
Integrating Product Family Modeling with Development
Management in Agile Methods

Mikko Raatikainen, Kristian Rautiainen, Varvana Myllärniemi, Tomi Männistö
Helsinki University of Technology
P.O. Box 9210 02015 TKK Finland
firstname.lastname@tkk.fi

ABSTRACT
Software product families and agile development have emerged
as a popular means in software engineering. In this posi-
tion paper, we discuss how development management in ag-
ile methods can be integrated with software product family
structure modeling. The integration aims towards improv-
ing software product family development governance by pro-
viding technology in terms of concepts and even automated
tool support for planning, monitoring and controlling the
development work for different stakeholders. For example,
integration provides support for prioritization of develop-
ment tasks and enables monitoring the development status
of products in a software product family, for example. The
feasibility of integration is shown by combining Kumbang
and Agilefant conceptualizations and respective prototype
tools.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management

General Terms
Design, management

Keywords
Backlog, software product family, modeling

1. INTRODUCTION
Today, many software product companies face a diversity

of customer needs. Instead of developing a single product as
a compromise of these needs, many companies offer several
software products with slightly varying capabilities. For ex-
ample, the products the companies develop typically need to
be able to address multiple user segments, such as home and
professional users; allow categorization from low- to high-
end products; support various hardware platforms and op-
erating systems; offer different sets of features for different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SDG’08, May 12, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-035-7/08/05 ...$5.00.

needs; and cover cultural variability, such as legislation, lan-
guage, and market structures in different countries. Software
product family engineering has emerged as a means of de-
veloping such a set of products, the assets they consists of,
and their structure, including, e.g., compositional structure,
variability, dependencies, and rules within software prod-
uct family [3, 8]. Another trend today is adopting agile
development practices. While different agile methods have
emerged, many of them share common characteristics such
as iterative, incremental and time-paced development. In
particular, software development work is typically managed
using backlogs [10]. A backlog roughly refers to a prioritized
list of things to get done. For example, a product backlog
contains a prioritized list of items that need to be done in or-
der to fulfill the product goals whereas an iteration backlog
contains items to be developed within an iteration.

However, neither software development management us-
ing backlogs or product family engineering alone are suffi-
cient to give full understanding of alignment between the
product goals, current status of the development, and the
product design. Rather, they provide relatively different
views to software development. On the one hand, devel-
opment management with backlogs provides a view to the
product goals and how and when these goals are aimed to
be realized, but does not take into account the actual design
of the software product family. For example, a goal can be
implemented by features that, however, require other fea-
tures, which do not contribute directly to the goal. This
dependency may go unnoticed during development planning
which results in overhead due to re-planning when the situ-
ation is revealed or failing fulfillment of the goal. This kind
of scenario is further aggravated if there are multiple ag-
ile teams developing features to the product family. On the
other hand, software product family engineering focuses typ-
ically on structure and does not take into account when and
how each artifact is developed and how long the develop-
ment takes. For example, a structure of a software product
family can be modeled but the model does not take into ac-
count when the system or a specific feature will be developed
and finished. Consequently, it seems that it would be bene-
ficial to integrate these two views. However, the relationship
between product family engineering and development man-
agement using backlogs seems to be scarcely addressed.

In this position paper, we discuss integrating software
product family modeling with development management by
combining backlog management of agile development and
structural modeling of software product families. The in-
tegration aims towards improving software product family

development governance by providing concepts and even au-
tomated tool support for planning, monitoring and control-
ling the development work. For example, development plan-
ning and prioritization can be performed by analyzing the
product structure so that all dependencies have been taken
into account and, hence, a release is meaningful and consis-
tent; or the items in a backlog provide estimates for effort
and schedule, and current development status of a specific
feature or a product configuration of the software product
family, hence providing visibility into development progress.
We limit the focus on enabling concepts and tools. Hence,
despite being relevant, other issues such as organizational
dynamics are left out of scope.

The rest of the paper is organized as follows. In Sec-
tion 2, we outline software product family modeling and
development management using backlogs as background of
this work. In Section 3, we outline structural modeling in
software product families and backlogs in term of two ap-
proaches called Kumbang and Agilefant, respectively. Fur-
ther, we show feasibility of integration by combining the
concepts in these approaches. Section 4 outlines an inte-
grated tool support for backlog management and structural
modeling on the basis of existing tool support of the ap-
proaches. Finally, Section 5 discusses implications such as
benefits and applicability of the integration.

2. BACKGROUND

2.1 Software Product Family Engineering
A software product family is defined as ”a set of software-

intensive systems that share a common, managed set of fea-
tures satisfying the specific needs of a particular market seg-
ment or mission and that are developed from a common set
of core assets in a prescribed way” [3]. The assets include,
but are not limited to, software components or other devel-
opment units. In particular, a special asset is a software
product family architecture that defines the structure that
the products must adhere to.

A special characteristic of the assets and architecture of a
software product family is that they incorporate variability.
Variability is the ability of a system to be efficiently ex-
tended, changed, customized or configured for use in a par-
ticular context [12]. By binding variability and potentially
developing product specific code, the different products of a
software product family can be derived.

Due to the importance of variability in a software product
family, several modeling approaches have been studied. Fea-
ture models [6] are one of the first widely known approaches
that take into account variability. A feature refers to a user
visible characteristics of a system. Recently, other model-
ing approaches peculiar to variability have emerged, such
as ConIPF [5], Kumbang [1] and decision-oriented model-
ing [4]. These approaches introduce a modeling method
with constructs for modeling software assets and variability
within the assets. In addition, different approaches to mod-
eling variability in existing models of software assets have
emerged. For example, orthogonal variability modeling [8]
augments existing models with variability specific informa-
tion. The modeling concepts typically focus on functionality
or structure of software.

2.2 Development Management Using Backlogs
The most used agile software development models, Scrum

and XP, brought with them a simplified way of recording
requirements for products as backlog items in product or
sprint backlogs [9] or user stories on story cards [2]. In this
paper, we concentrate on the idea and use of backlogs for
managing development work and thus in the following para-
graphs describe the way Scrum suggests that backlogs are
used and managed based on [9] and [10].

A product backlog is a prioritized list of backlog items
that must be done to fulfill the product goals. The back-
log items in the product backlog can be any kind of items,
ranging from bug fixes to transitioning the product to a new
technology platform. A product owner controls the product
backlog and is responsible for keeping the items and their
priorities up-to-date.

When planning each sprint, which is a time-boxed itera-
tion usually lasting 1-4 weeks where an increment of func-
tionality is developed and integrated to the product, the
product owner selects backlog items from the product back-
log for development during the sprint. Based on these prod-
uct backlog items, the product owner decides the sprint goals
and discusses them and the product backlog items together
with the development team. The development team then
plans what tasks are needed to get the product backlog
items done and to reach the sprint goals. The team esti-
mates the effort needed to complete the tasks and the total
estimated effort of all the tasks is compared to the work time
the team has available for the sprint. If the total estimated
effort needed is bigger than the available time, the develop-
ment team and the product owner must agree which backlog
items and goals are left out of the sprint. When the sprint
planning is considered ready, the tasks chosen for the sprint
that the team has committed to completing are stored in
the sprint backlog.

3. INTEGRATED CONCEPTS
In this section we describe how software product family

engineering and backlog management can be integrated in
the light of two approaches called Agilefant and Kumbang.
Kumbang [1] is a domain ontology (meta-model) and a lan-
guage to model software product families that is supported
with a tool set called KumbangTools1 [7]. Agilefant [13] is an
open source prototype support tool for backlog management
that includes managing development as an explicit portfolio
of activities involving the developers2. In the following we
limit the discussion to the concepts that are relevant in this
integration. The concepts are summarized in Figure 1.

Kumbang enables modeling the provided functionality and
the structure of a software product family including vari-
ability. For the purpose of this paper, the main element of
Kumbang is that it enables describing product family from
feature point of view as a feature model (see Figure 1). A
feature is loosely defined as an end-user visible characteristic
of a system. As a means of expressing variability and creat-
ing dependencies among features, Kumbang features can be
composed of other features. A feature can define any number
of subfeature definitions, which state what kinds of features
can exist under that feature. For example, feature Dic-

tionary can specify a subfeature definition language with
possible features Finnish, Swedish, English. If a feature
does not define any subfeature definitions, it is termed as

1See www.soberit.hut.fi/KumbangTools
2See www.agilefant.org for more information

Figure 1: Integrated conceptualisation of Kumbang
and Agilefant.

a leaf feature, otherwise as a composed feature. Further, a
feature can define any number of constraints that create de-
pendencies to other features. For example, the presence of
feature SpellChecking may require the presence of feature
Dictionary in a valid product.

Agilefant, in turn, contains different concepts for back-
log management. A product backlog is a placeholder for any
items referring to a software product family. A special class
of these items forms feature backlog items. A feature back-
log item refers to a planned feature to be developed to the
product family. A product backlog consists of one or more
feature backlog items. Items of a product backlog are man-
aged as one or more iteration backlogs. An iteration backlog
groups items under development in each iteration. The fea-
ture backlog items are refined and assigned for development
as detailed backlog items, which can be further refined with
development tasks. Backlog items have status that state,
e.g., whether the backlog item is under development or com-
pleted. A feature backlog item is considered completed when
all its backlog items are completed.

Consequently, the concept of feature backlog item in Ag-
ilefant corresponds with the concept of leaf feature in Kum-
bang feature model. Further, all leaf features of Kumbang
model can have a corresponding feature backlog item in Ag-
ilefant, and vica versa. This mapping, hence, provides inte-
gration between a software product family model and items
in a backlog.

4. INTEGRATED TOOL SUPPORT
The concepts of Kumbang and Agilefant as described in

Section 3 are supported with tools. In the following we out-
line capabilities of these tools and describe how to integrate
them.

Kumbang is currently supported by two types of tools
[7]: Kumbang Modeler is a tool for developing configuration
models by assisting in defining the types, structures of the
types, and constraints; Kumbang Configurator is a tool sup-
porting product derivation. A key characteristics for tool

support is that the semantics of Kumbang is provided with
formal semantics by implementing a translation from Kum-
bang to a general-purpose knowledge representation lan-
guage called WCRL (Weight Constraint Rule Language) [11,
1]. This translation enables the use of smodels [11] inference
engine in supporting tools. Currently, Kumbang Modeler
includes functionality to check model validity, i.e. whether
there exists a valid product configuration. Kumbang Config-
urator checks consistency, completeness, and consequences.
Consistency means that the product configuration adheres
to the configuration model; completeness means that all
necessary selections are made; and consequences refers to
that the inference engine deduces consequences of variabil-
ity binding decisions. In addition, further analysis can be
developed to KumbangTools.

Agilefant is a prototype support tool for backlog and de-
velopment portfolio management. Agilefant supports man-
aging multiple backlogs of multiple projects. It helps align
development work with business goals by providing different
views to different stakeholders. For example, a developer’s
daily work view summarizes and presents the backlog items
assigned to him across all of the projects he participates in.
The backlog items with a status of ’started’ are displayed on
top of the page in order of 1) project priority, and 2) item
priority within the project. When development work of a
backlog item is finished, the status of the item is changed to
’implemented’ and when all the agreed testing is done, the
status of the item is changed to ’done’.

We are currently planning implementation of a tool inte-
gration such that Kumbang Modeler can be used to define
software product family structure, Kumbang Configuration
is used to derive valid product configurations, and Agilefant
is used for backlog management. The integration between
tools is to be based on the correspondence of the concepts:
Kumbang Modeler should ensure that all feature backlog
items are modeled in the feature model as leaf features; Ag-
ilefant should ensure that all leaf features of a Kumbang
Model are included as feature backlog items.

5. DISCUSSION
We have outlined the feasibility of integrating product

family modeling with development management by combin-
ing backlog management of agile development and structural
modeling of software product families. More specifically we
showed feasibility of integration in terms of Kumbang and
Agilefant concepts and tools as examples of software product
family modeling and backlog management, respectively. The
integration aims towards improving software product family
development governance by improved planning, monitoring
and controlling of the development work. In this section, we
discuss the benefits and applicability of the integration.

The integration per se does not introduce additional ef-
fort to software development. That is, we showed how both
approaches deal with similar issues but from different view-
points. The integration relies on the existence and corre-
spondence of the similar concept of a feature in both Ag-
ilefant and Kumbang. More specifically, such features are
the leaf features of a feature model in Kumbang and feature
backlog items of Agilefant. Consequently, the integration
does not introduce new concepts but rather maps concepts
to each other and clarifies how to use the corresponding con-
cept of feature.

On the one hand, the integration provides a means of de-

velopment management in software product families. For
example, the status of the features in the feature model can
be monitored. This includes checking whether the feature
has been completed or is under development. Further, back-
logs provide estimates for management such as effort and
schedule for features such that completion of a feature can
be predicted.

On the other hand, the integration provides a view to
the structure of a software product family from a back-
log. The view of structure including dependencies seems
to benefit, e.g., planning and prioritizing of development.
In the aforementioned example, feature SpellChecking re-
quires feature Dictionary in a valid product. In order to
prevent misunderstanding that the functionality provided
by SpellChecking is achieved only when SpellChecking it-
self is implemented, the dependency between SpellCheck-

ing and Dictionary should be explicitly visible in planning
as well. That is, planning can be error prone with backlogs
if it relies only on experience or often tacit expert knowl-
edge. With a feature model, the structure becomes more
explicit and, hence, increases manageability of planning and
accompanying backlog management.

Consequently, the integration seems to provide possibili-
ties for different kinds of analysis. Further, these analyses
can even be automated with tools. For example, Kumbang
Configurator can be used for checking aforementioned de-
pendencies. However, the need and possibilities for different
kinds of analysis needs to be further studied.

Applicability of integration seems not to be limited to the
level of leaf features. That is, composed features of Kum-
bang define possible subfeatures. Hence a composed feature
can be analyzed similarly as a leaf feature, for example with
respect to status. Analysis of composition is relevant for
example when a release consists several technically indepen-
dent features which only as a whole provide certain practical
value to the user. Finally, these extensions to compositions
seem to apply even to an entire software product family such
that a specific configuration of a product variant or even an
entire software product family in terms of all possible con-
figurations can be analyzed.

The integration presented in this paper focused on fea-
tures. However, the integration can be done to concern other
artifacts as well. Kumbang contains concepts for describing
a product family from the architectural point of view. In ad-
dition, Kumbang Configurator has been extended to cover
glue code generation. A feature view and architectural view
can be linked by using special implementation constraints.
For example, a feature can be implemented by a set of com-
ponents or more elaborate rules can be specified. Then ex-
ecutable software can be generated from selecting features
to the product such that corresponding components are re-
trieved and glue code to combine them is generated. Simi-
larly, Agilefant contains concepts for, e.g., roadmapping to
specify high-level goals of a company. There is also map-
ping between a roadmap and a product backlog. Therefore,
it seems that by taking into account these concepts we can
achieve model conformance between various artifacts in soft-
ware development. However, this is still not fully supported
and, hence, extended integration beyond features remains a
future work item.

To sum up, integrating structural and development man-
agement points of views seem to bring benefits. However,
we need to validate the benefits empirically. Nevertheless,

based on our experience of case companies, it seems that
benefits of combining backlog management and software prod-
uct family structure could provide solutions to existing prob-
lems in the industry.

6. ACKNOWLEDGMENTS
We acknowledge Finnish Funding Agency for Technol-

ogy and Innovation (Tekes) and the 100-year Foundation
of Technology Industries of Finland.

7. REFERENCES
[1] T. Asikainen, T. Männistö, and T. Soininen.

Kumbang: A domain ontology for modelling
variability in software product families. Advanced
Engineering Informatics, 21(1):23–40, January 2007.

[2] K. Beck. Embracing change with extreme
programming. Computer, 32(10):70–77, 1999.

[3] P. Clements and L. Northrop. Software product lines:
practices and patterns. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2001.

[4] D. Dhungana, R. Rabiser, and P. Grunbacher.
Decision-oriented modeling of product line
architectures. In WICSA ’07: Proceedings of the Sixth
Working IEEE/IFIP Conference on Software
Architecture, page 22, Washington, DC, USA, 2007.
IEEE Computer Society.

[5] L. Hotz, K. Wolter, T. Krebs, S. Deelstra,
M. Sinnema, J. Nijhuis, and J. MacGregor.
Configuration in Industrial Product Families. IOS
Press, 2006.

[6] K. Kang, S. Cohen, J. Hess, W. Novak, and
S. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, SEI, 1990.

[7] V. Myllärniemi, M. Raatikainen, and T. Männistö.
Kumbang tools. In Software Product Line Conference,
2007.

[8] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering: Foundations, Principles,
and Techniques. Springer, 2005.

[9] L. Rising and N. S. Janoff. The scrum software
development process for small teams. IEEE Softw.,
17(4):26–32, 2000.

[10] K. Schwaber and M. Beedle. Agile software
development with Scrum. Prentice Hall, Upper Saddle
River, 2002.

[11] P. Simons, I. Niemelä, and T. Soininen. Extending
and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

[12] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy
of variability realization techniques. Software —
Practice and Experience, 35(8):705–754, 2005.

[13] J. Vähäniitty. Do small software companies need
portfolio management? In Proceedings of the 13th
International Product Development Management
Conference, 2006.

