of its individual members in the selected agile software development
methods?

Q2 What tools does the literature suggest for supporting the implementation of
aforementioned practices?

Q3 What kind of support does unmodified Agilefant provide for these practices?

Q4 What features are requested by the key stakeholders of software develop-
ment organizations to be implemented in an agile software development
management tool for managing daily work?

Q5 What is the priority order of these features according to the key stakeholders
at these software development organizations?



13

Q6 How a top-priority subset of these features could be supported in an agile
software development management tool while ensuring compatibility with
existing agile software development methods?

The problem is approached by the means of constructive research; the constructive
research approach aims at building new innovative constructions to solve existing problems
(Kasanen et al. 1993). In this thesis, a set of requirements for an agile software development
management tool is elicited and analyzed based on existing theory, and used then to
create new innovative constructions: proposed designs for features to be implemented in
management tools. The validation of these constructions is based on linking them with
existing theory, and by providing a tested and thoroughly validated implementation of a
subset of them. The nature of constructive research (Lukka 2001) demands that the studied
problems are present in real world and solving them has practical relevance (Q4, Q5); that
the construction is connected to the existing theory (Q1, Q2, Q3) and that the construction
contributes to the current scientific knowledge and it can be used in practice (Q6). The
details of research process are discussed in Chapter 2.



2 Research process and methodology

In the beginning the scope of the research was determined — Scrum and Extreme
Programming as the currently most popular (VersionOne, Inc 2010) agile software
development methods were chosen to be studied. Accordingly, the literature review
of this thesis concentrates on the management practices in these two specific methods.
Independent from the literature review, a requirements workshop (Leffingwell & Widrig
2003) on daily work management was held for agile software development organizations.
The goal of this workshop was to elicit a set of candidate features for daily work
management in an agile software development management tool. After the workshop,
the participating companies were then independently asked to prioritize the candidate
features from their point of view. The results of this prioritization were used to choose a
top-priority subset of candidate features for further study The results of literature review
were used to analyze this subset of features to produce proposed designs for these features.
Finally a portion of these designed features were implemented in Agilefant. A figure of
the research process is provided in Fig. 1.

2.1 Overview of the research process

The research questions Q1 and Q2 are answered based on the literature review that was
conducted on practitioner guidebooks on the selected agile software development methods.
The selection of book sources is detailed in Section 2.2. The book review process is
described in Section 2.3. Based on the results of the literature review, prior support for
daily work management practices is analyzed in Agilefant; this answers to the research
question Q3. The process is detailed in 2.4.

The research question Q4 is answered by the results of a daily work management
workshop that was held for representatives from agile software development organizations.
The workshop is detailed in Section 2.5. Answer to Q5 is provided by a multi-stakeholder
prioritization process on the features that were proposed in the workshop, which is
discussed in detail in Section 2.6.

The research question Q6 is answered by synthesizing the answers to research questions
Q1–Q5. Based on the prioritization results (Q5), a top-priority set of the proposed features
(Q4) was selected for further analysis. This set was analyzed based on the practices and
tools identified in the agile software development practitioner guidebooks (Q1 and Q2).
Due to the independent nature of these features, a subset of them was implemented in
the existing proof-of-concept agile software development tool; another subset was left
for future implementation. Workarounds for most of these unimplemented features are



15

Search for
related work

Defining 
research

scope

Selection of 
agile methods

for review

Selection of 
literary 
sources

Book review

Daily work
management

workshop

Clean-up of the
proposed features

Multi-stakeholder
prioritization of

proposed features

Analysis of DW 
support in 
unmodified 
Agilefant 

Selection of 
top-priority 

subset of work
for implementation

Analysis, design 
and implemen-
tation of new 
functionality

Proposal for
future research

Describing the
new constructions

Fig. 1. The research process
proposed based on the present functionality in the proof-of-concept (Q3). This analysis,
design and implementation process is discussed in more detail in Section 2.7.

2.2 Selection of the book sources

Due to limited timeframe of the thesis, the primary factor for the selection of the books was
their availability. Among the available books, those books that had sections concentrating



16

on management of work within iterations in Extreme Programming, Scrum, or both, were
chosen for further review. Table 1 lists the 12 books that were considered for book review;
the third column tells whether or not the book was actually included in the review. After a
quick survey, 9 of these 12 were selected for the literature review.

Extreme Programming Explained: Embrace Change (Beck 1999) was the first book to
describe the Extreme Programming, and is thus a necessary choice for the book review.
Auer & Miller (2001) call it as “the manifesto for Extreme Programming”. Similarly, Agile
Software Development with Scrum (Schwaber & Beedle 2001) was the first guidebook
on Scrum methodology. Both books are based on actual experiences on these methods.
The Extreme Programming Explained: Embrace Change: 2nd edition (Beck & Andres
2004) was published 5 years after the first one; it actually is somewhat more than the
title would suggest in that it is a complete revision of the book, and significant update to
the previous; it was deservedly included in the review. Agile Project Management with
Scrum (Schwaber 2004) is an update on the first Scrum book; it highlights the nature of
Scrum, and its application to real world organization, through case studies. As these case
studies also highlight the management practices in their proper context, this book was also
included in the review.

As the Extreme Programming Explained books concentrate more on explaining the
philosophy of Extreme Programming, and the details on actual management practices
are discussed only vaguely, other books from Extreme Programming series were also
considered. Planning Extreme Programming (Beck & Fowler 2000) was included, because
it focuses only on planning and tracking software development in Extreme Programming
projects, down to day level. Extreme Programming Applied: Playing to Win (Auer &
Miller 2001) focuses on describing how Extreme Programming can be implemented in
real organizations. It was also included in the review.

The third Scrum book by Schwaber (2007), The Enterprise and Scrum, was considered,
but it was not included in the review because it did not seem to provide any new information
on daily work management beyond the two original Scrum books. However, Schwaber
(2007) recommended Cohn’s (2005) Agile Estimating and Planning, which was included
in the review; like Beck & Fowler (2000), the book not only focuses on planning but goes
down to day level and also provides insight on management of work within these plans.

Questioning Extreme Programming (McBreen 2002) was suggested by one senior
researcher as a “thought-provoking” book on Extreme Programming. However, according
to the foreword, the author of the book has never worked on an Extreme Programming
project. As the book does not describe the development process of Extreme Programming,
but remains a high-level discussion of the supposed advantages and disadvantages of
Extreme Programming in various situations. Thus it was left out of the book review.
Manage it! Your guide to modern, pragmatic project management (Rothman 2007) was
another recommended book. Even though it addresses daily work management, and
Extreme Programming and Scrum, it does not discuss only them, or even only agile
methods. Thus, it does not answer the first research question — “What are the specific
practices of managing the daily work of a self-organizing team and of its individual
members in selected agile methods?” This led to its exclusion from the review.

Scaling Software Agility: Best Practices for Large Enterprises (Leffingwell 2007) and
Scaling Lean & Agile Development: Thinking and Organizational Tools for Large-Scale
Scrum (Larman & Vodde 2008) represent the newest literature on agile methods. They
both contain very detailed discussion of daily work management, and they both highlight
issues that arise especially in large-scale agile organizations, that is, organizations that
have many self-organizing teams working on the same product simultaneously. Both



17

Table 1. Books considered for the book review

Title Method Included

Extreme Programming Explained: Embrace Change (Beck
1999)

XP Yes

Planning Extreme Programming (Beck & Fowler 2000) XP Yes

Agile Software Development with Scrum (Schwaber &
Beedle 2001)

Scrum Yes

Extreme Programming Applied: Playing to Win (Auer &
Miller 2001)

XP Yes

Questioning Extreme Programming (McBreen 2002) XP No

Agile Project Management with Scrum (Schwaber 2004) Scrum Yes

Extreme Programming Explained: Embrace Change (2nd
Edition) (Beck & Andres 2004)

XP Yes

Agile Estimating and Planning (Cohn 2005) General Yes

Manage it! Your guide to modern, pragmatic project man-
agement (Rothman 2007)

General No

The Enterprise and Scrum (Schwaber 2007) Scrum No

Scaling Software Agility: Best Practices for Large Enter-
prises (Leffingwell 2007)

General Yes

Scaling Lean & Agile Development: Thinking and Orga-
nizational Tools for Large-Scale Scrum (Larman & Vodde
2008)

Scrum Yes

books were included in the review.

2.3 The book review process

In the book review process, each reviewed book was read in entirety. At first, the key
terms and concepts related to daily work management were recorded and their usage
explained. Based on these findings, the relations of basic iteration level concepts in both
of the studied methods were also represented in an UML 2.0 class diagram. Then 10
general practices of daily work management were identified in the sources (see Table 2 on
page 22). Different approaches to these 10 practices were searched from the sources.
During the review process all references to suggested tangible or software tools for these
for these practices were also recorded. The results of book review are represented in
Chapter 3.

2.4 Analysis of daily work support in the prior version of Agilefant

The conceptual model of the most central concepts in Agilefant prior to implementation of
any new features was drawn as UML class diagram. Then, based on the results of the
book review, the support for identified daily work management practices was evaluated in



18

Agilefant. For each identified practice, Agilefant was evaluated for features that would
support the practices as written in the books. The results of this analysis are provided in
Chapter 4.

2.5 Daily work management workshop

After the research scope was defined, a requirements workshop (Leffingwell & Widrig
2003) was held for case companies. The companies sent 1–3 representatives to participate
in a 2.5 hour long workshop. The workshop produced a set of candidate features for the
next revision of Agilefant. Each participant had a laptop and thus could work independently
from others.

A total of 12 people participated in the daily work management workshop. As a
warm-up exercise, all participants were asked to write down independently of each other
for five minutes what kind of practices they would consider to belong to good daily work
management as a team member or management role in an agile team. The results were
then shared among all participants and discussed so that a shared mindset was achieved.
Then the participants were divided into three teams. One of the teams had its participants
from companies whose business is subcontracting work, another had its members drawn
from companies who had their own software products. The third team consisted of agile
software development researchers, who all had first-hand experience from agile software
development.

The teams were tasked to write candidate user stories of things they as team members,
business owners, product owners or Scrum masters would consider having value for daily
work management in an agile software development management information system. The
user stories were to be written using the detailed format “As a �role�, I want �function�,
so that �business value�” (Cohn 2004). Each team worked on a shared spreadsheet,
which allowed them to view in near real time what the other team members were writing.
However the three teams were working independently from each other and thus possibly
produced a partially overlapping set of stories.

2.5.1 Cleaning up the stories

The workshop was followed by a clean-up by the author. If the story had two pieces
of functionality separated by the “and” conjunction, they were split into two. Of the
resulting stories, stories that detailed duplicated functionality were dropped; also were
dropped stories that were clearly out of scope of even the iteration cycle (Rautiainen et al.
2002). Finally, those stories that would be assumed to be fulfilled by every viable backlog
management system, and thus not novel, were also discarded; that is, if the user story was
satisfied with unmodified Agilefant, it was discarded. These stories were refined and
grouped under features by the author. The results of daily work management workshop
and clean-up are provided in Chapter 5.

2.6 Multi-stakeholder backlog prioritization

The outcome of the daily work workshop was a set of independent candidate features
which constituted a Scrum product backlog (Schwaber & Beedle 2001) for a software tool.
As a product backlog in Scrum is a prioritized list of work proposed to be done on the



19

product, the candidate features had to be prioritized. To ensure that the prioritization of
features reflected the business value of these features, the case companies that participated
in the daily work workshop would be asked to prioritize the features independently of
each other, and the individual prioritization results to be combined to produce the final
prioritization.

2.6.1 Prioritization methods

Most prioritization methods provide results on either ordinal or ratio scales (Karlsson et al.
2006). On ordinal scale, each item is assigned to a class, and the relative order of the
class are known; however an ordinal scale does not provide information on the value of
each class. Furthermore, as all items within a class are considered equal to each other,
nothing can be said of their relative priorities, unless they are ranked again using a more
fine-grained ranking. Examples of requirement prioritization methods that use ordinal
scale include the numeral assignment technique (Karlsson 1996) and the Planning Game
of Extreme Programming (Beck 1999).

On ratio scale not only is the order of items known, but also the ratio of values of any
two items, which allows detailed value analysis. According to Karlsson et al. (2006),
examples of prioritization methods that use a ratio scale include the cumulative voting
scheme, also known as the Hundred Dollar Test (Leffingwell & Widrig 2003), Pair-wise
comparison (Saaty 1990) and Wiegers’ method (Wiegers 1999). The disadvantage of ratio
scale methods is the perceived difficulty compared to ordinal scale methods, and greater
time consumption (Karlsson et al. 2006).

The pair-wise comparison method was originally a part of the Analytical Hierarchy
Process (Saaty 1990). The advantage of pair-wise comparisons over the other ratio
scale methods is the redundancy for an AHP PWC matrix a metric, consistency ratio
can be computed, which measures the internal consistency of the comparisons in the
matrix. The disadvantage of pair-wise comparison is that it is time-consuming, because to
prioritize a set of features one has to do a comparison between each feature-pair, and
estimate the relative values of the pairs on a ratio scale. To prioritize n features, AHP
requires n(n−1)

2 comparisons. (Karlsson et al. 1998, 2007.) Software tools for incomplete
pairwise comparison have been created; these significantly decrease the amount of needed
comparisons (Karlsson et al. 1997).

In the hundred dollar test each stakeholder is given a fixed amount of votes — usually
100, hence the name — which they can distribute according to their consideration among
the features (Leffingwell & Widrig 2000). The hundred dollar test does not contain the
consistency checks that are inherent in redundant pair-wise comparisons like those in AHP,
but it is much simpler to implement. A study by Hatton (2007) showed that the hundred
dollar test to be on average 4 times less time consuming than the pair-wise comparison
utilized in AHP, although it provided comparable results. Furthermore, the decision
makers were more confident that the results reflected their intentions accurately.

2.6.2 Selection of the prioritization method

A proven method had to be chosen for prioritization. A ratio-scale method would be
needed to make the analysis of the business value of the prioritized features (n = 26)
possible. The main criterion was that the liaisons of stakeholders could use it without
any outside support, and with ease. As no suitable tool was found that could facilitate



20

prioritization by incomplete pair-wise comparison, and using an ordinary PWC matrix
would have required 325 pair-wise comparisons to be made manually, it was decided that
modified hundred dollar method would used.

2.6.3 Gathering prioritization data

After the user stories were processed and the feature list constructed, a prioritization
questionnaire was created. The questionnaire was realized as a spreadsheet, which
automatically calculated the amount of votes casts and remaining, and displayed these
numbers prominently. As there were 26 features, the amount of credits was increased to
1000 to allow more fine-granular prioritization. The interviewees were asked to divide their
votes among the features based on the needs of their organization. In the questionnaire
each feature was briefly described, and followed by its constituent user stories. The
interviewees received and answered the questionnaire via e-mail. The instructions of the
questionnaire are in Appendix II, and the questionnaire form is in Appendix III.

The spreadsheet was sent by e-mail to the representatives in the companies. They then
returned the spreadsheet files filled with their preferred distribution of the votes. The
final prioritization was done by calculating the number of votes cast in favor of each
independent feature. The results of the prioritization are presented in Chapter 5.

2.7 Analysis, design and implementation of selected features

Each feature among the top-priority subset was analyzed based on practices identified
in the book. A design was proposed for each of these features; wherever a context for
design was needed, the unmodified version of Agilefant (Chapter 4) was used as a base. A
subset of the designed features was implemented in Agilefant for further validation. For
those features that were not yet implemented in Agilefant, a workaround was proposed if
possible. The workarounds were based on the feature set present in unmodified version
of Agilefant and the newly implemented features. The results of analysis, design and
implementation phase are presented in Chapter 6.



3 Management of work within iterations according to book
and article review

This chapter describes the results of the book review on the suggested management
practices of daily work within a Scrum sprint or an Extreme Programming iteration. The
Scrum and Extreme Programming practices presented in this chapter are as described in
the books selected in the review; they should not be considered to be complete examples
of these methodologies. Any such practice that is not ordinarily done within development
iterations are not considered here. Furthermore, only such practices that concern the
developer team itself (including the Scrum master role but excluding the product owner)
are considered.

The following concepts repeatedly occur in this text; the exact meanings of the terms
in the context of this thesis are defined in Section 3.1.

– team and roles (3.1.1)
– iteration or sprint (3.1.2)
– sprint goal (3.1.3)
– story (3.1.4)
– task (3.1.5)
– backlog (3.1.6)
– impediment (3.1.7)

Based on the book review the following 10 practices were found to be related to manage-
ment of daily work in Scrum and/or XP. The practices and the sources where they were
identified are presented in Table 2. A detailed review of these practices based on these
sources is presented in Section 3.2 on page 29.

3.1 Definition of terms and high-level concepts

The Scrum and Extreme Programming high-level concepts and terminology related to
daily work management is described under this Section.

3.1.1 Team and roles

Both Scrum and Extreme programming specify that the development is handled by a team,
which shares the collective responsibility for its goals. The team in both methodologies is
cross-functional and self-organizing; it contains all necessary skills required to implement



22

Table 2. The management practices discussed in the sources.

Management practice Source

B
ec

k
(1

99
9)

B
ec

k
&

Fo
w

le
r(

20
00

)

A
ue

r&
M

ill
er

(2
00

1)

Sc
hw

ab
er

&
B

ee
dl

e
(2

00
1)

Sc
hw

ab
er

(2
00

4)

(B
ec

k
&

A
nd

re
s

20
04

)

C
oh

n
(2

00
5)

L
ef

fin
gw

el
l(

20
07

)

L
ar

m
an

&
Vo

dd
e

(2
00

8)

Visual management x x x x x x x x x
Assigning responsibles 1 1 1,2 1 1 1, 2 2 1 2
Selection of next task x x x x x x x x x
Status tracking x x x x x x x x x
Lightweight measurements x x x x x x x x x
Status-update meetings x x x x x - - x x
Measuring and balancing load x x x x x x x - x
Impediment handling - - x x x - - x x
Dedicating team members - - - x x - - - x
Maintaining focus and establishing cadence - - - - - - x x x

Legend: x = the book discusses the practice.. - = the book does not discuss the practice. 1 = the book promotes

the “one at a time” task allocation strategy. 2 = the book promotes the “fill your bag” task allocation strategy

a selection of customer requirements and transform them into a complete executable
product increment within a fixed time box. In software development, such cross-functional
team should contain analysts, designers, quality control and coding engineers. (Schwaber
& Beedle 2001, Beck 1999.)

According to Schwaber & Beedle (2001) there are three defined roles in a Scrum team:
Scrum master, product owner and team member. The developers — team members —
together form the Scrum development team, a part of the Scrum team, which is responsible
for engineering work. The Scrum master serves as a coach and facilitator for the Scrum
development team; the product owner works as a proxy between the external stakeholders
and the development team, and is thus a kind of project manager. A Scrum team is
self-organizing and self-managing; the recommended number of members in such self-
managing team should be no more than 9, because the communication between the team
members is impeded as new members are added. Schwaber and Beedle also provide
anecdotal evidence that larger teams, if allowed to organize themselves freely, would
subdivide into smaller subteams. The responsibilities of a Scrum team include, but are not
limited to analysis, interaction design, internal design, programming and testing. However
only the product owner and the Scrum master have their special roles; the other team
members do not have titles. (Schwaber & Beedle 2001.)

In Scrum all work that is to be done is first defined coarsely by the product owner, which
must be a designated single person, not a committee or team. The product owner negotiates
with all stakeholders, including the team, the priority of requirements. A top-priority
subset of these requirements is then implemented in time-boxed iterations, or sprints in



23

SM

PO

Scrum team

CO

CU
TR

TE

XP team

Fig. 2. The structure of the Scrum team (Schwaber 2004) and the Extreme Programming
team (Beck 1999). SM = Scrum master, PO = Product owner, CU = Customer or customer
representative within the team, CO = Coach, TE = Tester, TR = Tracker. The dotted el-
lipse surrounds the developer roles. The tester in Extreme Programming is the dedicated
customer liaison among the developers.

Scrum terminology; the product owner has to negotiate the subset of requirements that
shall be committed to be completed within a sprint with the Scrum development team. The
Scrum development team as a whole is responsible for trying to accomplish the goals it
has committed to. (Schwaber & Beedle 2001.)

In the Extreme Programming the team size can be more varying: Beck (1999) refers to
projects with only two people - the minimal requirement for pair programming which is a
central technique in XP, the upper limit being approximately 10 persons. Beck (1999)
further identifies the roles of customer, coach, tracker and tester. Unlike in Scrum, where
the product owner role is internal to the organization, the customer in XP is an outsider,
and can be also considered consisting of many stakeholders, who have to work collectively.
As in Scrum, only the customer role can prioritize the requirements or features. Beck
(1999) proposes that the team could ask the customer to help in writing the tests. The
coach and tracker roles together loosely correspond to the role Scrum master; the Tester
role helps the customer implementing functional testing on the product, and could be
someone of the programmers. Beck (1999) also recommends that the customer should be
someone who will actually be using the end product.

In the context of this thesis the term team refers in Scrum to the Scrum team, including
the Scrum master and the product owner roles. Likewise in XP, the team consists of the
programmers, the Coach, the Tracker and the Tester roles; a customer, if he is involved in
the development, can also be considered a team member.

3.1.2 Iteration

Both Scrum and XP suggest doing the development during relatively short iterations,
usually only 1 to 4 weeks. (Schwaber & Beedle 2001, Beck 1999, Larman & Vodde
2008, Leffingwell 2007). In an iteration the team is supposed to build new functionality
having value to the stakeholders and ensure that at the end of the iteration the software
product is potentially shippable, without causing regression on those features that have
been built in previous iterations (Schwaber & Beedle 2001, Beck 1999). The length of an
iteration is always fixed beforehand (Schwaber & Beedle 2001, Beck 1999), and usually



24

a fixed length iteration 

analysts

designers

programmers

testers

queue
WIP

queue
WIP

queue
WIP

Fig. 3. The mini-waterfall anti-pattern (Larman & Vodde 2008), which is a remnant of an
matrix organization, is a common organizational anti-pattern in immature agile organiza-
tions. In Extreme Programming and Scrum there are no specialist roles, and optimally no
artifact handovers within an iteration (Schwaber & Beedle 2001, Beck 1999).

also throughout the project lifespan (Schwaber & Beedle 2001). However, Beck (1999)
proposes that early into product life-cycle the length could be longer, three weeks, whereas
in the “productionizing” stage the iteration length should be considerably shorter than in
the beginning, to allow rapid feedback from the customer.

As the team is cross-functional without any specific roles beyond those described
in Subsection 3.1.1, it also has no definite workflow during an iteration. Instead, all
team members work on all possible aspects of the development. There is also no defined
organizational structure within the team, or the iteration, the team is fully self-organizing
(Fig. 4). (Schwaber & Beedle 2001, Beck 1999, Larman & Vodde 2008). Optimally there
is also no handover of work in progress from one member to another (Larman & Vodde
2008). This can be contrasted with an organizational antipattern called mini-waterfall
(Fig. 3), which is an iterative pattern as all value is not delivered at once, but has
separate functional groups or teams doing analysis, design, programming and testing.
The mini-waterfall will increase the lead-time of new features and thus decrease the
adaptability of the organization as well as the value-ratio. The Work in Progress queues
and buffers aggravate the delay further due to natural variability in story or backlog item
sizes. Furthermore, the functional groups require varying amount of time to process each
story or requirement which will further constrain the flow of work. (Larman & Vodde
2008.)

In Scrum, iterations are called sprints, and their length was specified to 30 consecutive
calendar days (Schwaber & Beedle 2001). Schwaber (2004) further defines the rationale of
selecting the length of the sprint as the balance between sales department desiring instant
response to changes, and the need of the developers to be able to concentrate on their work
without interference. Furthermore Schwaber considers 30 days it as the maximum time
that the team can work without resorting to writing extra artifacts and documentation to
support its processes. Larman & Vodde (2008) suggest the length of 2 to 4 weeks for



25

a fixed length iteration 

a cross-functional team

Fig. 4. The iteration with cross-functional self-organizing team: in both Extreme Program-
ming and Scrum during the iteration the cross-functional team behaves as an inseparable
organizational unit with shared responsibility on the iteration goals. All members have end-
to-end responsibility on the teamwork, each participating in all aspects of value creation.
(Larman & Vodde 2008.)

Scrum. The sprint process is depicted in Fig. 5.
During a Scrum sprint, the Scrum team can seek outside advice. However, as the

Scrum team is completely self-managing, outsiders must not interfere with the Scrum
development team during a sprint unless first solicited by the Scrum development team
itself. If the Scrum development team is not able to complete all the items it has committed
to, it can negotiate with the product owner what items it should drop. Similarly, if the team
feels it has enough slack to complete more backlog items, it can solicit the product owner
to assign additional items to the sprint. (Schwaber & Beedle 2001.) Extreme Programming
(Beck 1999) is more allowing towards interference; the customer can ask for new stories
to be added to the ongoing iteration as he pleases, but in that case, equivalent amount of
lower priority work is removed from the iteration plan.

In large-scale software development, there often are multiple development teams
working on the same product concurrently. According to Larman & Vodde (2008), in a
large scale enterprise setting a Scrum eam would be working on the same product along
with other teams, would have work that is interdependent on the work of other teams and
would have a set of working agreements. Yet such team would still be responsible for
managing relations to the relevant stakeholders by itself and has distributed leadership
among team members.

3.1.3 Sprint goal

In Scrum, a sprint goal is a written objective on what should be accomplished within a
sprint. In the beginning of Scrum sprint, after the team the team has chosen a set of product
backlog items to work on, the team will also formulate the sprint goal statement based on
the set of selected product backlog items. The team is allowed to make adjustments to the
sprint plan, as long as it fulfills the sprint goal statement. (Schwaber & Beedle 2001). In
Extreme Programming iteration, the team is tasked to implement a set of high priority
stories. The equivalent of sprint goal statement is not used in Extreme Programming; the
team should consult the onsite customer whenever they want to change the iteration plan.
(Beck 1999.)



26

Fig. 5. Scrum sprint process overview (Schwaber & Beedle 2001, Leffingwell 2007)

3.1.4 Story

The essence of software development is the implementation of functionality that satisfies
the needs of the customers. According to Beck (1999), in Extreme Programming the
customer needs are described as customer-centered user stories. These user stories
originate from the customer role in XP. These stories may be described either informally
in the format “The (role) can do (something)”, or more formally in the format proposed by
Cohn (2004): “As a (role), I want (something), so that (benefit)”. Cohn argues that using
user stories helps focusing on delivering value to the customer, and the formal format
makes the business value of a requirement even more explicit. In Extreme Programming
the stories are often written only on index cards or post-it notes. (Beck 1999.)

In original Scrum the customer needs were called product backlog items. They are
not customer-centric user stories per se, but more broadly proposed changes — features,
functions, technologies, enhancements and bug fixes — that are considered by any
stakeholder to be a necessary or nice addition to the product(Schwaber & Beedle 2001,
Schwaber 2004). However, the user story concept is also applicable to product backlog
items (Larman & Vodde 2008).

The stories (product backlog items) might be split and combined as new knowledge
emerges, and their effort estimates be updated. Before they are implemented, they are
usually split so that several of them can be implemented by the team within a single
iteration (Schwaber & Beedle 2001, Beck 1999). Larman & Vodde (2008) propose that
they be split so that the resulting stories take no more than a quarter of an iteration to
implement from a team. In the context of this thesis, the term story is used exchangeably
with the term product backlog item.

3.1.5 Task

The stories are not used as such for managing and tracking the progress daily work in
either Scrum or XP. Instead a set of concrete engineering tasks is derived from the set of



27

selected stories, product backlog items or the sprint goal. Each engineering task has one or
several assigned people, who are working on the task and responsible for completing
it. The dependencies of tasks are not managed explicitly; instead it is assumed that the
self-managing team can resolve these issues themselves. The effort required complete
each task is estimated, and these effort estimations are the only means of tracking the
iteration status. (Schwaber & Beedle 2001, Beck 1999.) Beck & Fowler (2000) identify
three types of tasks in Extreme Programming: those that belong to a single story, those that
contribute to many stories at once, and technical tasks that do not belong to any story. In
Scrum the tasks are derived from the sprint goal, using the product backlog as a roadmap
(Schwaber & Beedle 2001).

In Scrum each task should be sized so that it takes approximately 4–16 person-hours to
complete, and larger tasks can be used as placeholders for tasks that have not yet been
refined to the appropriate size. Also, as unanticipated work related to backlog items is
discovered, a new task is created for it and appropriate estimations done. (Schwaber &
Beedle 2001.) Beck (1999) proposes that the size of tasks in Extreme Programming should
be 1–3 ideal developer days. According to Jeffries et al. (2000) the lower limit could be
only 2 to 4 hours in Extreme Programming.

The strategies used to assign responsibility of tasks are reviewed in Section 3.2.2,
the practices of selecting the next task to work on are reviewed in Section 3.2.3, the task
estimates and measurements are reviewed in Section 3.2.5.

The unit for task effort is usually hours, but might be other time related units (Schwaber
& Beedle 2001, Beck 1999). As the task is being worked on by a developer in Scrum, he is
responsible for re-estimating the effort needed to complete the task. If the required effort
was originally underestimated, the estimate might increase. (Schwaber & Beedle 2001.)

3.1.6 Backlogs

Backlog is a Scrum-specific term. Backlogs consist of future work to be done on the
product. The product and release level backlogs consist of stories, whereas the iteration
level plan consists of engineering tasks. (Schwaber & Beedle 2001.)

Product backlog

The Scrum product backlog is a list of requirements that are being considered to be
implemented in a product. The product backlog is always changing as new requirements
are discovered and business priorities change. The product owner is the sole person
responsible for ensuring that the product backlog is always up-to-date and prioritized. The
Scrum model as defined by Schwaber & Beedle (2001) has a single product backlog that
sets the priorities for development teams, and the development teams are not allowed to
work on any different set of priorities. The business decisions made by the product owner
are visible in the product backlog as the prioritization of backlog items. (Schwaber &
Beedle 2001.) In Extreme Programming the equivalent of product backlog would be the
set of all story cards that have not yet been assigned to any iteration (Beck 1999).



28

Status Hours of work remaining until completion

(Not started/

Started/

Task description Originator Responsible Completed) 1 2 3 4 5 6 7 8 9

Write release notes Pete Completed 8 8 8 6 0 0 0 0

Package alpha 3 Pete Susan Not started 16 16 16 16 16 16 16 16

Renew row layout Jim Not started 4 4 4 4 4 4 4 4

Add project backlog tab Jim Completed 16 16 10 4 0 0 0 0

Handle release stories without children Tom Not started 8 8 8 8 8 8 8 8

Implement showing stories on the list Kate In progress 16 16 16 16 16 16 16 8

Optimize the rendering in reloads Pete Richard/Pete Not started 32 32 32 32 32 23 32 32

Remove ”reload notifications” Kate Completed 4 4 4 0

Fig. 6. An example of displaying and managing the iteration plan: an example of sprint
backlog from Schwaber (2004).

Release backlog

In Scrum, the release backlog is a subset of product backlog that is selected by the product
owner to be completed before the next release to the customer. A release usually consists
of several sprints. As sprints are completed the product owner may make adjustments
to the remaining release backlog. These adjustments are reprioritizing backlog items,
adding new backlog items targeted to be completed in a release (upscoping), or removing
backlog items from a release (downscoping). (Schwaber & Beedle 2001.) Beck (1999)
specifies that the contents of a release are the stories the customer and the team have
chosen together to be included in the next release; this set is thus the equivalent of release
backlog in Scrum.

Iteration plan, or sprint backlog

Iteration plan (Beck 1999), or sprint backlog in Scrum (Schwaber & Beedle 2001), consists
of all tasks the team has figured it has to do within the iteration to meet the iteration
goal. The relations between iteration level concepts in Scrum are presented in Fig. 8,
and in Extreme Programming in Fig. 9. The difference is that in Extreme Programming
most tasks contribute explicitly towards individual stories, but some — for example
maintenance tasks — do not (Beck & Fowler 2000). In Scrum sprint backlog, all tasks are
directly derived from the sprint goal statement (Schwaber & Beedle 2001).

3.1.7 Impediment

A concept present in Scrum, Schwaber & Beedle (2001) define the term impediment as
anything that prohibits the team or a member from working with maximum efficiency
on the sprint goals. Impediments can be technical, as in network server being down, or
slow; managerial, as in being asked by the management to work on tasks that the team
member or the team did not commit to work on in the sprint; or engineering related, as in
uncertainty about how to continue working in the sprint. Schwaber & Beedle (2001) also
specify that Scrum master is responsible for tracking and removing the impediments.



29

Fig. 7. An iteration plan represented on a task board (Larman & Vodde 2008). The task
board shows that the team is approximately 50 % done.

3.2 Practices of daily work management in practitioner guidebooks

This section represents the 10 daily work management practices identified in the books.
The Extreme Programming software engineering practices are excluded by definition,
even though they would contribute to the sustainable velocity of the team.

3.2.1 Visual management of work

In Scrum, the product backlog is visible to everyone in the development organization;
however only product owner has authority to decide on the prioritization of product
backlog. Likewise, the sprint backlog is highly visible artifact that only the development
team itself can modify. The backlog item effort estimates in product backlog are used to
draw release burn-up graphs; likewise the task effort estimates in the sprint backlog are
used to draw the sprint burn-down graph (see Figure 10 on page 35), which is the central
tracking and analysis tool of the team performance during a sprint. (Schwaber & Beedle
2001, Schwaber 2004.)

In Scrum the iteration plan, or sprint backlog, is stored as a spreadsheet file on a
networked server that is accessible to every team member. The impediment list is proposed
to be tracked on a whiteboard in the team room. (Schwaber & Beedle 2001, Schwaber
2004.) According to Beck (1999) in Extreme Programming the stories and tasks are
written on special purpose note cards. As the developers sign up for a set of tasks, they
personally hold the stack of tasks to themselves, or they can be kept on a wall.

Other sources suggest various tools for differing reasons. Larman & Vodde (2008)



30

Sprint Team

Sprint goal

Product Backlog
Item

success is defined as meeting

consists of1..*

Sprint Backlog

Task

consists of1..*

work is managed in1

1

1

0..1 { at a time }

<<refine>><<refine>>

Team Member

current sprint

* { 2..10 } members

1

responsible

1..**

signed up
work

Fig. 8. Conceptual model of Scrum sprint level concepts. A UML class diagram.

Iteration Team

Story

success is defined as 
delivering completely

Iteration Plan

Task

consists of1..*

work is managed 
visually according to

1..*

1

1

0..1 { at a time }

Team Member

current iteration

* { 2..10 } members

1

responsible

1..**

signed up
work

Story-Building
Task

Technical
Task

Contribute towards the
complete implementation of

1..*

1..*

Implementation 
is elaborated by

{ complete,
  disjoint }

Fig. 9. Conceptual model of between Programming iteration level concepts. A UML class
diagram.



31

deviate by preferring visual management with physical tokens such as task board with
story and task cards over computer system. Their stance is that storing the data in a
computer system defeats the purpose of visual management, which is the handling of
work items as tangible objects — index cards and post-it notes. According to Larman &
Vodde (2008) the iteration plan should then be tracked on a visible taskboard with the note
cards moving from one column to another as they are started and completed. Larman &
Vodde (2008) argue that such practice will make the existence of queues and spurious
multitasking visible to the team.

Cohn (2005) argues that note cards are especially better than spreadsheets for collocated
teams, because they allow the entire team to participate in the iteration planning process,
whereas with a spreadsheet, only the person with keyboard may enter tasks. His opinion
is that allowing everyone to participate in the process simultaneously leads to more
democratic process and likely better results.

According to Leffingwell (2007) a spreadsheet for backlog status tracking together
with a wiki, index cards or whiteboard could be the ideal management to teams of less
than 10 collocated persons. However, as soon as the organization consists of multiple
teams — especially if the teams are geographically distributed — or teams of teams,
the intra-team and cross-team coordination poses challenges. Leffingwell further states
that to support such distributed scenarios the management environment should be not
only viewable by everyone but also updateable by everyone to keep track of the status of
features, log impediments and refresh effort estimates.

3.2.2 Assigning responsible members

All book sources suggest that the tasks should be preferably allocated to team members
based on their own willingness and initiative, and not by a manager. Auer & Miller (2001)
identify two basic strategies of assigning tasks to team members:

– One at a time: a team member picks the one task that he wants to work on, and
only after completing it chooses another one.

– Fill your bag: a team member volunteers for an iteration’s worth of tasks during
the iteration planning.

Both strategies have advantages and disadvantages. In the one at a time strategy a single
developer does not become the bottleneck, as dependent tasks are not yet allocated, the
disadvantage being that the effort estimates might not be as accurate, and thus it might be
more difficult to ensure that all committed-to tasks fit in the iteration. The advantage of
the fill your bag strategy is that every task now has ownership and thus possibly more
accurate estimates. Early allocation of tasks also facilitates communication, because it will
be known early to all relevant stakeholders who to contact if some details regarding the
implementation of a task has changed. (Auer & Miller 2001.)

Beck (1999) discusses both strategies and proposes that the fill your bag strategy be
used in XP, because in his opinion it is important that even the early estimate is done by
the original assignee to be able to balance the load. Later, Beck & Andres (2004) suggests
that the one at a time strategy could be also useful: the developer would select the task
card on top of the shared stack of task cards would be advantageous by promoting transfer
of learning; if the developer is not an expert in the work required for the task, he can pair
with a specialist. Larman & Vodde (2008) are also proponents of “one at a time”.

Cohn (2005) argues that one or two tasks at a time is the preferred method of signing
up for tasks in agile software development, as early assignment of responsibility “may



32

work against the unified commitment of the team”. Cohn (2005) also claims individual
estimation of tasks would do little to improve the estimates, arguing that collective
estimation of tasks produces good enough estimates. Cohn (2005) further adds that if the
tasks are allocated to individuals, they should nevertheless be estimated as a team, and still
considered shared.

Neither Schwaber & Beedle (2001), Schwaber (2004) nor Leffingwell (2007) discuss
task allocation strategies. Instead the Fill your bag strategy is used throughout these
sources without any explicit justification. In their views each task in the original Sprint
backlog should be assigned to one or several responsible team members in the latter half
of sprint planning meeting. However, the development team and individual team members
themselves are to decide who should be assigned which individual task.

Larman & Vodde (2008) claim that the selection task allocation might have a profound
impact on organizational transfer of learning. They report of a case, wherein the team
achieved permanent 20 % increase in feature velocity by utilizing a task selection method
called “least qualified implementer”, combined with “promiscuous pairing”. The least
qualified implementer method means that a developer would pick the task that he or she
would consider to be least qualified to implement of all team members. In promiscuous
pairing, the programming pairs are not fixed for the entire duration of the task, but the
expert members change pairs often, in this case every 90 minutes.

The choice of task allocation strategy additionally affects the practices selection of the
next task to work on (3.2.3), estimation of the task effort (3.2.5) and load balancing (3.2.7).

3.2.3 Selection of next task

When the iteration starts, whenever a previous task is finished or blocked, the team member
needs to choose the next task he works on. The books suggest various approaches of
choosing the next task. According to Auer & Miller (2001), if the “fill your bag” strategy
is used, the team member would prefer completing first those tasks he has signed up
for. If the “one at a time” strategy is used, or the team member has completed all tasks
he has signed up for, all tasks in the iteration backlog have not yet been started can
be considered. If the team practices pair-programming (Beck 1999), the team member
obviously also needs to find a pair for the task. Jeffries et al. (2000) note that the main
goal of each Extreme Programming iteration is to complete stories. Thus, if only a fraction
of previously committed to work can be successfully implemented in an iteration, it would
be better to fully implement some stories and not even start the lowest priority ones.

Beck (1999) suggests that the tasks should go through Extreme Programming planning
game, and thus the task cards have some kind of priority, however the completion order of
tasks is not discussed further. Also, some tasks are dependent on others, but the exact
order of execution is not to be planned beforehand and instead left to the team to decide
during an iteration. Beck & Andres (2004) propose that when “one at a time” strategy is
employed, the task cards could be stored in a stack, which is sorted by priority; the team
member needing more work would choose the topmost card and implement it with a pair.

Larman & Vodde (2008) advocate the previously mentioned least-qualified implementer
method of task selection, that is, of all possible tasks that the team member could work on
next, he should choose the one on which he has least expertise among the team members.
Schwaber & Beedle (2001), Schwaber (2004) and Leffingwell (2007) do not discuss
specifically discuss the execution order of tasks, except that it is left for the team and
the team members to decide. However, the product backlog is frozen during an iteration



33

and the backlog items are prioritized, thus the corresponding sprint backlog items can be
considered prioritized too.

3.2.4 Lightweight measurements

According to Schwaber & Beedle (2001), in Scrum the only general metric gathered during
the sprint are the effort left estimates of sprint backlog tasks. Particularly, the time spent
on tasks is not to be recorded at all, as it is seen as counterproductive (Schwaber & Beedle
2001). Schwaber (2004) also argues that explicitly comparing original effort estimates to
actualized number of hours spent on tasks in order to make the estimates better might lead
to lower quality as the developers sense the pressure to meet the estimates they have done.

Beck (1999) proposes that in Extreme Programming a special team role, Tracker,
gathers the metrics on team performance. The gathered data includes the actual effort
spent on each task being worked on and ideal effort left on each task. The Tracker
gathers this data by explicitly discussing with each developer, without disturbing the work
of developers unnecessarily. The Tracker also provides feedback to the developers by
comparing the actual effort spent to tasks with the original estimate of tasks.

However Auer & Miller (2001) suggest that the effort estimates should be done in
Ideal Time: “Ideal Time is time without interruption where you can concentrate on your
work and you feel fully productive”. Ideal time may be measured not only in ideal working
hours or days, but also in “task points” or “Gummi Bears”. Auer & Miller (2001) also
refer to Francesco Cirillo using a 30-minute tomato-shaped kitchen timer to track the
passing of ideal working time, and measuring the task efforts in “tomatoes” (“pomodori”
in Italian); Cirillo’s Pomodoro Technique is discussed in Section 3.2.10.

Beck (1999) proposes using big visible charts to aid the team work in Extreme
Programming. The charts display the changes of selected performance metrics over time;
the tracker role is concerned with gathering the required data and responsible for update
these charts. Unlike burn-down chart in Scrum, these charts are temporary; only those
metrics that are currently of interest should be recorded. Larman & Vodde (2008) warn
against using management measurements on lower process cycles, because they might
lead to the developers working towards the metric, not overall performance. Larman &
Vodde (2008) thus argue that any such measurements must be managed by the team itself,
not come from an outside source.

3.2.5 Status tracking

The realized status of an iteration is constantly or periodically compared to the iteration
plan (Schwaber & Beedle 2001, Beck 1999). In Scrum the status tracking of a sprint is
achieved by constantly keeping the effort estimates in the sprint backlog up-to-date. A
developer working on a task is responsible for estimating the remaining effort needed to
complete it at least every day. The unit of effort left is person working hour. The effort
estimates in the sprint backlog are used to create the sprint burn-down graph (See example
in Fig. 10). In the burn-down, time advances along the x-axis; the y-axis represents the
sum of remaining estimated effort to complete all tasks of the team at the given time. It is
the responsibility of the Scrum master to ensure that sprint burn-down graph is updated
daily. (Schwaber & Beedle 2001.)

The Scrum burn-down can be used to assess the viability of the sprint — if an
extrapolation of effort left does not seem to intersect the x-axis before the end of sprint, a



34

reduction in the sprint scope might be warranted (see Load balancing, 3.2.7). Changes in
sprint burn-down graph patterns compared to previous sprints may also signify problems
that might need to be addressed. The amount of work remaining can increase whenever
new tasks are discovered and added to sprint backlog, or previously underestimated
tasks have their efforts re-estimated; likewise the remaining effort estimate decreases as
progress is made, but also if the scope of an iteration is changed or overestimated tasks are
re-estimated. (Schwaber & Beedle 2001.)

Originally the Tracker role of Extreme Programming Tracker was responsible for
periodically asking the developers how much ideal development time they will require to
complete their set of tasks (Beck 1999). Auer & Miller (2001) suggest that the tracking of
the project status in Extreme Programming should be automated as much as possible. Most
of the measurements used in tracking the status of an iteration or project, such as number
of acceptance tests passed, could be gathered automatically. Then only certain data would
need to be input manually, most notably the person who took the responsibility of each
task, his original effort estimate and the actual effort spent on the task. The monitoring
responsibilities of Tracker role can then be distributed among the developers.

3.2.6 Status update meetings

Both Scrum and Extreme Programming prescribe daily status update meetings that are a
tool for the development team to synchronize on the status of other people. The sources
are unanimous on the structure of the daily status update meeting: each team member in
succession, addressing the team, answers to three questions:

– what the member has done during the previous heartbeat
– what the member is planning to work on during the next heartbeat
– what problems he is experiencing or foreseeing that impede optimal performance

Anything else does not belong to the status update meeting, and should be handled in
separate follow-up meetings.

Schwaber & Beedle (2001) call the status update meeting the Daily Scrum. The Daily
Scrum should be time-boxed to 15 minutes and every team member should preferably
participate personally, either by being present, or if telecommuting, via call-in. The Daily
Scrum should convene at the exactly same time on every working day in the same place.
The Scrum master chairs the meeting and enforces the Scrum rules. In the meeting only
the committed-in team members are allowed to talk, but in accordance with openness
the meeting can be attended by anyone in the organization. Schwaber & Beedle (2001)
suggest that those team members assigned to multiple teams should report and talk only of
that work that belongs to this Sprint and this team.

Schwaber & Beedle (2001) propose that senior management should especially attend
the Daily Scrum to monitor the progress of the team and to review the chances of success
within the sprint. Larman & Vodde (2008) compare this with the Toyota Production
System principle Genchi Genbutsu — go and see for yourself (Liker 2004).

Beck & Fowler (2000) note that many programmers view meetings as waste of
time; against this they state that a status update meetings have proven invaluable in
their experiences of Extreme Programming in that the meetings also facilitate team
communication, provided that the length of meetings stays within the time box.

The daily stand-up meetings are only supposed to facilitate in communicating problems,
not solving them. Any discussion that does not belong to the status update meeting
should be handled in follow-up meetings that are scheduled after the Daily Scrum has



35

Fig. 10. An example of iteration burn-down graph from Agilefant. The time unit used is
working hours.

adjourned; any team member may request a follow-up meeting to be held after the status
update meeting. In accordance with openness, anyone may attend the meeting. Unlike in
status update meetings, the participation in follow-up meetings is not mandatory for team
members. (Schwaber & Beedle 2001, Beck & Fowler 2000.)

3.2.7 Measuring and balancing workload

Load balancing is the activity of changing the scope of commitment in the middle of
an iteration. As iterations are always fixed in length, and the difficulty of work can
never be accurately estimated beforehand, a team member or the entire team may have
overcommitted to amount of work that cannot be successfully completed within the
boundaries of the iteration time box, and the load must be rebalanced. (Beck & Fowler
2000, Schwaber & Beedle 2001.) There are two kinds of overload requiring rebalancing
intervention: internal and external overload. In internal overload the remaining work that
the team members have been assigned responsible for, is unevenly distributed (see Fig.
12). In external overload the team as a whole has underestimated the effort required to
implement the entire sprint backlog (Fig. 11). (Beck & Fowler 2000, Schwaber & Beedle
2001.)

The remaining work of the entire team is always visible from the burn-down diagram
(Schwaber & Beedle 2001), or is assessed by the Extreme Programming tracker role, as
discussed in Section 3.2.5 (Beck 1999). There are two possible ways the team can balance



36

Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue

Member 1

Member 2

Member 4

Member 5

Member 3

Member 6

Elapsed time Estimated effort left Overload

2-week iteration

Fig. 11. External overload. Three working days and a weekend is remaining, and the ef-
fort estimates indicate the team would require two additional working days to complete the
iteration plan in the present scope.

Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue

Member 1

Member 2

Member 4

Member 5

Member 3

Member 6

Elapsed time Estimated effort left Overload

2-week iteration

Fig. 12. Internal overload without external overload. Three working days and a weekend
are remaining. Team members 1 and 5 have committed to too much work, whereas team
members 2, 3, 4 and 6 have slack. The team as a whole needs less working hours to complete
the iteration than there are available. Thus the team can deliver the increment as planned, if
others take tasks from the overloaded members.



37

its external load. Firstly, it may achieve it by reducing the scope of implementation of one
or several product backlog items or stories (Schwaber & Beedle 2001). Secondly, by
negotiating with the customer or product owner if one or several stories or product backlog
items could be postponed until a future iteration. (Beck & Fowler 2000, Schwaber &
Beedle 2001.)

The workload of an individual team member consists of the tasks he or she has signed
up to be responsible for. Auer & Miller (2001) suggest that one advantage of the one at a
time task allocation is that it balances the internal workload implicitly. Auer & Miller
(2001) also note that if Fill your bag strategy is employed, the unevenness in workloads
may be non-negligible. In such case during the last days of an iteration those who finished
their tasks early will then aid those who have still work remaining (Beck & Fowler 2000).
If the team consists of specialists with highly varied skills and knowledge, it might not be
possible for the other members to aid the overloaded member. Such specialists can more
easily become bottlenecks within the team and thus decrease the productivity of the team,
unless they share their knowledge to the other members of the team. (Larman & Vodde
2008.)

Neither Extreme Programming nor Scrum includes the notion of tracking individual
workload automatically. However, the data of remaining effort for each developer is
available in the Scrum sprint backlog (Schwaber & Beedle 2001), or possibly in an
automatic tracking system (Auer & Miller 2001). If the automatic tracker system is not
used, it is the tracker role that periodically asks from every team member how much time
they will need to complete their task set (Beck 1999). Finally, the team member can
actively request help from other team members, or report the infeasibility of completing
his tasks as an impediment in a stand-up meeting (Auer & Miller 2001, Schwaber &
Beedle 2001).

3.2.8 Impediment tracking and handling

Schwaber & Beedle (2001) suggest that if during a stand-up meeting team member
reports an obstacle impeding optimal work performance, the Scrum master is responsible
for recording and removing that obstacle. The impediments are to be recorded on the
team white board. Removing the impediments is the top-priority duty of the Scrum
master. Larman & Vodde (2008) recommend that deeper causes of impediments should be
thoroughly studied in retrospective meetings after the sprint has ended.

Leffingwell (2007) propose that a multi-team organization should have an executive
manager role called Scrum sponsor, who would be responsible for managing the organiza-
tional impediment backlog, in essence working as its product owner. The organizational
impediments that are beyond the control of individual teams and their Scrum masters
are added to this impediment backlog. The Scrum masters in teams would consider this
prioritized list of impediments as their own product backlog, working on the backlog items
in priority order, removing these impediments one by one.

The Extreme Programming sources do not propose any particular practices for
recording and removing those impediments that are reported in daily stand-up meetings.

3.2.9 Dedicating team members

Team members are dedicated to a team during an iteration if they have committed to
contribute to only to the assignments of that team during the iteration. The contrary



38

practice is called timesharing; a timeshared person is a committed to contribute productive
work in multiple teams during a single iteration. (Larman & Vodde 2008)

Schwaber & Beedle (2001) suggest that timesharing is a standard practice in Scrum,
noting that not all expertise is available in the organization that every Scrum team can get
a specialist in certain fields. In such case the person can be allocated partially to several
projects. The person needs then personally track his commitments so as not to exceed the
partial allocation. However in a later Scrum book, Schwaber (2004) discourages the use of
timesharing and recommends that each team should have among dedicated team members
all necessary skills to complete the sprint goal; Schwaber (2004) also recommends that if
this proved to be impossible, the shared team member should commit only to his or her
primary team, and serve only in an advisory role on the other. Larman & Vodde (2008)
agree, citing Jensen (1996): “Part-time people equate to part-time commitment. Part-time
commitment leads to team failure” and thus recommend maximizing the dedication of
team members to a single team.

None of the studied Extreme Programming sources discuss the possibility of sharing
team members with other teams. However, it is the understanding of the author that these
sources implicitly assume that all team members are dedicated to their teams.

3.2.10 Maintaining focus and establishing cadence

The two complementary self-management practices for achieving sustainable pace are
preserving the focus and establishing overall cadence (Cohn 2005). According to Cohn
(2005), maintaining focus at the task at hand is essential, because task-switching always
incurs a penalty. Cohn (2005) also argues that rhythm is essential to achieving sustainable
pace.

Larman & Vodde (2008) and Leffingwell (2007) both note that the iteration time box
provides a natural rhythm that paces the teamwork; they both argue that the iteration length
should be fixed throughout the organization. Larman & Vodde (2008) and Leffingwell
(2007) both also state that if any non-continuous events, such as design meetings, are to
be held in every iteration, they should be always held at the exact intervals to promote
cadence. Leffingwell (2007) discusses an artifact called iteration cadence calendar, that
can be used to schedule periodic events in iterations.

To retain focus on the current task, Cohn (2005) recommends the one-at-a-time task
allocation for the team, as then the developer does not have a large set of tasks to choose
from. In addition, Cohn (2005) suggests the use of the Pomodoro technique (Cirillo 2006).
In Pomodoro technique, the team works in 30-minute increments, focusing on work for
25 minutes, and having a 5-minute forced pause before next increment. This effectively
establishes a mini-cadence for the team.(Cohn 2005.) Cirillo (2006) claims that using the
Pomodoro technique, one could become better at estimating tasks, as the sense of passing
time is made explicit. Furthermore, the technique would aid in measuring the external
interruptions and interference, and mitigating their negative effect. (Cirillo 2006.)

3.3 Summary of team tools according to the book review

The tools from book sources are listed in Table 3. There are three different tools used to
manage the iteration plan. The plan might be managed as tasks written on cards or post-it
notes that are represented visually on a task board (for example Cohn (2005)). The plan
might also be stored in a spreadsheet file, as was done originally in Scrum (Schwaber &



39

Table 3. The tools proposed by the reviewed books.

Tool Source

B
ec

k
(1

99
9)

B
ec

k
&

Fo
w

le
r(

20
00

)

A
ue

r&
M

ill
er

(2
00

1)

Sc
hw

ab
er

&
B

ee
dl

e
(2

00
1)

Sc
hw

ab
er

(2
00

4)

(B
ec

k
&

A
nd

re
s

20
04

)

C
oh

n
(2

00
5)

L
ef

fin
gw

el
l(

20
07

)

L
ar

m
an

&
Vo

dd
e

(2
00

8)

Cards, post-it notes x x x - - x x x x
Taskboard x x x - - x x x x
Spreadsheet files - - - x x - x x x
Burndown graphs - - - x x - x x x
Temporary measurement graphs x x x - - x x - -
Specialized management software - x - - - - - x -

Legend: x = the source recommends the tool, - = the source does not recommend the tool or does not discuss it

Beedle 2001); the rows in the spreadsheet are the engineering tasks. The third way would
be to store them in a specialized management information system that would provide the
advantages of tangible cards and easily updateable spreadsheet file, while minimizing their
disadvantages (Leffingwell 2007).

While a taskboard or a spreadsheet file is useful to demonstrate the current status
of the iteration, the overall trend of progress over the iteration is best represented on
the burndown graph (Schwaber & Beedle 2001). If spreadsheet is used to store the
iteration plan, the burndown can be embedded on it and updated automatically; with
taskboard, someone must calculate the effort remaining to complete all the tasks and
update the burndown graph with a pen (Cohn 2005). A specialized tool would be able
to generate these graphs automatically (Leffingwell 2007). The Extreme Programming
sources prescribe similar big visual charts for visualizing quality measurements. Unlike
burn-downs, these charts are considerd temporary and should be removed from sight when
they have served their purpose. (Beck 1999.)

3.4 Conclusions on the literature requirements

While some sources advocated specialized backlog management tools for supporting team
work (Leffingwell 2007, Auer & Miller 2001), others explicitly recommend low-tech tools
over high-tech. All sources agree, however, that the team should use the tools that it is
comfortable with for managing the iteration. Thus to be a viable alternative to the low-tech
tools, a management information system has to be at least as usable. Heikkilä (2008) has
studied the requirements of a backlog management tool on the level of conceptual model,
but this approach is not sufficient to maximize usability. An information system must also
support all necessary interactions with the model.

Also, as Scrum and XP are empirically controlled, there is no standard process for
managing daily work. Thus, a daily work management tool should either actively support,



40

or at least not make more difficult than with the standard tools — be it taskboard or
spreadsheet — all management practices found in this literature review.



4 Analysis of the software tool before enhanced support for
daily work

The conceptual model of Agilefant is represented in figure 13 as a UML class diagram.
Agilefant corresponds more closely to the Extreme Programming conceptual model (figure
9) than the original Scrum model (figure 8). There is one notable addition compared to the
conceptual models of these methods: hierarchical stories and their traceability. A story can
have any number of children; these form a generalized unlimited hierarchy, of which the
Leffingwell’s (2008) Epic–Feature–Story hierarchy is a specialized subset. Only leaf
stories — stories that do not have any children — can be assigned into iteration backlogs;
both branching stories and leaf stories can be present in either product or project backlogs.

There are also several deviations from both Extreme Programming and Scrum. The
most obvious difference is the lack of proper teams in Agilefant. In Agilefant the “team”
is simply a list of developers that can be used as a shortcut when assigning people to
iterations or projects. A developer may be a member to unlimited number of “teams” and
there can be an unlimited number of members in a “team”. However, only users can be
assigned to iterations, projects, stories and tasks, not teams. This also means that a newly
added team member does not inherit any of the responsibilities or assignments; each of
these must be applied individually. Also, the iteration backlog is semantically part of the
project backlog, and thus can only contain artifacts from one project or product backlog.

In Agilefant, the iteration backlog also directly contains the stories, or the product
backlog items; as was noted in Section 3.1, the contents of an iteration plan are the tasks
that the team has devised to build the shippable increment. Also, leaf stories must be
conceptually moved from product or project backlog to an iteration backlog, before they
can be split into tasks and implemented. However this is a subtle difference, as an iteration
backlog is semantically a part of project backlog also, and project backlog is part of a
product backlog.

The entities within every container — that is, stories in backlogs and tasks in stories or
iteration backlogs — have only a total priority order among their own. This deviates from
Scrum or Extreme Programming, where all iteration tasks can be prioritized in relation to
each other, regardless of with which stories or product backlog items they are related.
In Agilefant it is impossible to tell if a task not related to any story is more important
than some task that belongs to a story; also, lower priority tasks in a high-priority stories
might be less important than highest-priority tasks in a low-priority story — this kind of
information cannot be made visible by the ordering of tasks in iteration backlog.



42

Leaf Story

Product backlog

tasks

*
Story Project backlog

Iteration backlog

*

1 parent

projects

*

1

stories

backlog
Backlog

Higher Level 
Story

iterations

1

parent

0..1
parent
story

child stories

only leaf stories 
in iteration 
backlog

1..*

Task

Story Task
Task Without 
Story

*

story 1

iteration 1

*

assigned tasks

A set of stories can form 
a story tree hierarchy. All
stories must reside in a 
backlog; only leaf stories
are allowed in an iteration 
backlog.

UserTeam
*

teams

members

*

Task

Story

Project backlog

assigned stories

assigned projects

*

*

*

*

*

*

assignees

responsible

responsible

tasks

Iteration backlog

* assignees

assigned iterations

*

{ complete,
   disjoint }

{ complete,
   disjoint }

{ complete,
   disjoint }

Fig. 13. High-level conceptual model of entities and their relations in Agilefant, a UML 2.0
class diagram. For clarity, the diagram is divided into two parts; the upper part depicts
the backlogs, stories and tasks, and the lower the user entity and its relations. Some minor
concepts, such as timesheet entries, that are of no interest to this thesis have been omitted.



43

4.1 Support for visual management of work

Agilefant represents the iteration backlog stories as rows in a table in the iteration backlog
view; likewise, the tasks without story are represented in their own table. This approach
resembles original Scrum, wherein the various backlogs were stored in spreadsheets
(Schwaber & Beedle 2001, Schwaber 2004) (see also figure 6). Tasks within stories are
not visible by default; the story contents can be expanded by clicking on a small arrow
figure. Agilefant does not have the taskboard view (7) at all, even though the task board
representation is preferred over the spreadsheet representation by the recent literature
(Larman & Vodde 2008, Leffingwell 2007, Cohn 2005).

Each task and each story has a status field; there are 6 fixed, color-coded states: not
started, started, pending, blocked, ready and done. Agilefant does not dictate any workflow
or order for these states, except that when created, the tasks are not started - and that a task
that is done, is marked as done. The remaining four can be considered different conditions
in between these extremes: started can be used as in Scrum or Extreme Programming
to signify that the task is being processed by responsible members. The blocked state
can be used to signify that work on the task is blocked due to some internal or external
condition, and that no progress will be made before the obstacle is removed. Pending tasks
are being processed by external parties, such as orders for new tools, and require currently
no attention from the team. Finally, a ready task is one that is completed but is not yet
reported in a daily stand-up meeting, or has not yet been verified.

Agilefant automatically displays an iteration burndown view on the iteration backlog
page; it is based on the history and the current sum of effort estimates among the tasks in
iteration backlog. No other measurements are visualized, even though the data model could
support them. Also, as a deviation from Scrum, there is no separate, visible impediment
list.

4.2 Support for assigning responsible members

Agilefant supports both fill-your-bag and one-at-a-time task allocation strategies. Volun-
teering is supported, but not explicitly, as anyone can assign any task to others with the
exactly same cumbersome procedure as they can assume the responsibility for themselves.
Each task can have multiple responsible users. Furthermore, each story can have any
number of responsible users. If a task within a story does not have any responsible
developers, the task semantically inherits the assignees from its parent story.

4.3 Support for selection of next task

A new task to work on can be selected from the iteration backlog view. This is easy for the
one-at-a-time task allocation; the developer can choose the first not started task from the
highest-priority not-completed story and start working on it. If the fill-your-bag approach
is used, the developer must specifically look for tasks he has signed up for; this can be
tedious especially if the backlog is very large (10 team members and 30-day iterations
would mean a backlog of hundreds of tasks if each task is sized between 4 and 16 hours).
If the developer is not dedicated to a single project, or single iteration/sprint, he must go
through all current iteration backlogs looking for the items he should be working on.



44

4.4 Support for measurements

Along with the necessary effort estimates, Agilefant also allows tracking spent effort, using
the optional timesheets functionality. The timesheet entries must be inputted manually.
Recording of any other iteration level measurements is not supported.

4.5 Support for status tracking

The status of an iteration can be tracked by various means in Agilefant, though only one is
automated: on iteration plan view, an iteration burn-down graph is displayed, using the
sum of effort estimates from tasks. A team member can update effort estimates on tasks
from the iteration plan view. Again he must specifically locate the task among the various
iteration backlogs to adjust the estimate. No other possible status indicators, such as the
number of remaining stories or remaining story points, are calculated automatically.

4.6 Support for status update meetings

A mere report in an information system should never replace the status update meeting
(Larman & Vodde 2008). Nevertheless, an information system should reflect the status of
the team and the team members as accurately as possible, especially in situations where
the team is not collocated (Leffingwell 2007). Thus the support for status update meetings
means that the answers to the three questions are reflected on the information system.

The answer to the first question of status update meetings can be reflected in two ways
in Agilefant. A team member can refer to data shown in timesheet functionality to answer
what he has been doing during the previous heartbeat. Optionally, the team may decide to
use the ready status on tasks to signify tasks that have not yet been reported in status
update meetings; after the meeting they could be marked as done.

Answering the question on what the team member is planning to work on during the
next heartbeat is supported if one-at-a-time task allocation scheme is chosen; then the team
member can mark himself responsible for those tasks before the status update meeting
convenes; he can show the started tasks in iteration backlog view. This is not applicable
for the fill-your-bag strategy, as the team member has volunteered responsible for the task
during the iteration planning. He might, however, signal his intentions to work on a task
by marking the state of the next tasks as started, or pending.

The reflection on third question, or what is impeding the progress of a member or the
entire team, is not explicitly supported. If the impediment is related to a single task, a
developer might put a task to blocked state and provide the description of the impediment
in the description field. However, as not all impediments are task-related, and as the
Scrum master in Scrum might have to be able to prioritize impediments, this approach is
insufficient. Two possible workarounds exist: the Scrum master might create another story
in the iteration backlog containing the descriptions of all current impediments as tasks, or
have a separate backlog for impediments. The first one implicitly assumes that the Scrum
master is able to remove the impediments within the boundaries of the iteration, while the
second one has poorer usability, as the impediment backlog is not visible alongside the
ordinary iteration backlog, and thus not ordinarily visible to the team.



45

4.7 Support for load measuring and balancing

Agilefant lacks the support for calculating the external workload of the team, thus noticing
external overcommitment is more difficult. However, if the team is assigned to only
one iteration, external workload is visible in the iteration backlog view and in iteration
burndown graph. External workload per team member is not calculated automatically.

Internal workload is displayed graphically on daily work view; it is based on the
remaining effort estimates of committed to tasks. However, Agilefant places restrictions
on the time units of the tasks; they must be in ideal man-hours and minutes. If the task has
shared responsibility, the effort is divided equally among the responsible members. When
using fill-your-bag task allocation, an undercommitted team member who is willing to
help overcommitted team members must go through all team members by name in daily
work to see who is the most overloaded one.

4.8 Support for impediment tracking and handling

As noted in Subsection 4.6, Agilefant does not have a specialized impediment backlog,
and tracking of impediments can be achieved through a special “Impediments” story, or
through creating a separate iteration backlog for impediments.

4.9 Support for stable teams and dedicated team members

Agilefant does not consider teams as first class entities. On the contrary, assigning a
backlog, task, or story to a team is just a functional equivalent and shortcut for assigning
that entity to each and every current team member. This has some consequences such
as making the team feature velocity difficult, if not impossible, to calculate. Also, as
noted in Subsection 4.7, the lack of real team concept leads to difficulties in measuring
and balancing the external overload, especially if the team is working on several projects
simultaneously.

4.10 Support for maintaining focus and establishing cadence.

Agilefant does not have any features that would support maintaining focus or establishing
cadence.

4.11 Conclusion

Agilefant as a research-originated tool is a significant improvement over the prior research
tools, such as Bryce or XPSWiki in terms of usability, due to client-side programming that
allows concurrent edits and real-time view to the data. Despite this, as such it does not
sufficiently support the daily work management practices in the book; thus, mature Scrum
and Extreme Programming teams following the methods by the books would consider
spreadsheets files and physical tools superior in daily work management due to their
flexibility.



5 The results of daily work management workshop and
prioritization

5.1 Results of the experience exchange workshop

The teams wrote a total of 69 user stories; 26 of these were written by the participants
from product companies, 21 by the participants from project companies. The remaining 22
stories were written by the researchers. Some of the proposed stories had two pieces of
functionality separated by the conjunction ”and”; these were split into two separate stories,
resulting in a total of 83 stories. 13 of the resulting stories were duplicates of others, or out
of the scope of daily work; 14 described features that were already implemented in the
tool were also discarded (See Appendix IV for the list of discarded stories).

Not all remaining user stories were independent of each other — most of them
described functionality that was partially shared with a set of stories. These sets of
codependent stories were considered to form a set of completely independent features. In
a thorough analysis, 26 features were identified. The names of these features and names of
their constituent stories are listed in Appendix I. The full texts of created user stories and
features are listed in Appendix III.

5.2 Results of the prioritization

11 representatives answered the questionnaire, representing 9 organizations. 7 of these
organizations were users of Agilefant. The positions held by the interviewees and the
company profiles are listed in Appendix V; individual prioritization results are available in
Appendix VI on page 93. The combined results are in Table 4. The table is ordered by
value, highest-valued feature on top. The value of a feature is shown as a fraction of the
total value of all features; the cumulated value for a feature is the sum of the value of
this story and all higher-ranked stories. Each interviewee had equal, 1

11 weight in the
final prioritization. Table 4 shows that the highest-valued feature is the team view, with
19.8 % of the value assigned by the stakeholders. The prioritization results also show
that 14 highest-priority features provide over 80 % of estimated value to the stakeholders
(Fig. 14). However, Fig. 15 shows that the number of votes cast to individual features
by interviewees vary significantly. In addition, 25 of the 26 features were considered
worthless by at least one interviewee. One interviewee had cast only 1 % of his available
votes to the 26th feature, Team view (1), whereas another had cast 80 %. This shows that
preference for this set of features is not uniform.



47

Table 4. Final results of the prioritization. The features are sorted by their share of votes. The
cumulated share is the sum of shares for this and all higher-ranked features. The features above the
double line represent more than 80 % of votes cast.

Rank Feature name Share of votes Cumulated share
1 Team view 0.198 0.198
2 Consolidated task and story list 0.082 0.280
3 Individual load balancing 0.075 0.355
4 Task deadlines 0.075 0.430
5 Work queue 0.066 0.496
6 Task splitting 0.051 0.547
7 Strategy-to-action (top-down) 0.045 0.592
8 Visibility into calendar 0.040 0.632
9 Strategy-to-action (bottom-up) 0.038 0.670

10 Notifications 0.037 0.707
11 Stand-up-support 0.031 0.738
12 Impediment handling 0.028 0.766
13 Support for WiP reduction 0.025 0.791
14 Monitoring spent effort limits 0.024 0.815
15 Working on now-task 0.024 0.839
16 Filtering tasks 0.023 0.862
17 Task quick-add 0.023 0.885
18 Periodic tasks 0.022 0.907
19 Exporting tasks as appointments 0.018 0.925
20 Do not disturb -sign 0.017 0.942
21 Making resource stealing visible 0.012 0.954
22 Ticket/mail notification integration 0.012 0.966
23 Newsfeed 0.010 0.976
24 Reminders 0.009 0.985
25 Pomodoro support 0.009 0.994
26 Over-/undertime slider 0.006 1.000

5.3 Selection of features for detailed analysis

As many of the features received only nominal support, it was decided that it was not
necessary to study them at this stage. Thus an arbitrary limit was chosen: the minimal
set of features that would provide 80 % of value would be selected for detailed analysis
and for possible implementation. According to the prioritization results, the 14 topmost
features would cover more than 80 % of all cast votes (Table 4, Fig. 14 on the next page).
Detailed analysis on these features is in Chapter 6.



48

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

T
e

a
m

 v
ie

w

C
o

n
so

li
d

a
te

d
 t

a
sk

 a
n

d
 s

to
ry

 li
st

In
d

iv
id

u
a

l l
o

a
d

 b
a

la
n

ci
n

g

T
a

sk
 d

e
a

d
li

n
e

s

W
o

rk
 q

u
e

u
e

T
a

sk
 s

p
li

tt
in

g

S
tr

a
te

g
y

-t
o

-a
ct

io
n

 (
to

p
-d

o
w

n
)

V
is

ib
il

it
y

 i
n

to
 c

a
le

n
d

a
r

S
tr

a
te

g
y

-t
o

-a
ct

io
n

 (
b

o
tt

o
m

-u
p

)

N
o

ti
fi

ca
ti

o
n

s

S
ta

n
d

-u
p

-s
u

p
p

o
rt

Im
p

e
d

im
e

n
t 

h
a

n
d

li
n

g

S
u

p
p

o
rt

 f
o

r 
W

iP
 r

e
d

u
ct

io
n

M
o

n
it

o
ri

n
g

 s
p

e
n

t 
e

ff
o

rt
 l

im
it

s

W
o

rk
in

g
 o

n
 n

o
w

-t
a

sk

F
il

te
ri

n
g

 t
a

sk
s

T
a

sk
 q

u
ic

k
-a

d
d

P
e

ri
o

d
ic

 t
a

sk
s

E
xp

o
rt

in
g

 t
a

sk
s 

a
s 

a
p

p
o

in
tm

e
n

ts

D
o

 n
o

t 
d

is
tu

rb
 -

si
g

n

M
a

k
in

g
 r

e
so

u
rc

e
 s

te
a

li
n

g
 v

is
ib

le

T
ic

k
e

t/
m

a
il

 n
o

ti
fi

ca
ti

o
n

 i
n

te
g

ra
ti

o
n

N
e

w
sf

e
e

d

R
e

m
in

d
e

rs

P
o

m
o

d
o

ro
 s

u
p

p
o

rt

O
v

e
r-

/u
n

d
e

rt
im

e
 s

li
d

e
r

Fig. 14. The cumulative value of features in priority order as a fraction of the value of all
feature.



49

0

50

100

150

200

250

300

350

T
e

a
m

 v
ie

w

C
o

n
so

li
d

a
te

d
 t

a
sk

 a
n

d
 s

to
ry

 li
st

In
d

iv
id

u
a

l l
o

a
d

 b
a

la
n

ci
n

g

T
a

sk
 d

e
a

d
li

n
e

s

W
o

rk
 q

u
e

u
e

T
a

sk
 s

p
li

tt
in

g

S
tr

a
te

g
y

-t
o

-a
ct

io
n

 (
to

p
-d

o
w

n
)

V
is

ib
il

it
y 

in
to

 c
a

le
n

d
a

r

S
tr

a
te

g
y

-t
o

-a
ct

io
n

 (
b

o
tt

o
m

-u
p

)

N
o

ti
fi

ca
ti

o
n

s

S
ta

n
d

-u
p

-s
u

p
p

o
rt

Im
p

e
d

im
e

n
t 

h
a

n
d

li
n

g

S
u

p
p

o
rt

 f
o

r 
W

iP
 r

e
d

u
ct

io
n

M
o

n
it

o
ri

n
g

 s
p

e
n

t 
e

ff
o

rt
 l

im
it

s

W
o

rk
in

g
 o

n
 n

o
w

-t
a

sk

F
il

te
ri

n
g

 t
a

sk
s

T
a

sk
 q

u
ic

k
-a

d
d

P
e

ri
o

d
ic

 t
a

sk
s

E
xp

o
rt

in
g

 t
a

sk
s 

a
s 

a
p

p
o

in
tm

e
n

ts

D
o

 n
o

t 
d

is
tu

rb
 -

si
g

n

M
a

k
in

g
 r

e
so

u
rc

e
 s

te
a

li
n

g
 v

is
ib

le

T
ic

k
e

t/
m

a
il

 n
o

ti
fi

ca
ti

o
n

 in
te

g
ra

ti
o

n

N
e

w
sf

e
e

d

R
e

m
in

d
e

rs

P
o

m
o

d
o

ro
 s

u
p

p
o

rt

O
v

e
r-

/u
n

d
e

rt
im

e
 s

li
d

e
r

800

0

50

100

150

200

250

300

350

T
e

a
m

 v
ie

w

C
o

n
so

li
d

a
te

d
 t

a
sk

 a
n

d
 s

to
ry

 li
st

In
d

iv
id

u
a

l l
o

a
d

 b
a

la
n

ci
n

g

T
a

sk
 d

e
a

d
li

n
e

s

W
o

rk
 q

u
e

u
e

T
a

sk
 s

p
li

tt
in

g

S
tr

a
te

g
y

-t
o

-a
ct

io
n

 (
to

p
-d

o
w

n
)

V
is

ib
il

it
y 

in
to

 c
a

le
n

d
a

r

S
tr

a
te

g
y

-t
o

-a
ct

io
n

 (
b

o
tt

o
m

-u
p

)

N
o

ti
fi

ca
ti

o
n

s

S
ta

n
d

-u
p

-s
u

p
p

o
rt

Im
p

e
d

im
e

n
t 

h
a

n
d

li
n

g

S
u

p
p

o
rt

 f
o

r 
W

iP
 r

e
d

u
ct

io
n

M
o

n
it

o
ri

n
g

 s
p

e
n

t 
e

ff
o

rt
 l

im
it

s

W
o

rk
in

g
 o

n
 n

o
w

-t
a

sk

F
il

te
ri

n
g

 t
a

sk
s

T
a

sk
 q

u
ic

k
-a

d
d

P
e

ri
o

d
ic

 t
a

sk
s

E
xp

o
rt

in
g

 t
a

sk
s 

a
s 

a
p

p
o

in
tm

e
n

ts

D
o

 n
o

t 
d

is
tu

rb
 -

si
g

n

M
a

k
in

g
 r

e
so

u
rc

e
 s

te
a

li
n

g
 v

is
ib

le

T
ic

k
e

t/
m

a
il

 n
o

ti
fi

ca
ti

o
n

 in
te

g
ra

ti
o

n

N
e

w
sf

e
e

d

R
e

m
in

d
e

rs

P
o

m
o

d
o

ro
 s

u
p

p
o

rt

O
v

e
r-

/u
n

d
e

rt
im

e
 s

li
d

e
r

800

Fig. 15. Distribution of the number of votes given by each interviewee to features, repre-
sented as a box plot. The values on the box plot are from bottom to top: the minimum, the
first quartile, the median, the third quartile and the maximum of the number of votes given
by an individual to the feature.



6 Analysis, design and proof-of-concept implementation of
selected features

6.1 Implemented new features

This section discusses the 4 new features that were implemented into Agilefant. The
implemented features were “consolidated task and story list”, “work queue”, “task
splitting”, “strategy to action (bottom-up)”. These features represent 23.7 % of all votes
given in the prioritization phase.

6.1.1 Consolidated task and story list

The highest valued feature that was implemented was “consolidated task and story list”.
The feature was described in three user stories. According to the first, a person with many
simultaneous assignments in several iteration backlogs simultaneously needs to be able
to see the collection of work he is supposed to work on during a given time period so
that he does not have to visit several backlogs to find the items he should be working on.
Second suggests that on that view, the person should be able to see the context where his
assigned tasks belong to — including the story, iteration, project and product — to make
prioritization of work easier. The last one proposes that the tasks should be in a sensible
priority order. This proposed view essentially cuts across several of the identified daily
work management practices.

The task and story list view is an information radiator, and thus covers the visual
management paradigm (3.2.1); it also can be seen as the virtual counterpart of the original
visual management practice of Extreme Programming, where the developer would literally
have a set of cards to work on his desk. However, the downside of paper and pencil
practice would be that no other could see the status of these tasks easily.

Usefulness of the view depends on the used task allocation mechanism (3.2.2). If
one-at-a-time is used, the person would most often have only one task assigned to him at
any given moment, and the ordering in this view would not be significant. However, if
fill-your-bag is in use, the view would contain tens of tasks, and then the ordering and the
displayed information becomes significant.

When fill-your-bag task allocation is used, the user would use this view to select the
next task to work on (3.2.3), as it lists only those tasks that have been assigned to him. To
aid in the selection of the next task, the view should list the tasks of the user in sensible
priority order. Furthermore, as a story that is not done is worthless (Jeffries et al. 2000), it
is better to select a task from a story that is almost complete instead of starting a task in a



51

My work queue

My stories

# Labels Name Points Context State Responsibles Σ(EL) Σ(OE) ES Edit

Feature Z 20 Sprint 1 [?] AP 40h 11h — Edit 

Labels

Parent story

Reference ID story:1

Description (empty)

Tasks

# Name State Responsibles EL OE ES Edit

Implement part 1 of Z AP — 4h — Edit 

Implement part 2 of Z AP, DR — 5h — Edit 

Implement part 3 of Z DR 40h 2h — Edit 

Feature Y 8 Sprint 1 [?] AP 28h 28h — Edit 

My tasks without story

# Name State Context Responsibles EL OE ES Edit

Update SVN Client Sprint 1 [?] AP — — — Edit 

Fig. 16. The consolidated task and story list. The view for a fictional user AP are shown.
Above are the currently active stories (“Feature X” and “Feature Y”); below, the tasks with-
out stories (“Update SVN Client”).

not started story.
As this view consolidates assignments from various sources, it could naturally be

used by the users to enter measurements on current tasks (3.2.4), such as to log the effort
spent; to provide the estimates on effort remaining for status tracking (3.2.5); and for the
user to observe his current workload (3.2.7). And because they are his highest priority
assignments, the Scrum master of a team should have the team impediments displayed
prominently on this list (4.8).

The consolidated story and task list view feature was designed based on these criteria
(Fig. 16). The view shows all assigned and currently active tasks for a user, consolidated
from various sources. The logic for gathering the work for a user is:

1. Find all iterations which overlap with this day, e.g. their beginning is before
23:59 hours and their end after 00:00 hours today.

2. In the backlogs of iterations from the step (1), find all tasks that are not yet
marked “done” and for which the user is responsible.

3. For each task found in the step (2), if the task is connected to a story, then add the
story to the set of current stories. If not, then add the story to the set of current
tasks without story.

4. In the backlogs of the iterations from the step (1), find all stories that are not yet
marked “done” and for which the user is responsible.

5. Add the stories from the step (4) to the current stories.
6. For each story from step (5), couple them with their constituent tasks.

The consolidated task list is rendered based on these two sets; Fig. 16 shows the
consolidated task list for a user named AP; in the figure are two currently active stories,
“Feature X” and “Feature Y”, and one task without story, “Update SVN Client”. The “My
stories” and “My task without story” lists have both a total order, based on the comparison
criteria represented in Fig. 17.

Finally, the constituent tasks of each story are ordered by their relative rank. Thus, the
relative priority of entities in the view is in general such that the one that is above is at a
given time more important than the one that is below. These priorities can be changed on



52

START

END

Are X and 
Y in the same

iteration?

YES

Order
X and Y by their

ranks within
iteration

NO

Do their 
iterations belong

to the same
project?

YES

Order  X and Y 
by the ranks of their

iterations within 
the project

Are both 
iterations in a 
priority ranked

project

NO

Order
X and Y by the

ranks of their projects

YES

NO

Is either 
of the projects 
priority-ranked

NO

Order X and Y by the 
end times of their
iteration, earliest 

deadline first

The one in the ranked
project comes first

Fig. 17. The ordering comparisons for stories and tasks without stories in the consolidated
list view.
various views: for example, if the senior management makes changes in the portfolio
view, changing the relative ranks of projects in the portfolio, this will be reflected within
seconds on the users’ consolidated task lists, corresponding to this portfolio decision.

The selection of next task or tasks to work on is then straightforward — the user
should choose the highest-ranked, not completed tasks assigned to him. (In Fig. 16,
the “Implement part 3 of Z” in “Feature Y” is the highest-ranked not completed task, as
the other tasks in the story “Feature Y” have already been implemented). However, if a
lower-ranking story is almost completed, the user might choose to not start a higher-ranking
story and instead help complete the lower-ranking one.

The consolidated task and story list functionality also helps one to log timesheet entries
to items, by double-clicking any cell on the ES (Effort Spent) field and entering number of
hours to add to the task. Likewise, the user can enter the new estimated effort left on any
task by double-clicking the EL (Effort Left) field on a task and entering the estimated
amount of remaining working hours. The consolidated task and story list can also be used
to decide for which tasks he should get help. This implementation does not address the
impediment tracking and handling, because the feature impediment handling was not yet
implemented; a design proposal for impediment handling is discussed in Section 6.2.9.

6.1.2 Work queue

Another new feature is the work queue, which can be also described as a backlog of an
user for a mini-milestone. It is a per-user construct that contains an ordered list of tasks
which the user plans to work on until the next stand-up meeting. It is yet another form of



53

My work queue

# Name State Context Responsibles EL OE ES Edit

Implement part 2 of Z Sprint 1

Feature Z

[?] AP, DE, DR — 5h — Edit

Refactor code to better integrate Y Sprint 1

Feature Y

[?] AP, DE, JA 1h 10h — Edit

Update SVN Client Sprint 1 [?] AP, DE 1h — — Edit

Implement part 2 of Y Sprint 1

Feature Y

[?] AP, DE, JA 2h 6h — Edit

Implement part 3 of Z Sprint 1

Feature Z

[?] DE, DR 2h 2h — Edit

Implement part 1 of Y Sprint 1

Feature Y

[?] DE, DR, OC 2h 12h — Edit

Fig. 18. The work queue. An example work queue of the user DE.

Fig. 19. The Edit menu for a task. Appending a task to the work queue is achieved by clicking
on the “Append to my work queue” on the Edit menu on any task. A task can be split by
choosing the “Split” menu item.

information radiation that tells the other team members the near-term plans of a team
member, thus a form of visual management (3.2.1). It can aid with the task allocation
methods (3.2.2); in the one-at-a-time strategy, a team member can append the task to
his work queue instead of just adding him responsible for the task. In fill-your-bag, a
team member can signal in advance on which tasks out of many tasks he will work on
next without having to change the status of the task to “started” in advance. Furthermore
the team member can plan his day in advance: gather enough tasks for the entire day
(3.2.3) to the queue and work on them without interruptions. The work queue supports the
daily stand-up meeting practice; the answer to “what you are planning to do until the next
meeting” is reflected on the work queue. Finally, it supports the maintaining focus practice
(3.2.10), because forces the team member to rank his selected tasks.

The implemented work queue feature is shown on Fig. 18. The tasks in the work
queue can be ordered by drag-and-drop technique; every user has their own work queue
that they can prioritize independent of others. Tasks in the queue can be edited in the
same way as in the iteration backlog and the consolidated task and story list. To add the
task to his own work queue, the user can click on the Edit menu on a task anywhere and
select “Append to my work queue” (Fig. 19). This menu item not only adds the task to the
bottom of the queue, but also automatically assigns the user responsibility for the task.
The work queue status is reflected on the tasks everywhere by displaying the initials of
those developers who have a task in work queue in bold face. When the task is marked
“done” it is automatically removed from every work queue.



54

Name Refactor database to 3NF - plan

Effort left 0

Original estimate 2

State

Responsibles DE

New tasks
Name OE State Responsibles Cancel

DE

DE

DE

SaveSaveSaveSave CancelCancelCancelCancel

Split task

Fig. 20. The task splitting dialog, showing one task being split into four. The original task is
above, and three new tasks below.

6.1.3 Task splitting

Third feature that was implemented was “Task splitting”. In 3.1.5 it was noted that the
iteration plan does not have to be complete; tasks larger than 1-2 days can be used as
placeholders for more fine-grained work items. As such, splitting a task is not part of
managing mini-milestones, but deferred iteration planning. However, because it is done
within iterations, it needs special considerations to make it not interfere with the ten
practices and the features to support them. Even though it is possible to create a new task
under the container where the original task resides, such approach has poor usability, as
other data from the original task needs to be copied to the newly split tasks, such as the
responsible team members and the positions in developers’ work queues.

Thus a task splitting feature was implemented. A task can be split by opening the Edit
menu on a task and choosing the “Split” menu item (Fig. 19). The task splitting dialog is
opened (Fig. 20). In the task splitting dialog the original task is shown; the user can add as
many new tasks as he wants. Each task inherits the responsibles, rank, container and work
queue positions of the original task. The new tasks shall be ranked below the original
task in every container, so that the topmost new task in the dialog shall be the one ranked
immediately after the original.

6.1.4 Strategy-to-action (bottom-up)

The last feature that was fully implemented was named “Strategy-to-action (bottom-up)”.
The feature concerns following the story hierarchy from a task up to the upper level of
strategic investment themes and epics (Leffingwell 2008). It is meant for developers to
understand the origins of the work item they are contributing to, and to assure them that
they are doing the right thing. This feature was represented by two user stories. The first
user story describes the need of a user to be able to navigate the story hierarchy from a



55

My work queue

# Name State Context Responsibles EL OE ES Edit

Implement part 1 Sprint 1

Feature Z

[?] AC 3h 5h — Edit 

Refactor C Sprint 1 [?] AC 8h 10h — Edit 

My stories

# Labels Name Points Context State Responsibles Σ(EL) Σ(OE) ES Edit

Feature Z 5 Sprint 1 [?] DR, AC, AP 43h 11h 8h Edit 

My tasks without story

# Name State Context Responsibles EL OE ES Edit

Refactor C Sprint 1 [?] AC 8h 10h — Edit 

1
2

3

4

Fig. 21. Contexts of work items on the daily work view. The numbered items are (1) A
story task in the work queue. Belongs to a story named “Feature Z” in iteration backlog
named “Sprint 1”. (2) A task without a story, in the work queue. An independent task from
iteration backlog “Sprint 1”. (3) The story “Feature Z” in the consolidated task and story
list, from iteration backlog “Sprint 1”. (4) The same task as in (2), but in the task and story
list.

The Context field displays the name of containing iteration for all items; for a story
task in the work queue (1), the name of the containing story is shown below the iteration
name.

task to an upper level story. According to the second, a user must be able to do that from
both the consolidated story and task list (6.1.1) and the work queue (6.1.2).

Thus to fulfill this story, if the tool supports hierarchy of stories, with links from leaf
stories to higher-level branch stories, the story tree should be easily navigable from tasks
attached to leaf nodes. Agilefant introduced hierarchical stories in version 2.0. The tracing
of story hierarchy from tasks to epics had already been planned on Agilefant prior this
thesis was commenced; the data model was organized in such way that every leaf story
is linked to its parent stories, and the immediate children of a branching story are also
priority ordered (see Fig. 13).

As the navigation from a story in iteration backlog to higher-level context was being
implemented by other developers, only the second story had to be implemented to support
this feature: easy navigation from daily work. To accomplish this, an additional field was
added to the representation of a task, or a story in the work queue. This field contains the
context of the item. For tasks without story, and stories, the context is the iteration backlog
where they reside. Additionally, for tasks that belong to stories, that includes the name of
the story. (Fig. 21). Clicking on the name of the iteration in the Context field, the user can
navigate to the respective iteration backlog.

By clicking on the small “[?]” symbol the user can open a context popup that can be
used to navigate the story hierarchy of the attached story, if any, and the hierarchy of
containing backlogs (Fig. 22). The item names in the context popup are also links to
respective backlog views.

6.2 Proposed designs for remaining features

The remaining 10 of the 14 top-value features are analyzed in this section. Each feature
is reflected on the identified daily work management practices and other information
available in the book sources. A proposal of possible implementation is provided for
features, along with possible workarounds that can be used to accomplish the same value



56

Fig. 22. The context popup for a story in consolidated story list view, showing the story and
the backlog hierarchy. On the story hierarchy, this story (named “A leaf story”) and all its
ancestors (“A mid-level story” and “A highest-level story” are shown, with their statuses, size
estimates and the containing backlogs of each story in parenthesis. In the backlog hierarchy,
the iteration backlog that contains this story (“Sprint 1”), its project backlog (“Version 1.0”)
and product backlog (“Backend server”). This figure is of the final version of the feature, for
which the author provided a preliminary implementation.

with the existing system.

6.2.1 Team view

The feature that received most votes was the Team view that was described by 6 workshop
stories. According to the stories, the team view would display the combined task and
story list of all team members, along with the current work queues of all members, and
their load indicators. This would also make easier to observe the differences in work load
between different team members.

This feature is troublesome to a tool that does not support teams as first-class entities,
as is the case with Agilefant. Even though partial support for team view could be
implemented on top of “teams as lists of users”, the current many-to-many mapping
approach in Agilefant does not provide answer to the simple question “which team do I
belong to”. Also, because iteration backlogs are not owned by teams per se, it is difficult
to automatically gather historical data on team performance, as would be required for
calculating the team velocity in Extreme Programming (Beck 1999). The team velocity is
measured in story points per iteration; how should the completion of stories contribute
to the team velocity, when the tool does not know which team should have its velocity
increased. Thus a proper implementation of team view would require that it should be
possible to assign teams to projects and iterations instead of users.

The implementation of this feature is further complicated by the design of Agilefant,
which mandates that the iteration backlogs are aggregated into release projects, and inside
products, instead of being the property of the team. If the team that is working on multiple
projects simultaneously is forced to work on multiple iteration backlogs at a time, without



57

a possibility of mixing the tasks and stories belonging to different products in the iteration
plan, there will always be ambiguity on the mutual priorities of stories and tasks. In that
case the combined story and task list for a team would essentially be a non-prioritizable
backlog. However, as the iteration represents the first level on which the work is assigned
to developers, the iteration plan could be owned by the teams, too.

Ultimately, to fully support stable feature teams with dedicated team members (3.2.9),
the teams would have to be the owners of iteration backlogs. Each team would have at
most one active iteration backlog, to which stories can be selected from multiple projects;
the team, or its product owner could provide relative priorities for stories from different
products. This would simplify the selection of next task as there would be consensus
on the ordering of pieces of work among the team; outsider stakeholders could visit the
team backlog to ensure that the stories from different products are in correct priority
order. The allocations of these stories to teams would still be visible in the project backlog.
This would not invalidate the need for consolidated task and story list for an individual
developer, as it would still be useful for specialists that are shared between teams.

6.2.2 Individual load balancing

This proposed feature would introduce new features for visualizing and balancing the
workload. One user story, “balancing work queue load based on calendar appointments &
holidays” requests that possible vacations, holidays and appointments in the calendar
should be taken into account when the work organizing in the work queue, while the other,
“Load shifting according to work queue” states that the contents of work queue should be
added to the load on this day, and be subtracted from other days.

To be implemented as requested, the former story would need the “Visibility into
calendar” feature, to import appointments and vacation days from an external calendar.
Alternatively, a tool should contain a true calendar functionality or at least “daily availabil-
ity” calendar, where each team member could enter the hours they can work on each day
of the iteration. Nevertheless, there is also an easy workaround: for every appointment
or vacation day that overlaps with the iteration, a placeholder task can be created, with
the effort estimate of total working hours that will not be available due to this activity.
Then, as the activity is progressing, or completed, or the vacation is taking place, the
effort estimates on these placeholder tasks can be decreased. If the placeholder task would
represent vacation, or sick leave for an absent team member, others can take care of it

The latter story is not as useful as it might at first appear: if the largest tasks are 12 to
16 hours in size, the straightforward implementation of this user story would require that
this amount of effort be added to the load of current day, and subtracted from elsewhere;
however, such task naturally could not be completed within a single day by a single person,
so it would have to be continued on the following day. This adjustment would not make
the visualization any more correct. Thus in this case the average load over the iteration is
the only meaningful metric. The second story will not be likely implemented.

To meet the objectives of the user stories of this feature, the visualization and
calculation of the workload of an individual team member should be enhanced using actual
working times for availability calculations. It would require either integration with existing
calendaring systems, or a simple iteration calendaring functionality within the tool.



58

6.2.3 Task deadlines

The fourth-most valued feature was the addition of optional deadlines for tasks, and sorting
tasks by deadline in views. This deviates from both Scrum and Extreme Programming as
the increment produced by the team is guaranteed to be complete only at the end of the
iteration, and the implementation order of tasks is left for the team to decide; the only
deadline for all tasks and stories is the end of the iteration timebox. The ordering of the
task is signaled by their prioritization in the iteration plan.

The task deadlines feature would require an optional deadline field to all tasks; the
views that contain tasks should be sortable by deadline also. A simpler solution exist:
if the deadline is essential, one can prefix the name of the task with the deadline, such
as “[DL:06-24] Fix the bug #NNN for customer X”. Then one would rank those tasks
everywhere by deadline in the iteration plan, earliest deadline first; and only work on
tasks in this priority order. Analysis by Liu & Layland (1973) proves that this scheduling
algorithm is optimal for one processor (or developer), if the set of tasks as a whole is
schedulable, that is, all of them can be implemented within the timeframe. However, due
to the inherently imprecise nature of task estimates, a software tool might not be able to
analyze if the tasks can be executed in time; thus it is also doubtful that the deadlines
would produce valuable information to the workload calculations.

Even if the deadline field would not be added to tasks, the sorting by deadline feature
can be useful. Sorting by deadline should especially be considered for the consolidated
task and story list; because it is specifically used to consolidate assignments from several
overlapping iterations, the iterations might also have differing deadlines. The approach
taken by Agilefant specifically already allows a developer to be assigned to multiple
simultaneous iterations; each iteration has its own timebox that does not be in sync with
other simultaneous iterations.

6.2.4 Strategy-to-action (top-down)

Three of the user stories concerned functionality that would allow users to monitor the
state of leaf stories and their tasks on daily levels from the top-level stories in product
and release backlogs. One of them was team-member-oriented; with this functionality a
developer could see the progress of the parent epic (Leffingwell 2008) of the task he is
working on. The two other detail use cases for managers who want to monitor higher-level
stories in terms of tasks can see how the tasks the developers and teams are working shall
contribute to the business objectives. As these all concern tracing the story hierarchy from
strategic level down to engineering tasks — though by different actors and motives — they
were combined into one proposed feature called “Strategy-to-action (top-down)”.

Tracing of story hierarchy from highest-level stories in the product backlog down to
leaf stories in iteration backlogs had already been implemented in Agilefant, but the tasks
are not visible in this hierarchy. The primary reason is that unlike the story hierarchy in
the product backlog and the release backlogs that are long-living artifacts, the tasks are
only an aid for the team to manage its work within the relatively short iterations. Also
the meaning of progress is vague as task effort estimates do not tell anything about the
progress of the stories in hierarchy; except the estimated number of hours that will be
spent to implement a subset of the hierarchy during ongoing iterations.



59

6.2.5 Notifications

The proposed “Notifications” feature would add functionality for notifying an user of
the tool of some asynchronous event. As such, it does not directly concern any of the
identified daily work practices; it is merely a communication aid between parties who do
not work face-to-face.

The “Notifications on task completed” story details functionality, where an interested
party can request the tool to inform whenever a task has been completed. On tasks, this
could be realized by adding an item in the Edit menu for “Notify me of changes”, which
would open a dialog, where the user could choose what kinds of events he is interested in.
When the task under interest is marked done, a notification request could be stored in the
database. At any time, as the interested party uses the tool in a web browser, all outstanding
notification requests could be pushed to the browser and displayed prominently on the top
of the screen, until they are marked acknowledged by the interested party.

The second user story, “Assignment notifications” would be a straightforward extension
to the notifications system. Only this time it would work without the targeted user having
to mark the task as interesting. Instead, whenever the user is being assigned responsibility
by another user, a notification request for the assignee on assignment by another user
would be stored in the database.

It should be however noted that in both Scrum and Extreme Programming assignments
without consent would be considered breach of rules, and thus the usefulness of this func-
tionality questionable in those methods. Also, in neither Scrum nor Extreme Programming
would a product owner or a project manager be monitoring a single task — opposed to a
story — as was written on the user story, it could be used as an aid for self-organization.

6.2.6 Visibility into calendar

“Visibility into calendar” feature concerns integration of the tool with an external calendar
application. This item can be considered a true epic (Leffingwell 2008) in nature, due
to variety of existing calendaring systems and interfacing standards. Nevertheless, it
could be very useful more involved team members, such as the product owner, in that it
would allow him to have all stakeholder meetings in the calendar application, but he could
nevertheless observe its contents through the tool. In addition, the possibility of importing
appointments as tasks would make the calendar entries automatically contribute to the load
calculations. The external calendar could also be to calculate the daily work time for the
team member (see Section 6.2.2). This feature will very likely never be implemented in
Agilefant due to its complexity.

6.2.7 Support for WiP reduction

This feature contains support for reducing the work in process. The four user stories that
constitute for this feature, “Minimizing features in progress for a team”, “Story horizon”,
“Blindfolds” and “Minimizing tasks in progress”. They all provide different approaches
to the same problem: avoiding increased multitasking and utilization rates that would
only lead to increasing the lead times for stories and decreased efficiency of engineering
(Larman & Vodde 2008). The three first user stories discuss different aspects of the same
thing: the team should concentrate on working on a small set of user stories at any time.
Thus these user stories wish to enforce a specific method by which the next task to work



60

200

250

300

350

400

450

500

Iteration burndown

0

50

100

150

200

250

300

350

400

450

500

5/3 5/4 5/5 5/6 5/7 5/8 5/9 5/10 5/11 5/12 5/13 5/14 5/15 5/16

Iteration burndown

Started Not started Ideal burndown

Fig. 23. Enhanced iteration burndown diagram, which differentiates started tasks from not
started tasks.

on is chosen (3.2.3). Instead of making the system to enforce it, the developers could be
trained to concentrate on completing started stories first. The status meetings (3.2.6) can
be used to spot deviations from the practice, and to monitor the number of started stories.
The practice of selecting of tasks from already started stories is also supported by the
consolidated task and story list feature (6.1.1).

The last story, “Minimizing tasks in progress”, requests that an individual team member
should be able to minimize number the tasks he is working on, and optionally to visualize
the amount of started tasks he has been responsible for during the iteration. This is a
reference to the maintain focus practice. The first half of the story is supported by the
work queue feature (6.1.2), because it is easy to monitor the number of started tasks on
this view. As such, the first part of the fourth story can be considered fulfilled, whereas the
second, optional part, of limited functionality.

However, at the iteration level, the iteration burndown could be enhanced so that
it would display the effort left in started tasks separate from the remaining effort in
not-started tasks (Fig. 23). To address the need of monitoring the number of open stories,
another similar burndown diagram could be added at the iteration level that could either
show the number of remaining stories and number of started stories, or their story points.



61

6.2.8 Stand-up support

The “Stand-up support feature” contained one story, “Viewing Done / Impediments /
What’s next for stand-ups”. It describes functionality that would aid a team member when
answering the questions in the status update meetings (3.2.6). It specifically requests that
the workaround using the “ready” task status should not be needed.

To fulfill this user story, a view should be provided that would display all those tasks
for which the team member is responsible and which have been marked “done” since the
team member last attended a status-update meeting; it should also display the work queue
of the team member, if that feature is provided, and also all current impediments the team
member has reported.

6.2.9 Impediment handling

The “impediment handling” feature was represented by two user stories: “Logging
impediments” which concerns an easy way to write down impediments, be they related to
work items (a task, a story), containers (an iteration), the team, or the general organization,
so that they can be recalled easily in status update meetings or in sprint retrospectives. The
other story, “Impediment radiation” describes the need of a team member of keeping the
Scrum master aware of the current impediments so that he can remove them.

The full implementation of this functionality depends on other features. Foremost, to
facilitate logging team impediments, as distinct from iteration level impediments, the tool
should support teams as first-class entities. Because an organizational impediment can
seldom be resolved within an iteration, the impediment entities should not be forced to be
contained within an iteration backlog.

As in Scrum the impediments form the highest-priority work of the Scrum masters,
and impediments can be also prioritized, the implementation could handle them as a
special class of tasks. The Scrum master could see them in the consolidated task and story
list, and be able to prioritize them in his work queue.

Until a tool has support for the stable feature team concept, the workarounds described
in Subsection 4.8 can be used to mimic proper impediment handling. If the tool supports
feature teams, and especially if the users can assume team roles, the implementation of
impediment handling and impediment backlogs should be considered.

6.2.10 Monitoring spent effort limits

The last feature to fit under the 80 % limit was “Monitoring spent effort limits”. This
feature would notify the Scrum product owner as soon as an effort limit on a work item is
exceeded. This was represented by one user story that requires the product owner to be
notified “if effort spent on a task has exceeded the original estimate”, thus demanding that
it is a task specifically, not a larger item, on which the effort is monitored. However, the
original estimates on the tasks are not upper limits, but instead they are supposed to be a
tool for tracking the status of the iteration and to comprehend the load. Larman & Vodde
(2008) call this confusing estimates with commitments, and cite the Merriam-Webster
dictionary: an estimate is “a rough or approximate calculation”. Furthermore, in order to
be useful during the iteration planning, and tracking the iteration status, the original and
updated estimates on the tasks should be accurate, but they do not need to be precise
(Cohn 2004). If the team is very skilled in estimating, their original estimates must be



62

exceeded exactly in 50 % of the cases.
As such, this feature will also be the least likely one to be implemented in Agilefant. If

there is a need to complete some task within some effort limit, then it can be agreed so
within the team. In that case, the team member working on the task would then have to
report in a status-update meeting if he could not finish the task before the time limit.

6.3 Conclusions

Of the analyzed features, 4 were fully implemented in Agilefant, and thus a proof-of-
concept of these features is included in Agilefant 2.0; the source code for Agilefant is
available under the MIT license. All implemented features also matched requirements or
practices indentified in the literature.

The remaining 10 were not implemented at all. For many use cases in the remaining
10 stories, a usable workaround exists. Some of the features that were valued by the
interviewees match very closely with both Extreme Programming and Scrum: “Stand-up
support”, “Team view” and “Individual load balancing”. “Impediment handling” matches
Scrum directly. Of the remaining features, the “Visibility into calendar”, “Task deadlines” ,
“Strategy-to-action (top-down)” and “Support for WiP reduction” matched neither Scrum
nor Extreme Programming method directly but they could be implemented in a tool while
remaining mostly compatible with Extreme Programming and Scrum.

The “Notifications” could improve intra-team communication in distributed teams,
and coordination among teams that have dependencies to each others’ work. Finally, the
“Monitoring spent effort limits” practice, that is, considering estimates as commitments, or
managing against fixed effort limits is considered an antipattern by many sources, such as
Leffingwell (2007), Larman & Vodde (2008), Beck (1999) and Schwaber & Beedle (2001).
None of these 14 features addressed establishing cadence, or measurements that were not
derived directly from the task or story statuses and estimates.



7 Discussion

This chapter contains discussion on the thesis. First, the book review is discussed in
Section 7.1, followed by discussion on the acquisition of empirical data in Section 7.2.
The analysis, design and implementation phase is discussed in Section 7.3. The chapter
concludes with discussion on the validity of the research in Section 7.4.

7.1 Book review

The book review for daily work practices and tools was performed on a wide set of sources
on purpose. All daily work management aspects are not discussed in detail in any of the
books, and there are opposing viewpoints to certain practices in the literature. Most notably,
Cohn (2004), a source that was not included in the book review, promotes the fill-your-bag
method for task allocation; however in a later book, Cohn (2005) apologizes for this and
now recommends only one-at-a-time. Also, Larman & Vodde (2008) recommend that
senior management should especially be present in the status update meetings, to promote
the Genchi Genbutsu principle of Toyota Production System; however, the “Scrum Primer”
appendix included in the very book discourages this as the authors fear that the team is not
willing to communicate freely if senior management is present.

Based on an quick survey using Google Scholar, Schwaber & Beedle (2001) and
Schwaber (2004) were most cited sources for Scrum, as are Beck (1999) and Beck &
Andres (2004) for Extreme Programming; the latter ones were cited in June 2010 ten times
as much as Beck & Fowler (2000), and over 50 times as much as Auer & Miller (2001).
However, none of these sources are particularly prescriptive; in fact in the foreword, Beck
(1999) acknowledges that the first Extreme Programming book is not a how-to guide, and
thus does not contain checklists of specific practices. And later Beck & Andres (2004)
state that the reason for writing the second edition of Extreme Programming Explained
was that the first book was in Beck’s opinion still too prescriptive; the second edition
further distances itself from the practices, being more of a journey to the philosophical
background of Extreme Programming. Thus to review only these books for possible
management practices would be incorrect.

To the author’s knowledge this thesis contains by far the widest book review on daily
work management practices on agile methods in the practitioner guidebooks, but there are
many more books that could not be covered within a limited timespan, so the results of the
review do not necessarily reflect the entire body of knowledge. The reason why research
articles on daily work management practices was not included was the scarcity of sources:
Dybå & Dingsøyr (2008) found in their systematic review only 36 empirical research



64

papers on agile methods until the end of 2005; only 4 of them were studies on mature
teams, and they were all in Extreme Programming. Scrum, on the other hand, was studied
in exactly one paper, and the practitioners were beginners. Arguably, however, for the tool
to not be obstacle for development, only the studies that concern mature teams should be
considered.

7.2 Discussion on the acquisition of empirical data

7.2.1 The daily work management workshop

The daily work workshop was used to elicit features for a tool from current practitioners, in
the requirements workshop format (Leffingwell & Widrig 2003). The approach is unusual
for research, but usual practice in software development. According to Leffingwell &
Widrig (2003) it is essential that the key stakeholders to the project participate. In this case,
they were the liaisons from ATMAN participating companies and ATMAN researchers.
As such, there might be a selection bias, as the project might attract companies with a
specific profile and specific interests, and thus the workshop results cannot be generalized
to all agile software development organizations.

The success of a requirements workshop also requires that the participants share a
common understanding, thus in the beginning there was an initiation session, where
the idea of daily work management was explained, and then everyone wrote down in a
5-minute timebox what efficient daily work management should contain. Everyone then
represented their ideas to all participants, succeeded by a short discussion. This initiation
was not sufficient for building a shared mindset, however, as several user stories created
were out-of-scope from the mini-milestone cycle and even the iteration cycle. Also, even
though it was emphasized that the target of the workshop is to gather requirements for
a software tool, several of the produced user stories were not translatable to software
requirements, as they were addressing organizational culture. Despite these deficiencies
a comprehensive set of stories was elicited. However, the 2.5-hour timebox that was
allocated for the research was too short, and the number of produced user stories was too
big to be prioritized in the workshop.

7.2.2 Prioritization

At first it was supposed that the prioritization of the user stories could be accomplished in
the workshop. As the participants were from different cities, another workshop was not an
option, so an alternate method for gathering the data for prioritization had to be chosen.
Furthermore the number of user stories proved to be too big for prioritization. In the end,
the hundred dollar method was chosen. To maximize the coverage of prioritization, the
questionnaire was sent to liaisons in other Finnish software companies that were using
Agilefant, in addition to workshop participating companies.

7.2.3 Results of prioritization

The results of the prioritization are mostly in line with books; however, features that were
directly opposed to the self-organizing teams were among the 80 % set. Furthermore,
only one feature was not considered totally worthless by some participant; at least one



65

interviewee cast no votes for each of the remaining 25 features. This might suggest that
the needs of current agile software organizations vary greatly. In a private conversation,
the interviewee who cast 800 votes for the “team view” told that the lack of it is the
only reason for them to not adopt Agilefant in their organization, as they consider it
essential for self-organizing teams. However, this feature did receive only 10 votes from
another interviewee, which suggests that they do not consider self-organizing teams at
all important, thus questioning their commitment for truly agile methods like Scrum or
Extreme Programming.

7.2.4 Conclusions on the empirical data acquisition

In retrospect, the workshop and prioritization combination was not entirely satisfying
approach for eliciting requirements for daily work management features in a tool; in total,
each participant to the workshop had spent 2.5 hours at the workshop, and more time
traveling to the meeting place. According to the reports, answering to the prioritization
questionnaire took almost one hour approximately.

A structured 2.5 hour interview on each of the ATMAN participating companies could
have produced more reliable data on their needs, and taken less time from the stakeholders
as they would not have had to travel. Also, an interview would have provided data on
their current development process, on the interviewees’ stances towards agile software
development and on their history of practing agile software development. The interview
could have further be used to assess the maturity level of the agile practices in their
organization (Leffingwell 2007). All in all, the workshop approach did result in less work
for the researcher due to the participants processing the data themselves, but an ordinary
structured interview could have worked better.

7.3 Discussion on the design and implementation

The designs of features were based on the book review and the sole judgment of the
author; thus they are the product of one mind. For the 10 features that were designed
but not implemented, it is not yet proved that the approaches work. The proposed
workarounds have been tested in a real-world setting: the ATMAN project has used
Agilefant for governing its research work, and the presented workarounds have been all
successfully employed by the ATMAN project. Also, the implemented features have been
all extensively tested when managing the work in ATMAN project. The implementation of
proof-of-concept features was done on top of an existing system, Agilefant. Although
Agilefant has a large user base, due to an almost complete rewrite of the codebase being
done on it at the time of writing this thesis, the software organizations were not willing to
experiment with it and thus no data on real-world performance could be gathered.

7.4 Discussion on the validity of the research

The validity of the research, and threats to its validity, is discussed in this section. Each
separate phase of research is discussed in its own section.



66

7.4.1 Validity of the results of the book review

The main threat to validity of the book review results is that a book would not reflect the
current best practices adequately and thus relevant practices were omitted or outdated
practices retained. To avoid this, a wide selection of the books was included in the book
review. The additive nature of the review still constitutes a threat to validity, as the newer
books may omit mentions to outdated practices, which still are present in older books —
but to concentrate on newer sources, such as Larman & Vodde (2008) or Leffingwell
(2007), would itself be a threat due to their focus in large-scale setting, which might
compromise their interest in the lowest cycle of control.

In addition, the nature of both Extreme Programming and Scrum is empirical, thus
variations of the methods are likely to be widespread; furthermore, as there is no
prescriptive book for daily work management in agile methods, it is not easy to tell if the
successful teams are doing the practices by the book, or not. Furthermore, the books
still are a collection of success stories and works of opinion; the failed cases are seldom
mentioned. Unfortunately there is no remedy to this; while the Extreme Programming
practices have been studied widely, Scrum has not received much attention in empirical
studies (Dybå & Dingsøyr 2008). And the Extreme Programming research tends to be
leaning towards adoption phase and beginner teams (Dybå & Dingsøyr 2008).

One threat to the validity was the long time span spent on the literature review;
the author feels that during the course of book review, as knowledge was gained, the
appreciation of things in the literature might have changed. All evidence of daily work
management practices in the books were not always present on those pages sections where
they could have been based on table of contents; thus the books had to be read thoroughly.
This combined with the large number of books, the book review process could not be
as systematic as it would have been with a lesser number; however as the sources were
considered to complement each other, this would require that the missed practice was not
identified in any of the reviewed books.

7.4.2 Validity of the results of the requirements elicitation

The participants in the requirements workshop were volunteers, invited from a small set of
case companies. The selection of participants was without doubt biased, as the external
participants were from ATMAN funding companies. Most of the participants had been
followers of ATMAN research since its inception; this history needs to be also considered
as a threat to internal validity. As a part of the workshop, there was an orientation practice,
whose purpose was to make everyone to have a shared mindset of the problem; while
this might have made the user stories more coherent, it is also a threat to validity, as this
orientation phase might have caused the interviewees to be hesitant of expressing needs
and ideas that deviated from the consensus. Arguably, more eccentric ideas might still not
have passed the prioritization phase.

Even though the instructions for the user story creation were clear, and it was
emphasized that the purpose of the workshop is to elicit features for a software tool, one
participant had produced a set of stories mostly concerning organizational culture; none of
his stories were possible to capture in a software product. This proves that the workshop
method did not provide the best possible results in his case, as his contributions were
eliminated from the set of user stories before prioritization. The fact that researchers
participated actively in the workshop does not per se invalidate the results of the workshop,
as the researchers had also been members of software development organizations, and



67

working on products, such as Agilefant. Furthermore, researchers did not participate in the
prioritization.

7.4.3 Validity of the prioritization

The 100-dollar method seems to imply that every stakeholder is considered to belong to
the same market segment. Because the prioritization results varied widely, it can be argued
that this was not the case among the interviewees. Indeed, the literature suggests that the
needs of actual organizations can be wildly varying. Scotland (2003) provides evidence of
a fringe user of agile software development; a small team developing eTV services for the
British Broadcasting Corporation (BBC). The requirement of producing software based
solutions quickly to demand is quite different from the original area of Scrum (Schwaber
1995), which was purely the new software product development to competed markets.
Thus it might not be valid to assume that all different kinds of organizations could be
satisfied with a single set of features, and the generalization of the priority order is not
possible, as the mean of a highly volatile variable was used for prioritization. Thus the
prioritization results are only relevant to this set of interviewees and their background
organizations.

The prioritization process relied on the interviewees’ knowledge of the agile software
development methods and terminology, as they had to cast their votes based on the textual
descriptions of the features and their constituent stories. However, the extent of their
knowledge was unknown, and the assumption was that they would have enough knowledge
of agile methods to answer the prioritization. Also, only after the prioritization process
was concluded, it appeared to the author that the prior version of Agilefant (before and
including 1.6.x) might have affected the mindset of the interviewees with its conceptual
model that substantially deviates from both Extreme Programming and Scrum (Heikkilä
2008), which further compromised the validity of the prioritization results.

Even though the original invitation to the workshop was given by e-mail and reacted
timely by the liaisons, the original 2-week deadline given for the interviewees for
prioritization was exceeded by the workshop participants, and a grace period had to
be given. Eventually, only a part of workshop participants answered the prioritization
questionnaire, along with some respondents from companies that did not participate in the
workshop. The small number of respondents (n=11) makes it difficult to do any further
analysis on the data.

7.4.4 Validity of the designs of new features, implementations and
workarounds

The validity of the designs, implementations and workarounds are a two-fold issue. First
the constructions need to be of practical relevance. The practical relevance order of these
constructions was evaluated in the prioritization phase. The other is the credibility of
these constructions. As the linkage from the implemented features to the existing theory
have been shown, they can be considered credible constructions. They have been also
preliminarily validated by being employed for the project management at ATMAN. A
research project is different from the basic setting of Scrum or Extreme Programming
practice of sharing the common goals, in that in a team of researchers there are many
specialists, and some of them are possibly pursuing a post-graduate degree, which makes



68

such teams easily neglect the team aspects of the tool.
The validity of the implemented features cannot in this case be simply determined

by an unmodified weak market test (Lukka 2001) as they cannot function without the
underlying construction, that is, the backlog management tool. Instead they are considered
supplementary components to it. The question would rather be “is there any manager,
financially responsible for his unit, who is not willing to use the base construction in his
unit, yet is willing to use the modified construction.” It clearly is more difficult to pass
than the original weak market test as it requires exceeding a threshold, but also harder to
fulfill. Such kind of weak market testing of this research should be conducted in future.



8 Conclusions

The conclusions to the thesis are represented in this chapter. First are represented the
answers to research questions (Section 8.1). The contribution of this thesis has been
discussed in Section 8.2. Finally, further research proposals are discussed in Section 8.3.

8.1 Answers to research questions

As an answer to research question Q1, “What are the specific practices of managing the
daily work of a self-organizing team and of its individual members in the selected agile
software development methods?” 10 daily work practices were identified in the literature
review. The practices are

1. Visual management of work
2. Assigning responsibles
3. Selection of next task
4. Status tracking
5. Lightweight measurements
6. Status-update meetings
7. Measuring and balancing load
8. Impediment handling
9. Stable teams with dedicated members
10.Maintaining focus and establishing cadence

Evidence for these practices is present in both Extreme Programming and Scrum literature,
except for impediment handling which is not at all discussed in Extreme Programming
literature. While there seems to be convergence in the literature on practices 1 and 4—9,
two competing methods for “assigning responsibles” are present in the literature — “one
at a time” and “fill your bag”, and no consensus on what should be the implementation
order of tasks seems to be present.

The research question Q2, “What tools does the literature suggest for facilitating the
implementation of aforementioned practices?” was answered by identifying all tools
related to the aforementioned practices. The proposed tools are surprisingly simple: the
original Scrum sources advocate spreadsheet files for planning artifacts, and measurement
diagrams drawn on whiteboards, the Extreme Programming sources suggest the use of
index cards or post-it notes, with an optional special taskboard for presenting the cards
visibly, and using a whiteboard to draw transient quality measurement graphs. The use of
specialized computer tools is specially discouraged by authors such as Cohn (2005) and



70

Larman & Vodde (2008), whereas they are recommended by Leffingwell (2007) especially
in large-scale agile organizations and for distributed teams.

The research question Q3, “What kind of support does unmodified Agilefant provide
for these practices?” was answered by analyzing the features present in Agilefant without
the new features that are introduced in this thesis. According to the results, Agilefant
deviates from the conceptual model of Scrum and Extreme Programming by necessitating
that the iteration backlog is part of the project backlog, thus not allowing work for two
projects / products be aggregated into the same iteration backlog. Another difference is its
lack of first-class team concept; the team concept in Agilefant is simply a list of individual
users; furthermore, only users, not teams, can be assigned artifacts.

Of the identified practices, unmodified Agilefant supports Visual management of work,
Assigning responsibles, and Status tracking fully; Selection of next task is complicated
if the user is assigned work from several products or projects simultaneously. Of the
Measuring and balancing load, Agilefant supports only individual load metrics; the only
measurements supported by Agilefant are the estimates for tasks and stories, and optional
logging for effort spent. No proper support for Status-update meetings, Impediment
handling, Stable teams with dedicated members and Maintaining focus and establishing
cadence exists.

The research question Q4, “What features are proposed by the key stakeholders
of software development organizations be implemented in agile software development
management tool for managing daily work?” was answered through a requirements
workshop. The workshop resulted in a set of 69 user stories. Of these stories, duplicates
were removed, as well as those stories that were out of scope of daily work management,
and the stories that would be naturally supported in any of the identified tools, including
spreadsheets, index cards. The remaining stories were grouped under 26 features, which
were sent for software development organizations for prioritization.

The research question Q5, “What is the priority order of these features according
to the personnel at these software development organizations?” was answered through
a multi-stakeholder prioritization process using modified hundred dollar method. The
combined results show that the most wished feature is a “Team View” feature, which along
with 4 other features — “Consolidated task and story list”, “Individual load balancing”,
“Task deadlines” and “Work queues” constituted nearly 50 % of value appreciated among
the features; 80 % of the value was achieved with 14 out of 26 features.

The research question Q6, ”How a top-priority subset of these features could be
supported in an agile software development management tool while ensuring compatibility
with existing agile software development methods?” is answered in detail in Chapter
6; the 14 highest priority features were analyzed and a proposed design, along with a
possible workaround to use in a tool if the feature does not exist, was provided. 4 of
these 14 highest-priority items were also implemented as a proof of concept in Agilefant
2.0. The results of prioritization indicate two notable deviations from reviewed literature:
Monitoring spent effort limits that was included in the 80 % subset is considered by the
literature to be an organizational antipattern and thus incompatible with Scrum or Extreme
Programming. The emergence of “Task deadlines” as the fourth important feature is also
deviation from the prior theory, as none of the reviewed books have discussed of the
possibility of having optional deadlines for tasks.



71

8.2 Contribution

The literature review in this thesis on the daily work management in agile software
methods is groundbreaking due to its wideness and its approach, as this kind of analysis of
daily work management practices is new. Furthermore, the books by Larman & Vodde
(2008) and Leffingwell (2007) have not been subjected to literature review on daily work
management practices. The list of identified daily work management practices shall form
the basis for analyzing the tool support and team practices in the daily cycles of agile
software development methods.

Even though the workshop approach had its weaknesses, new information on the
daily work management was gained in it, and the prioritization process shows further
interesting results; among them is the need for deadlines for tasks among the top-five
features. The elicited list of features, and the prioritization results can be used as a roadmap
for analyzing the features of agile tools further.

Analysis for 14 of proposed 26 features were provided, along with possible workarounds
that could be employed in a software tools in case these features are not present in that
tool. This will help the agile organizations to successfully use a tool that is lacking in
functionality. Furthermore, 4 of the proposed 14 features were implemented as a proof of
concept in Agilefant, thus bringing Agilefant a more viable tool for the software companies
and helping further in validating the ATMAN research on Agilefant as more organizations
would be willing to adopt it.

8.3 Future research

As only preliminary validation of the constructions could be provided in this thesis,
further research should be made on the effectiveness of the proposed and implemented
constructions in real organizations; including a controlled study of the efficiency of the use
of specialized information systems for management over the paper and ink, or spreadsheet
files. The remaining daily work management features should be implemented in Agilefant
to further validate them. Also, as the empirical knowledge on daily work management
is scarce, empirical studies on daily work management practices in real work settings
should be conducted. In particular, the work of mature agile teams and their interactions
with information systems should be observed to acquire a clearer picture of the needed
interactions.



References

Auer K & Miller R (2001) Extreme programming applied: playing to win. Addison-Wesley,
Boston, MA, USA.

Beck K (1999) Extreme Programming Explained: Embrace Change. Addison-Wesley,
Reading, Massachusetts, USA.

Beck K & Andres C (2004) Extreme Programming Explained: Embrace Change (2nd
Edition). Addison-Wesley, Boston, MA, USA.

Beck K & Fowler M (2000) Planning extreme programming. Addison-Wesley, Boston,
MA, USA.

Beedle M, Devos M, Sharon Y, Schwaber K & Sutherland J (1999) SCRUM: An extension
pattern language for hyperproductive software development. Pattern Languages of
Program Design 4: 637–651.

Cirillo F (2006) The Pomodoro Technique. World Wide
Web electronic publication. Cited Jun 30th 2010 from:
http://www.pomodorotechnique.com/resources/cirillo/ThePomodoroTechnique v1-
3.pdf.

Cohn M (2004) User Stories Applied: For Agile Software Development. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA.

Cohn M (2005) Agile Estimating and Planning. Prentice Hall, Upper Saddle River, NJ,
USA.

Dybå T & Dingsøyr T (2008) Empirical studies of agile software development: A
systematic review. Information and Software Technology 50(9-10): 833–859.

Fowler M & Highsmith J (2001) The agile manifesto. Software Development 9(8): 28–35.

Hatton S (2007) Early Prioritisation of Goals. Lecture notes in computer science 4802:
235.

Heikkilä V (2008) Tool Support for Development Management in Agile Methods. M.Sc.
Thesis, Helsinki Univ Tech, Software Business and Engineering Institute.

Jeffries RE, Anderson A & Hendrickson C (2000) Extreme Programming Installed.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Jensen R (1996) Management impact on software cost and schedule. Crosstalk The
Journal of Defense Software Engineering July 1996: 6.



73

Karlsson J (1996) Software requirements prioritizing. Proc. Requirements Engineering,
1996., Proceedings of the Second International Conference on, 110–116.

Karlsson J, Olsson S & Ryan K (1997) Improved practical support for large-scale
requirements prioritising. Requirements Engineering 2(1): 51–60.

Karlsson J, Wohlin C & Regnell B (1998) An evaluation of methods for prioritizing
software requirements. Information and Software Technology 39(14-15): 939–947.

Karlsson L, Höst M & Regnell B (2006) Evaluating the practical use of different measure-
ment scales in requirements prioritisation. Proc. Proceedings of the 2006 ACM/IEEE
international symposium on Empirical software engineering, ACM, 335.

Karlsson L, Thelin T, Regnell B, Berander P & Wohlin C (2007) Pair-wise compar-
isons versus planning game partitioning—experiments on requirements prioritisation
techniques. Empirical Software Engineering 12(1): 3–33.

Kasanen E, Lukka K & Siitonen A (1993) The constructive approach in management
accounting research. Journal of Management Accounting Research (5): 243–264.

Larman C & Basili V (2003) Iterative and incremental development: A brief history.
Computer 36(6): 47–56.

Larman C & Vodde B (2008) Scaling Lean & Agile Development: Thinking and
Organizational Tools for Large-Scale Scrum. Addison-Wesley, Boston, MA, USA.

Leffingwell D (2007) Scaling Software Agility: Best Practices for Large Enterprises (The
Agile Software Development Series). Addison-Wesley.

Leffingwell D (2008) Agile Enterprise Requirements Information Model – Subset for
Agile Project Teams. World Wide Web electronic publication. Cited May 25th
2010 from: http://scalingsoftwareagility.wordpress.com/2008/12/17/agile-enterprise-
requirements-information-model-

Leffingwell D & Widrig D (2000) Managing software requirements: a unified approach.
Addison-Wesley, Reading, Massachusetts, USA.

Leffingwell D & Widrig D (2003) Managing software requirements: a use case approach.
Addison-Wesley, Boston, MA, USA.

Lehto I & Rautiainen K (2009) Software development governance challenges of a
middle-sized company in agile transition. Proc. SDG ’09: Proceedings of the 2009
ICSE Workshop on Software Development Governance, IEEE Computer Society,
Washington, DC, USA, 36–39.

Liker J (2004) The Toyota way: 14 management principles from the world’s greatest
manufacturer. McGraw-Hill Professional, USA.

Liu C & Layland J (1973) Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM (JACM) 20(1): 46–61.

Lukka K (2001) Konstruktiivinen tutkimusote. World Wide
Web electronic publication. Cited May 19th 2010 from:
http://www.metodix.com/fi/sisallys/01 menetelmat/02 metodiartikkelit/
lukka const research app.

McBreen P (2002) Questioning extreme programming. Addison-Wesley.



74

Rautiainen K, Lassenius C & Sulonen R (2002) 4cc: A framework for managing software
product development. Engineering Management Journal 14(2): 27–32.

Rothman J (2007) Manage it! Your guide to modern, pragmatic project management. The
Pragmatic Bookshelf, Raleigh, NC, USA.

Royce WW (1970) Managing the development of large software systems. Proc. Proceed-
ings of IEEE Wescon, 26(1): 9.

Saaty T (1990) How to make a decision: the analytic hierarchy process. European Journal
of Operational Research 48(1): 9–26.

Schwaber K (1995) Scrum development process. Proc. Proceedings of the 10th An-
nual ACM Conference on Object Oriented Programming Systems, Languages, and
Applications (OOPSLA, 117–134.

Schwaber K (2004) Agile project management with Scrum. Microsoft Press, Redmond,
WA, USA.

Schwaber K (2007) The Enterprise and Scrum. Microsoft Press, Redmond, WA, USA.

Schwaber K & Beedle M (2001) Agile Software Development with Scrum. Prentice Hall
PTR, Upper Saddle River, NJ, USA.

Scotland K (2003) Agile Planning with a Multi-customer, Multi-project, Multi-discipline
Team. Proc. Extreme programming and agile methods: XP/Agile Universe 2003: third
XP Agile Universe Conference, New Orleans, LA, USA, August 10-13, Springer, NY,
USA, 18.

Sutherland J, Viktorov A, Blount J & Puntikov N (2007) Distributed Scrum: Agile
Project Management with Outsourced Development Teams. Proc. Sprague J RH (ed)
Proceedings of the 40th Annual Hawaii International Conference on System Sciences,
Big Island, Hawaii, January 3-6., ACM, IEEE Computer Society Press, Los Alamitos,
CA, USA, 274.

Takeuchi H & Nonaka I (1986) The new new product development game. Harvard
Business Review 64(1): 137–146.

Vähäniitty J & Rautiainen K (2008) Towards a conceptual framework and tool support for
linking long-term product and business planning with agile software development. Proc.
Proceedings of the 1st international workshop on Software development governance,
ACM, 25–28.

VersionOne, Inc (2010) State of Agile Development Survey 2009.
World Wide Web electronic publication. Cited May 27th 2010 from:
http://www.versionone.com/Resources/Whitepapers.asp.

Wiegers K (1999) First things first: prioritizing requirements. Software Development 7(9):
48–53.



75

Appendix I Proposed new features and their constituent user
stories

Proposed features for a tool and the names of constituent stories for these features. The
detailed contents for these stories are available in Appendix III.

Feature Constituent stories

Consolidated task and story list Consolidated task list
Seeing the tasks’ context
Convergence of tasks according to priority

Filtering tasks Filtering tasks by effort left
Filtering tasks by context

Work queue Planning and maintaining my own work queue
What-to-do-next planning
Highlighting queued items in iteration view

”Working on now”-task What I am working on ”right now”
Viewing everybody’s Now-tasks
Automatic effort logging for the Now task

Do not disturb -sign Do-not-disturb -sign

Impediment handling Logging impediments
Impediment radiation

Making resource stealing visible Making within-sprint resource stealing visible
Ratio between sprint work and other tasks

Load balancing Balancing work queue load based on calendar appoint-
ments & holidays
Load shifting according to work queue

Monitoring spent effort limits Monitoring spent effort limits

Newsfeed Newsfeed

Notifications Notifications on task completed
Assignment notifications

Over-/undertime slider Over-/undertime slider
Automatic slider adjustment

Periodic tasks Periodic tasks



76

Feature Constituent stories

Pomodoro support Countdown timer
Timer synchronization
Pomodoro effort logging
Reset circuit

Reminders Reminders

Stand-up-support Viewing Done/Impediments/What’s next for stand-ups

Strategy-to-action (bottom-up) Tracing to higher level objectives from daily work
Navigating to higher level objectives from daily work
Logging effort to higher level contexts

Strategy-to-action (top-down) Relating tasks to their higher level context
Monitoring of epics and reacting to changes
Progress monitoring from business perspective

Support for WiP reduction Minimizing features in progress for a team
Story horizon
Blindfolds
Minimizing tasks in progress

Task deadlines Task deadlines
Sorting by deadline

Task quick-add Set-aside tasks/queuing interruptions/add task easily
Tasklets

Task splitting Task splitting

Exporting tasks as appointments Creating calendar appointments from tasks

Team view Daily work for a team
Team’s degree of being done with assigned stuff
Team workload
Spotting potential assignees
Team load balancing
Working on the most important stuff

Ticket/mail notification integration Ticket integration

Visibility into calendar Visibility into calendar
Awareness of upcoming appointments



77

Appendix II Prioritization instructions

Information on your organization
Name of your organization
Your position
Is your organization using Agilefant (yes/no) *
If yes, how many users there are in your organization *

(* = required field)

Instructions

On the next sheet, you have a total of 1000 credits to distribute among the features
that you find would be the most important for your organization. You can divide the
credits in any way, by putting a number of credits to the blue cells representing
different features. Each feature also contains one or more user stories. These
all might be implemented based on the value of the feature, or then only some.
However, you cannot bid on single stories, only on complete features.

Feel free to discuss the voting with your colleagues. Also, if you have any
questions, feel free to ask them on our forum!

When you are done, send the filled spreadsheet to team@agilefant.org



78

Appendix III Complete list of features and stories /
Prioritization spreadsheet

Story name As... I want... so that... Cr.

Consolidated task and story list 0
Consolidated task and story list displays the collection of all assigned work from all
ongoing iterations for a single user, so that one can see at once where the user is assigned.

Consolidated
task list

as a person with
many responsibili-
ties

to have a single con-
solidated list of tasks
I have to do

I don’t have to keep
peeking at different
backlogs in order to
find the next thing I
have to do

Seeing the tasks’
context

a team member
with lots of task
related to different
stories and products

to see the context path
of the task, including
story and iteration

I can better identify
and prioritize tasks
by understanding their
context

Convergence of
tasks according
to priority

as a person with
many responsibili-
ties

to have my tasks listed
in sensible priority or-
der

I am assured that I am
working on the tasks in
the correct order

Filtering tasks 0
Allows the developer to easily see only a subset of his assigned work that match the given
criteria when selecting what kind of tasks he is working on during the day.

Filtering tasks
by effort left

a person with
only a small
amount of work
time left before
a meeting/going
home/etc.

to see those tasks from
the to-do list that best
fits the time I have left
and pick one of them

I by end of the times-
lot I have gotten com-
pleted whatever I have
started and I need not
remember where I left
the things when I come
back to work tomor-
row.

Filtering tasks
by context

a software devel-
oper with many du-
ties

to select tasks from a
single set only during
a day

I won’t be over-
whelmed by the sheer
amount of tasks to do
in my backlog

Work queue 0
A work queue is a view, where the user can plan the work he is going to do in the very
near future by dragging and dropping tasks in order.



79

Story name As... I want... so that... Cr.

Planning and
maintaining my
own work queue

a team member to see what I have
in my work queue,
and taking into account
the relative importance
and urgency of items,
to be able to plan in
what order to complete
them

I can concentrate on
finishing the tasks in
the designed order; and
keep stakeholders up-
dated of my progress
and situation, and the
order of planned execu-
tion.

What-to-do-
next planning

a team member
with multiple duties

to be able to have a sep-
arate to-do-list (which
may include some per-
sonal stuff as well) to
order & manage my
tasks

I can figure out & keep
track of what I want to
do next without mess-
ing the real priorities of
tasks

Highlighting
queued items in
iteration view

a dev team member to see in the iteration
view on what tasks
my team members are
working

I ensure that my team
is delivering the right
things

”Working on now”-task 0
”Working on now” task is a feature, where the developer can put a task in ”working on
now” state, which can be indicated to the other team members and in backlogs in various
ways. The feature can be used for automated effort logging too.

What I am work-
ing on ”right
now”

a developer to denote which task
I am working on right
now

I can catch up quickly
after an interruption

Viewing ev-
erybody’s
Now-tasks

a developer a view that tells what
my team (or some
other group) are work-
ing on right now

I can let my team mem-
bers know what I’m do-
ing at the moment, as
well as see what others
are doing

Automatic effort
logging for the
Now task

somebody who has
to log spent effort

a timer to automati-
cally start recording
spent effort when I de-
note that I am now
working on some task

I can log my spent ef-
fort without unneces-
sary clicking & typing

Do not disturb -sign 0
An electronic do not disturb sign, that signals to other team members and users of
Agilefant that the user should not be bothered.



80

Story name As... I want... so that... Cr.

Do-not-disturb -
sign

a person who is
performing an im-
portant task that
requires concentra-
tion

to be able to switch
on an electronic do-not-
disturb sign for a pe-
riod of time which is
visible to others using
Agilefant

so that others can
know without leav-
ing their seat - or
room, if they are
not co-located - that
they’ll save their ques-
tions/comments/other
stuff for later since I
now need to concen-
trate

Impediment handling 0
Impediment handling refers to tracking known impediments in Agilefant, keeping them
visible on daily work view and for easy logging of impediments.

Logging impedi-
ments

a developer to easily log impedi-
ments I have run into,
be it related to the story,
iteration, or the organi-
zation

I do not have to specif-
ically recall them dur-
ing the daily stand-ups,
or sprint reviews.

Impediment ra-
diation

a scrum team mem-
ber

I want to keep my
scrum master aware of
my impediments

so he can remove them
promptly

Making resource stealing visible 0
Features for highlighting resource stealing.

Making within-
sprint resource
stealing visible

a product / solution
owner

the tool to make visible
if ”my” resources are
stolen for other tasks
/ projects during the
sprint

I can get the product
out in time

Ratio between
sprint work and
other tasks

a scrum team mem-
ber

to have a clue about
how much time I must
spend on tasks from the
sprint backlog

I can say no to misc
tasks when they would
put the sprint goal in
jeopardy

Individual load balancing 0
Features for helping a single user to better balance and visualize his daily workload.



81

Story name As... I want... so that... Cr.

Balancing
work queue
load based
on calendar
appointments &
holidays

a team member I want to be able to
take into account holi-
days and appointments
in my calendar when
organizing my work
queue

I can see myself if
I can finish my as-
signed work without
going overtime, and
keep stakeholders up-
dated of my progress
and situation. This au-
tomatically communi-
cates to the product
owner/project manager
I am committed / not
committed to complete
the work assigned to
me.

Load shifting ac-
cording to work
queue

a person with
many concurrent
backlogs to deal
with

my load to shift ac-
cording to my personal
work queue (i.e., the
stuff I pick for today is
added to my load for
today and subtracted
elsewhere)

in order to better com-
prehend my real load
which helps me plan
ahead what I really
should do and what I
should dump

Monitoring spent effort limits 0
Effort limit monitoring refers to a feature where the product owner is notified as soon as
an effort limit is exceeded.

Monitoring
spent effort
limits

a product owner /
project manager

to be notified if effort
spent on task has ex-
ceeded the original es-
timate

I can react as needed

Newsfeed 0
Produce a filterable newsfeed of all things a user or a set of users has done lately.

Newsfeed a Scrum team mem-
ber

to have a filterable
newsfeed of all things
a selected group of
people (can be only
one as well) have done
in Agilefant (task/story
state changes, prior-
itization, estimation,
creation, changing de-
scriptions, etc.)

I can get an understand-
ing of what has been
happening lately

Notifications 0
Notify interested parties when a task is completed automatically, and users of them being
assigned to tasks.



82

Story name As... I want... so that... Cr.

Notifications on
task completed

a product owner or
a project manager

to see when a particu-
lar task has been com-
pleted and get a notifi-
cation

so that I can get things
further without disturb-
ing myself with con-
stant polling (”has it
yet been done? has it
yet been done?”)

Assignment no-
tifications

a employee with
many teams and
”hats”

to see, via some kind of
newsfeed (or an email)
when a task is assigned
to me by someone else
than me

I stay informed of the
tasks that are assigned
to me when I am not
present

Over-/undertime slider 0
Easy tracking of personal over-/undertime on Agilefant.

Over-
/undertime
slider

someone who has
to keep track of his
over-/under time

to have a slider with ad-
justable scale which I
can also move freely

to have light-weight
means of keeping
track of how much
over-/undertime I
currently have and
satisfy my company’s
requirements for
tracking work time

Automatic slider
adjustment

someone who has
to keep track of his
over-/under time

the slider to automat-
ically be adjusted ac-
cording to the effort I
log

I don’t have to manu-
ally adjust the slider un-
less necessary

Periodic tasks 0
Periodic task support in Agilefant - e.g. time allocations that repeat regularly.

Periodic tasks a team member
with multiple duties

to express my ongo-
ing work as ’periodic
tasks’ instead of using
the baseline load

I remember to attend to
the periodic stuff at the
intervals I want to as
well as to better under-
stand and express my
load

Pomodoro support 0
Support Pomodoro timers in Agilefant, e.g. a timer that alerts you after a certain period
(usually 25 minutes) so that you are able to concentrate only on the task at hand but be
notified when the time elapses

Countdown
timer

As somebody
practicing the po-
modoro technique
(pomodorotech-
nique.com)

I want to have a po-
modoro timer in Agile-
fant

I have my focus sup-
port instruments in the
same system and oth-
ers can easily see the
time left if they are in-
terested



83

Story name As... I want... so that... Cr.

Timer synchro-
nization

As somebody
practicing the po-
modoro technique
(pomodorotech-
nique.com)

I want to synchronize
my timer with the other
people using Agilefant
(for example, my team)

so that that our
pomodoros end simul-
taneously and can chat
without interrupting
each other and don’t
have to constantly poll
each other whether
their pomodoros will
end soon

Pomodoro effort
logging

As somebody
practicing the po-
modoro technique
(pomodorotech-
nique.com)

I want my completed
pomodoros to be
logged as spent effort
(possibly prompting
me to edit the entry)
without unnecessary
clicking around

so I don’t have to dis-
turb my flow to go
clicking around to log
effort spent

Reset circuit a developer an ”alarm clock”
ringing when I have
exceeded the time
planned for some
task + mechanism to
resolve the situation
(put on hold, split,
abandon, ...)

I do not remain
stuck (or ”frozen”, or
”adrift”) for a long
time in a task that was
estimated to be short
(or planned to be taken
quickly)

Reminders 0
Reminder notifications for tasks.

Reminders a scrum team mem-
ber

to set, and then get re-
minders about certain
tasks

I would not forget es-
pecially smaller tasks
that still are important
and must be taken care
of

Stand-up-support 0
Supporting standup meetings by having a specialized view for newly done tasks, and
impediments.

Viewing Done/
Impediments/
What’s next for
stand-ups

an attendee for a
daily stand-up

to have lists of my
Done tasks, my cur-
rent work queue and
possible logged imped-
iments shown

so that I don’t have
to remember them all
AND I don’t have
to use the current
’implemented/ready’ -
workaround in Agile-
fant

Strategy-to-action (bottom-up) 0



84

Story name As... I want... so that... Cr.

Easy traceability from the tasks and leaf stories to the features and epics and their
contexts from the daily work view.

Tracing to
higher level
objectives from
daily work

a product owner to see the higher-level
objectives that a task is
addressing

the outcome of the im-
plementation provides
a real solution to cus-
tomer’s high-priority
need(s) or contributes
to our other higher-
level goals

Navigating to
higher level
objectives from
daily work

a developer to easily navigate the
story hierarchy

I can easily get the
best possible informa-
tion about the higher-
level objectives that
a task is addressing,
and that the outcome
of the implementation
provides a real solu-
tion to customer’s high-
priority need(s) or con-
tributes to our other
higher-level goals

Strategy-to-action (top-down) 0
Traceability from the top of story hierarchy to the grassroots level on daily basis.

Relating tasks
to their higher
level context

a team member to easily see how the
context where a par-
ticular task assigned
to me belongs, is pro-
gressing on the whole

I can experience (and
ensure) that my ef-
forts lead to results on
higher levels too

Monitoring of
epics and react-
ing to changes

an owner or a
project manager

to see how the higher
level stories (epics and
features in Leffing-
well’s terms) I am inter-
ested are progressing
in terms of lower level
stories and tasks

so that I can easily fol-
low what is happening
without me having to
ask routine questions
continuously and I can
react earlier to arising
issues

Progress moni-
toring from biz
perspective

a product manager
in a far-away prod-
uct mgmt depart-
ment

to see how the nuts-
and-bolts-level tasks
the developers are
working on contribute
to my Next Big Epic

so that I can view
progress in terms that
I understand and pos-
sibly help the poor de-
velopers scope out hard
stuff that is not really
that important to me

Support for WiP reduction 0



85

Story name As... I want... so that... Cr.

A feature to specially visualize and limit work/features/tasks in progress

Minimizing fea-
tures in progress
for a team

As a product
owner/business
owner

to minimize the min-
imum marketable fea-
tures in progress

ensure that we work
only on those features
we are going to ship at
the end of the iteration

Story horizon As a product owner my team to see only
a set of minimally-
marketable features to
help them better con-
centrate on the stories
at hand...

we can use kanbanish
scrum

Blindfolds As a product owner the team members to
be able to see only the
topmost ”started” sto-
ries by default and only
in the iterations they
are responsible for in
the daily work

I can ensure that they
concentrate on the sto-
ries that should be com-
pleted first, and not get
sidetracked.

Minimizing
tasks in progress

As a team member to minimize the num-
ber of tasks I have con-
currently open on, and
possibly see a burn-
down of my open tasks
during this iteration

I do not overwhelm
myself by starting
more tasks than I
could possibly finish in
reasonable time frame.
I can also follow how
well I am performing
in getting the tasks
completed

Task deadlines 0
Optional deadlines for tasks, differing from iteration/sprint boundaries

Task deadlines an employee tasks to have optional
deadlines, which also
affect load calculation

I can more easily see
what really has to be
done next and my load
better reflects the real
situation

Sorting by dead-
line

a developer work-
ing on separate
projects/iterations

set deadlines for cer-
tain tasks

I do not spend my time
working on tasks that
are not needed yet, and
be able to concentrate
on those that really
need to be done now.

Task quick-add 0
Adding tasks easily on daily work view to ongoing sprints, stories.



86

Story name As... I want... so that... Cr.

Set-aside
tasks/queuing
interrup-
tions/add task
easily

a team member
who receives
unexpected tasks

to quickly record the
any interrupting re-
quests, incoming tasks,
or tasks that I sponta-
neously come up with
on some to-do list in
the same system where
I am managing my
duties tasks, and find
them easily later

I don’t need to inter-
rupt my flow for a
long time when a unex-
pected task arrives but
I still can process them
properly later

Tasklets a scrum team mem-
ber

to have an easily acces-
sible place holder for
very small ”tasks” (less
than 5 minutes) that are
not really tasks

I can still remember to
do these tiny tasks in
priority order

Task splitting 0
Split big tasks or resource allocation placeholders into smaller ones easily

Task splitting someone who no-
tices that a task is
actually a quite big

to be able to split it so
that both the resulting
task inherits all the at-
tributes of the original
task (i.e. assignee, to
which story/epic this
task contributes, etc.)

I can split big tasks into
more manageable units
without too much ex-
tra clicking around &
typing

Exporting tasks as appointments 0
Exporting selected tasks as appointments to calendaring application and updating them
there.

Creating
calendar ap-
pointments from
tasks

a person who has
lots of stuff in his
calendar

to have selected tasks
appear in my calendar
as appointments, and
to be able to update
them from either the
backlog mgmt tool or
the calendar

all my important stuff
can be managed via a
single system

Team view 0
Display the combined assigned work of a team, along with combined load estimates.

Daily work for a
team

As a product
owner/scrum
master/team
member

to see what all team
members are doing cur-
rently, and, option-
ally their pomodoro
timers (see pomodor-
otechnique.com)

so that I know who are
doing what and can eas-
ily see with whom I
can discuss some issue
soonest



87

Story name As... I want... so that... Cr.

Team’s degree
of being done
with assigned
stuff

a product owner to see how many un-
finished tasks my team
members have

I can better estimate
how much we can do
during the next sprint
because of our other
commitments

Team workload a project manager to see the work load
of the team and assign
tasks taking that into
account

the work load of the
team is balanced and
we can ensure that we
do things in the right
order.

Spotting poten-
tial assignees

a team leader, a
product owner or a
project manager

to see to whom I
should preferably as-
sign or offer the task

assigning tasks for de-
velopers to commit to -
if they can - would be
convenient.

Team load bal-
ancing

a scrum master to see that my team
members load and ca-
pacity is balanced

I can ensure that my
team has the capability
to deliver the planned
scope.

Working on the
most important
stuff

a product owner to easily see which
tasks my team mem-
bers are working on
even if they have stuff
to attend to in different
iterations

I am assured that my
team is doing the high-
priority tasks

Ticket/mail notification integration 0
Expandable integration for pushing notifications onto users’ daily work view

Ticket integra-
tion

a developer with
lots of support re-
quests that interfere
with my develop-
ment efforts

to have notifications of
incoming requests (e.g.
via email, bug report-
ing, instant messaging,
etc.) to show up on my
task list

I need not interrupt
whatever small task I
am doing currently to
address the issue, but
still remember to an-
swer it as soon as it is
convenient for me.

Visibility into calendar 0
Reflect calendar information from external calendaring applications on daily work view.



88

Story name As... I want... so that... Cr.

Awareness
of upcoming
appointments

someone who uses
an electronic calen-
dar to organize his
time

to see a tiny version
of the calendar on the
Daily Work page and
be able to import se-
lected appointments as
tasks

I know what appoint-
ments I have upcom-
ing without switching
between systems, and
don’t have to do un-
necessary clicking &
typing if I want to cre-
ate tasks for certain ap-
pointments

Total points 1000



89

Appendix IV Stories not included in prioritization

Already implemented stories

The following stories suggested features already present in the tool, and thus were not
included in prioritization.

Story name As... I want... So that...
Adjusting effort
estimates

a developer to be able to refine the tasks’
effort estimates as work pro-
gresses.

everybody can see the
progress and can reschedule
the backlog to be realistic as
needed

Assigning tasks a person with many
responsibilities

that I can be assigned tasks
without interruption, and
vice versa.

I can concentrate on one task
for a moment, and only af-
ter that is completed, or my
time slice has been used, I
can start working on it, dele-
gate it or bounce it back

Degree of sprint
completion

a product owner to see how many unfinished
tasks my team members have
in the current sprint.

I can better estimate how
much we can do during the
next sprint

Delegating tasks a scrum team member to be able to delegate tasks
assigned to me/volunteered
by me to somebody else.

so I will not spent too much
time with the task I cannot
proceed or I’m stuck with

Logging spent ef-
fort

a scrum team member to easily log the effort spent
for a task I’m working on.

logging effort spent would
be effortless

Logging spent ef-
fort

a scrum team member to easily log the effort spent
on the relevant context, i.e.
to the story, project, product,
etc.

logging effort spent on what-
ever level of granularity ap-
propriate to the context is
easy

Managing
personal to-dos

a daily work manage-
ment tool user

to log whatever personal
tasks I would have to worry
about during my work as
they pop up, and forget them
for time being.

they do not trouble me until
needed.

My tasks a team member to see the tasks within a
sprint in priority order and
possibly reorder them.

I can ensure that I am work-
ing on those items that are
crucial for the successful ex-
ecution of the sprint

Prioritizing tasks
within a sprint

a Scrum team mem-
ber

to prioritize my doings my-
self within a sprint.

all backlog items are finished
during the sprint.

private tasks a scrum team member to have just one place where
to store and manage all my
tasks, even tasks that do not
belong the product develop-
ment.

as a whole I can manage bet-
ter and get the feeling of bet-
ter work control and getting
things done



90

Story name As... I want... So that...
Reacting to over-
whelming load

a developer to realize as early as possible
that I cannot cope with the
tasks like I have planned. I
can also then try to reorga-
nize these tasks myself, or if
that does not succeed, I can
go to discuss the issue with
project manager/team leader.

I myself, the product owner /
project manager or the team
leader are able to plan the
work in advance accurately,
and we can also decide easier
what items we shall complete
when the situation changes.

Realistic tasks a scrum team member to see that the work left in
my tasks and assignments is
realistic to get done in the
time planned.

I am able to do them in the
assigned time without screw-
ing up the whole plan, and
being embarrassed

Real-time burn-
down visibility

a scrum master to have instant visibility to
the sprint burndown.

I can react promptly if incom-
ing misc tasks are hurting
our velocity and becoming
a threat to the sprint goals

Updating
estimates

a scrum team member to change the effort left esti-
mates for a task I am working
on now.

re-estimating effort left is
easier

Duplicates and stories that were out of scope

The following stories were either duplicates of existing stories, or out of scope of daily
work management, or tool support.

Story name As... I want... So that...
Commitment
management

an owner and team
leader

to efficiently and handily
(without heavy protocol)
agree with developers on
how we can achieve our
goals and ensure that they
are committed to the tasks.

developers explicitly com-
mit themselves to the
items, or say that they are
not able to do them, to
avoid false optimism and
tasks that are not done.

Desirable work-
place

an R&D manager the system to support a cul-
ture where people can be
efficient without feeling
overloaded

Our company maintains a
good spirit, good mental
health and a reputation as
a desirable workplace.

Flexible work
hours

a scrum team mem-
ber

to have a flexible work
time policy

I can take care of personal
tasks during office hours
and work late to compen-
sate

Historical time-
break-down

a scrum team mem-
ber

to compare the actual ef-
forts spent of done tasks
vs. the original estimates

the actual efforts of tasks
can be compared to the
planned ones to improve
planning



91

Story name As... I want... So that...
Historical time-
break-down

the portfolio owner see what I (or anyone)
have been spending time
to on a given day / week /
month

to see where the time is ac-
tually spent so I can prune
& put on hold the stuff that
is not that vital to our com-
pany

Investment ef-
fort tracking

a product owner to track the investment
(in terms of effort) and
changes to it

I can approve or discuss
the scope (or even termi-
nate it, if no solution is
found)

Lunch-time
management

a user with dietary
requirements

to have my fixed
lunch/coffee breaks on the
work queue/calendar

I can more effectively
manage my daily work
and even finish the tasks I
have been working on, be-
fore having lunch, and still
have them timely, to avoid
any health complications
etc.

Making jeopar-
dized focus visi-
ble

a scrum team mem-
ber

the tool to make devia-
tions to the principles of
scrum visible to promote
a culture that respects my
right to focus according to
scrum

I can use most of my time
to work on the sprint back-
log and not misc stuff that
is pushed to me from vari-
ous sources

Notifications on
task completed /
owner

a scrum team mem-
ber

to get notification about,
for example, completed
tasks done by others (can
be notifications also other
type of event like task can-
celled, delayed, etc.)

I can continue my other
work without unnecessary
polling for status

Priority guid-
ance

a scrum team mem-
ber

to get guidance when in
doubt about priorities

I can continue without
doubting whether I’m
working on the right task

Relating a task
to team’s efforts

a team member to see how a particular task
assigned to me is related
to the work assigned to
other team members in the
sprint

I can experience (and en-
sure) that my efforts lead
to results on higher levels
too

Splitting epics an owner or a
project manager

to be able to split epics
into features and further
as stories so that they re-
tain the memory of their
origins

we can work on more man-
ageable units of work

Working hours
report

a resource manager to get full report of all the
work that a resource has
done each month

I can ensure that work-
ing hours are within the
agreed range (not too
much overtime, ...)



92

Appendix V Companies and individuals answering the
prioritization

The companies that answered the prioritization questionnaire

Company ID Company size* Number of answers Agilefant in use? Number of users
C1 S 1 Yes 15
C2 L 1 Yes N/A
C3 L 2 Yes 8
C4 XS 1 Yes 2
C5 L 1 No -
C6 L 1 Yes 8
C7 M 1 No -
C8 S 1 Yes N/A
C9 S 2 Yes 28

*Number of employees in the organization: XS: –10 persons, S: 10–50, M: 50–250, L: 250– persons

The individual interviewees

Interviewee Identifier Company Role
I1 C1 Director of Software Development
I2 C2 Technology Manager
I3 C3 Technical Product Manager
I4 C4 Software Engineer / Web Developer
I5 C3 Agile Coach
I6 C5 Project Management Officer
I7 C6 Scrum Master & Area Product Owner
I8 C7 Quality Manager
I9 C8 Quality Manager

I10 C9 Consultant
I11 C9 Chief Executive Officer



93

Appendix VI Individual voting results

Fe
at

ur
e

na
m

e
In

te
rv

ie
w

ee
I1

I2
I3

I4
I5

I6
I7

I8
I9

I1
0

I1
1

C
on

so
lid

at
ed

ta
sk

an
d

st
or

y
lis

t
10

0
10

0
70

80
15

0
15

0
15

8
15

80
Fi

lte
ri

ng
ta

sk
s

60
50

25
60

50
10

W
or

k
qu

eu
e

10
0

40
50

12
5

50
15

0
22

10
0

90
W

or
ki

ng
on

no
w

-t
as

k
10

60
15

50
15

50
60

D
o

no
td

is
tu

rb
-s

ig
n

10
50

10
0

15
10

Im
pe

di
m

en
th

an
dl

in
g

50
20

30
25

50
22

30
80

M
ak

in
g

re
so

ur
ce

st
ea

lin
g

vi
si

bl
e

10
30

10
20

22
30

10
In

di
vi

du
al

lo
ad

ba
la

nc
in

g
10

0
15

0
60

25
10

0
50

60
20

0
80

M
on

ito
ri

ng
sp

en
te

ff
or

tl
im

its
20

0
20

10
37

N
ew

sf
ee

d
15

40
22

30
N

ot
ifi

ca
tio

ns
20

0
10

70
75

22
30

O
ve

r-
/u

nd
er

tim
e

sl
id

er
10

10
7

40
Pe

ri
od

ic
ta

sk
s

40
40

30
50

15
30

40
Po

m
od

or
o

su
pp

or
t

30
7

60
R

em
in

de
rs

30
40

5
15

10
St

an
d-

up
-s

up
po

rt
10

0
15

10
15

30
10

0
22

10
40

St
ra

te
gy

-t
o-

ac
tio

n
(b

ot
to

m
-u

p)
50

60
95

15
0

37
10

15
St

ra
te

gy
-t

o-
ac

tio
n

(t
op

-d
ow

n)
50

70
10

0
50

15
0

37
10

25
Su

pp
or

tf
or

W
iP

re
du

ct
io

n
10

0
15

50
25

60
20

Ta
sk

de
ad

lin
es

10
0

15
0

10
40

50
15

0
60

17
5

90
Ta

sk
qu

ic
k-

ad
d

15
10

75
30

50
15

10
50

Ta
sk

sp
lit

tin
g

10
0

10
0

30
50

75
50

50
60

20
30

E
xp

or
tin

g
ta

sk
s

as
ap

po
in

tm
en

ts
20

5
10

0
15

10
50

Te
am

vi
ew

20
0

50
0

50
40

15
0

10
0

80
0

15
0

15
8

15
10

Ti
ck

et
/m

ai
ln

ot
ifi

ca
tio

n
in

te
gr

at
io

n
20

30
40

22
10

10
V

is
ib

ili
ty

in
to

ca
le

nd
ar

20
5

10
0

50
15

17
5

80


	Introduction
	Agile methods and agile software development
	Motivation
	Agilefant, a proof-of-concept tool
	Research problem, approach and research questions

	Research process and methodology 
	Overview of the research process
	Selection of the book sources 
	The book review process 
	Analysis of daily work support in the prior version of Agilefant
	Daily work management workshop 
	Multi-stakeholder backlog prioritization
	Analysis, design and implementation of selected features 

	Management of work within iterations according to book and article review
	Definition of terms and high-level concepts
	Practices of daily work management in practitioner guidebooks
	Summary of team tools according to the book review
	Conclusions on the literature requirements

	Analysis of the software tool before enhanced support for daily work
	Support for visual management of work
	Support for assigning responsible members
	Support for selection of next task
	Support for measurements
	Support for status tracking
	Support for status update meetings
	Support for load measuring and balancing 
	Support for impediment tracking and handling 
	Support for stable teams and dedicated team members 
	Support for maintaining focus and establishing cadence.
	Conclusion

	The results of daily work management workshop and prioritization
	Results of the experience exchange workshop
	Results of the prioritization
	Selection of features for detailed analysis

	Analysis, design and proof-of-concept implementation of selected features
	Implemented new features
	Proposed designs for remaining features
	Conclusions

	Discussion
	Book review
	Discussion on the acquisition of empirical data
	Discussion on the design and implementation
	Discussion on the validity of the research

	Conclusions
	Answers to research questions
	Contribution
	Future research

	References
	Proposed new features and their constituent user stories 
	Prioritization instructions 
	Complete list of features and stories / Prioritization spreadsheet
	Stories not included in prioritization 
	Companies and individuals answering the prioritization
	Individual voting results






