
Software Development Governance Challenges
of a Middle-Sized Company in Agile Transition

Ilkka Lehto
Helsinki University of Technology

Software Business and Engineering Institute
P.O. Box 9210 FI-02150 TKK

firstname.lastname@tkk.fi
+358 41 501 6167

Kristian Rautiainen
Helsinki University of Technology

Software Business and Engineering Institute
P.O. Box 9210 FI-02150 TKK

firstname.lastname@tkk.fi

Abstract

We studied how a middle-sized Finnish company

employing agile methods governs its software product
development. Through observations and interviews we
followed the trace from strategic plans in the form of
roadmaps to various backlogs and all the way to daily
work. The governance roles, responsibilities and deliv-
erables seemed to be in place on different organiza-
tional levels. However, closer inspection revealed
challenges in the practical implementation. There were
too many roles and hierarchy levels with information
consistency problems in between. Prioritization of the
high-level goals was unclear and made it difficult to
plan and organize development work based on busi-
ness value. The trace from high-level goals to more
detailed plans was easily corrupted due to poor plan-
ning practices. Progress monitoring of daily work was
poorly done and not linked to high-level plans. Conse-
quently, the required feedback loops were inadequate,
making it impossible for management to take correc-
tive actions in time.

1. Introduction

For a software company it is crucial that the outputs

of its processes meet the company’s strategic goals.
Ensuring that this happens is the very essence of soft-
ware development governance (SDG). SDG reaches its
goals by defining organizational structures through
establishing chains of roles, responsibilities and com-
munication [1, 2]. An important part of communication
is feedback, which people need for successfully carry-
ing out their responsibilities.

Agile methods, e.g. Scrum [3] and XP [4], provide
in their own way a predefined SDG model, but origi-
nally assume a simple situation where a single team is

developing one product at a time. However, when a
larger organization wants to be agile and use agile
processes, little guidance is provided for modifying the
simple, basic “agile” SDG model to suit a more com-
plex situation while still preserving the agile principles.
Some literature has emerged in recent years to address
agile in the large enterprise context, e.g. [5-8], but
empirical research is still scarce on this subject.

In this paper we present our initial findings on how
software development is governed in a middle-sized
software company that is going through a transition
phase to adopt agile methods. We also present chal-
lenges we have identified so far during our case study.

Section 2 presents the used research methodology.
A framework for depicting product planning and de-
velopment in an agile context that we used to analyze
the case company is presented in Section 3. The initial
findings of our work in progress are presented in Sec-
tion 4. Section 5 concludes the paper with discussion
and suggestions for future work.

2. Methodology

Our ongoing case study [9] of a middle-sized Fin-

nish software company started with a current state
analysis in February 2008. The case company employs
roughly 700 people. Our case study is conducted in a
research and development organization, which has
roughly 300 employees of which about half are soft-
ware engineers. The company offers products and
services in more than 20 language versions to con-
sumer and enterprise markets. The products are based
on common components and platforms. Typically there
are more than 20 concurrent projects performed by
teams on 4 sites in 3 countries.

The company’s research and development organiza-
tion started a transition to agile software development
in 2003. This was done as process push by a manage-

rial decision. The change was motivated by a need to
release products in a timely manner, increase the abil-
ity of reacting to change and to get customer feedback
earlier and more often.

The research method used can be characterized as
participative action research [10]. Our cooperation with
the company is coordinated by setting short-term goals
in monthly meetings, where findings are also dis-
cussed.

Our observations and interviews focused on the re-
search and development organization’s largest devel-
oper pool consisting of 5 collocated teams averaging 9
people per team. The observations and interviews were
digitally recorded and a case diary was kept.

3. Agile product planning and development
framework

We constructed a framework (Figure 1) to depict ag-

ile product planning and development. The framework
is based on the Cycles of Control framework [11, 12],
which is an extension of Scrum, which in turn is the
basis for the product development process in the case
company. We have used the framework as a support
tool in our analysis of the case company by studying
how roles, responsibilities, communication, and met-
rics relate to the objects in the framework.

The framework is divided into four levels. The three
topmost levels – product, release, and iteration – rep-
resent the different stages of product planning and
monitoring. The lowest level, heartbeat, represents the
development work done on a daily basis.

Everything starts with a product a company is de-
veloping. High-level plans for the product can be ex-
pressed, e.g., as business or technology goals, which
should be prioritized and recorded as backlog items in
a product backlog. The high-level and long-term plans
for the product are summarized and communicated in a
roadmap.

When planning goes into more detail, the high-level
backlog items can be split into more detailed backlog
items, forming a hierarchical structure. The hierarchy
of backlog items helps in preserving the “big picture”
of the product plans and forms the basis for progress
monitoring.

The target of software product development is mak-
ing and selling a release of a product to customers.
One or several backlog items from the item hierarchy
should be chosen as release goals to guide the more
detailed release and iteration planning.

A release is developed incrementally in multiple it-
erations. As a continuous planning practice release
goals or other backlog items are split until they are
small enough to be implemented in an iteration. The

backlog items that are selected for implementation in a
specific iteration are the iteration goals in the iteration
backlog.

Figure 1. Agile product planning and development 
framework 

In iteration planning, the tasks needed for achieving

the iteration goals are planned and added to the itera-
tion backlog. When tasks get done during the iteration,
progress can be monitored and traced back through the
backlog item hierarchy all the way to the high-level
plans.

4. Findings

4.1. Software development governance

A solution manager is responsible for yearly updat-

ing a product’s roadmap for a three-year span. The
roadmap presents the schedule for releases and high-
level business goals, which are called business themes.
The roadmap planning sets the boundaries for planning
the release projects. The executive team is a managerial
board that inspects and approves the roadmaps.

The solution manager, resource owner and project
manager, together with other stakeholders, prepare a
release project proposal. The resource owner is the
“line manager” of a developer pool. Her responsibility
is to plan projects’ resource allocation and balance
teams’ workloads. The product council is a managerial
board responsible for inspecting and approving all
release project proposals and ensuring that the project

portfolio is in line with the boundaries set by the road-
maps.

The product council appoints a project steering
group for each approved release project. The project
steering group is responsible for ensuring that the re-
lease project reaches its goals – expressed by the busi-
ness theme(s) – with the allocated resources. The pro-
ject steering group makes scoping decisions within
these boundaries based on progress monitoring in
monthly iteration demonstrations. If the release project
is compromised, the issue is escalated to the product
council.

As the starting point of more detailed release and it-
eration planning, the solution manager and project
manager explicate the business themes as more de-
tailed solution backlog items. Typically these are one-
liners in a spreadsheet called solution backlog.

Releases are typically composed of multiple soft-
ware components. Each component has an appointed
technical expert called product owner. Each product
owner maintains a product backlog, which contains
more detailed and technically oriented product backlog
items for the component.

Prior to iteration planning, the product owners copy
the top priority product backlog items to a platform
backlog, which is owned by the resource owner. Items
are prioritized and modified to remove duplicates by
the resource owner and the product owners.

In iteration planning the top priority product back-
log items are assigned to the development teams and
put in to team backlogs. In a later phase of iteration
planning the teams plan the necessary tasks needed to
accomplish the backlog items.

4.2. Challenges in communication

We observed two major challenges in communica-

tion: lack of communication between product owners
and teams; and lack of feedback loops.

During our observations we noticed that in the larg-
est developer pool there were times when all five teams
were working on the same component. In this situation
all teams needed time from the same product owner to
clarify the team backlog items. This was difficult to
schedule due to all the other product owner’s responsi-
bilities. Also, the opposite situation could be observed.
Sometimes multiple product owners were requesting
work from a single team, which disrupted the team’s
work by too many meetings.

The teams we observed had abandoned the task-
planning phase of iteration planning. Instead, they used
product backlog items as such. We learned in an inter-
view that in the early phases of the company’s agile
transition the agreed practice was to try to make the
product backlog items as equal in estimated effort size

as possible. These were then used as such and the ve-
locity of a team was calculated based on the number of
completed backlog items. This was used as a progress
metric. However, this “size equalization” is no longer
done. Likewise, proper effort estimation and continu-
ous re-estimation is not done. Therefore, development
progress on the heartbeat level (Figure 1) could not be
monitored. Consequently, progress monitoring on the
other levels was not based on true progress informa-
tion, making it impossible for management to take
corrective actions in time.

Different people on many organizational levels used
separate spreadsheets for managing backlogs as a part
of release planning. While links existed between back-
log items in different spreadsheets, the links were not
dynamic, which resulted in information inconsistency.
Changes in one spreadsheet were not automatically
reflected in other spreadsheets. This would have made
tracing development progress back to business themes
challenging even if the teams’ iteration planning prac-
tices had been working properly.

4.3. Challenges in roles and responsibilities

We observed three major challenges related to roles

and responsibilities: team structure that conflicted with
agile principles; applying product owner role in a large
and complex context; and lack of business theme pri-
orities.

Each team was composed of specialists of a certain
aspect for the company’s products, e.g. user interface
team. Integration and coordination of the work of all
teams was needed to build the product. This caused
handovers and communication overhead. Therefore
additional coordination effort was needed from the
project manager and the resource owner. Also, the
simple backlog practices of Scrum did not work and
caused workarounds, such as the hierarchy of backlogs
described in Section 4.1. Another challenge related to
this was that work could not proceed in priority order
because the teams could only pick backlog items they
had the skills to perform.

The role of product owner as described in Scrum
was considered to be too much for one person in the
company. They had decided to split the responsibilities
in three parts: the solution manager has commercial
responsibility; the product owner has technical respon-
sibility; and the resource owner has resource responsi-
bility. Although the plan looks good in principle, in
practice it resulted in a coordination and communica-
tion chaos manifesting itself as a seemingly endless
amount of meetings, which frustrated everybody. Also,
the teams were at a loss who to turn to when they
needed specific information regarding a backlog item.

The solution managers are responsible for clarifying
the roadmap’s business themes in the release project
proposal. However, we observed that no priorities
between the themes were set. This contributed to diffi-
culties in planning and organizing development work.
As there were many approved business themes and no
apparent prioritization between them, one result of this
seemed to be that development work on most of the
themes was done in parallel.

5. Discussion and future work

When we studied the case company’s software de-
velopment governance, we discovered many chal-
lenges. Two of them related directly to the functional-
ity of the SDG model: lack of feedback loops and lack
of business theme prioritization. The rest were related
to the company’s transition to agile methods.

The teams had abandoned the task-planning phase
of iteration planning. This made it impossible to moni-
tor progress on a detailed level. Also, the depth of
backlog hierarchy and lack of dynamic linking between
the backlog items made it impossible to link develop-
ment progress to high-level plans. This, combined with
the excessive parallel work caused by the lack of busi-
ness theme prioritization, increases the risk of release
project failure.

The prolonged agile transition seems to be the result
of two decisions that contradict agile principles. The
first decision was not to break the existing team struc-
ture. Some of the challenges reported in Section 4 are
the result of workarounds to support and coordinate the
work of the teams. According to agile literature cross-
functional, self-organized feature teams are essential in
agile software development, because they enable the
lean principle of one-piece-flow [13], provide flexibil-
ity in assigning work, and reduce the need for coordi-
nation. For an unknown reason, feature teams were not
introduced until October 2008.

The second decision was to appoint product owners
per component. Since the teams we observed were
neither feature teams nor component teams, the teams
could not have a dedicated product owner. This caused
challenges in the communication and coordination
between teams and product owners. This probably
resulted in splitting the product owner responsibilities
to three roles, which it seems to us made the communi-
cation and coordination challenges even worse. In
general, the product owner role has received very little
attention in agile literature. We strongly urge that more
research on this demanding role should be conducted.

Next we will start working on the two challenges
that hamper the functionality of the company’s SDG.
Feedback loops need to be established. This includes

proper task planning in the iteration planning phase
and making the links from high-level plans to tasks
dynamic. Excessive parallel development should be
reduced to make the work more focused and effective.
To provide a basis for this, business theme prioritiza-
tion needs to be made.

In February 2009 the case company initiated an or-
ganizational change that will affect the product owner
role. We will assist the company in the practical im-
plementation by providing our insights through moni-
toring the resulting effects and giving feedback for
continuous improvement. In the same way we will
closely observe how the new feature team concept
works. All in all, we hope to gain insight on scaling
agile practices in the large enterprise context.

6. References

[1] S. Chulani, C. Williams and A. Yaeli, "Software devel-
opment governance and its concerns," in SDG '08: Proceed-
ings of the 1st International Workshop on Software Devel-
opment Governance, 2008, pp. 3-6.
[2] S. W. Ambler and P. Kroll. (2007, Nov). Lean develop-
ment governance. IBM Corporation, USA.
[3] K. Schwaber and M. Beedle, Agile Software Development
with Scrum. Upper Saddle River: Prentice Hall, 2002, pp.
158.
[4] K. Beck, EXtreme Programming eXplained. Addison-
Wesley, 2000, pp. 224.
[5] D. Leffingwell, Scaling Software Agility: Best Practices
for Large Enterprises. USA: Addison-Wesley, 2007, pp. 384.
[6] G. Larman and B. Vodde, Scaling Lean & Agile Devel-
opment: Thinkingand Organizational Tools for Large-Scale
Scrum. USA: Addison-Wesley, 2009, pp. 348.
[7] K. Schwaber, The Enterprise and Scrum. USA: Microsoft
Press, 2007, pp. 176.
[8] S. Ambler, "Agile Software Development at Scale,"
Lecture Notes in Computer Science, 2008.
[9] R. K. Yin, Case Study Research: Design and Methods.
,Second ed., vol. 5, London: SAGE Publications, 1994, pp.
192.
[10] G. I. Susman and R. D. Evered, "An Assessment of the
Scientific Merits of Action Research," ASQ, vol. 23, pp.
582-603, December. 1978.
[11] K. Rautiainen, C. Lassenius and R. Sulonen, "4CC: A
Framework for Managing Software Product Development,"
Eng. Manage. J., vol. 14, pp. 27-32, 2002.
[12] K. Rautiainen, L. Vuornos and C. Lassenius, "An expe-
rience in integrating strategic product planning and agile
software development practices," in Proceedings of 2003
International Symposium on Empirical Software Engineer-
ing, 2003, pp. 28-37.
[13] M. Poppendieck and T. Poppendieck, Lean Software
Development: An Agile Toolkit. Boston: Addison-Wesley,
2003, pp. 240.

