HELSINKI UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
SOFTWARE BUSINESS AND ENGINEERING INSTITUTE

Ville Heikkila

Tool Support for Development Management in
Agile Methods

Master’s thesis submitted in partial fulfillment of the requirements for the degree of Master
of Science in Technology

Espoo, December 1, 2008

Supervisor: Tomi Ménnistd, DrSc(Tech)
Instructor: ~ Jarno Vihiniitty, LicSc(Tech)

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF MASTER’S THESIS
Department of Computer Science and Engineering

Author Ville Heikkili Date p cember 1. 2008

P
ages vii + 118

Title of thesis
Tool Support for Development Management in Agile Methods

Professorshi Code
P Software engineering T-76

Supervisor
P Tomi Minnist6, DrSc(Tech)

Instructor
Jarno Vihéniitty, LicSc(Tech)

The goal of this research was to find out what requirements the most prominent agile methods and the
case company have for a development management tool and to determine if an existing tool that suffi-
ciently fills the requirements can be found. Many tools have been developed to facilitate the management
of work and requirements in agile software development projects since the mainstream breakthrough of
agile software development methods following Agile Manifesto in 2001. However, it is not known
whether the tools that are publicly available actually meet the requirements that the agile methods have
for managing work and requirements. Pre-existing research on the topic has concentrated on generating
a set of requirements and building a new tool which is based on those requirements.

Based on an analysis of popular articles on agile software development, Extreme Programming and
Scrum were found to be the most prominent methods. Practitioner guidebooks on each method were
selected and then reviewed for requirements. Interviews were performed in the case company and the
results were analyzed to identify the requirements. The resulting requirements belonged to two groups:
conceptual requirements, which describe what kind of information needs to be saved in the tool, and
functional requirements, which describe what kind of functionality the tool must have. The open source
tool Agilefant and the commercial tools Mingle, Rally Enterprise Edition and ScrumWorks Pro were
selected. Each tool was then separately reviewed against the requirements.

Agilefant had severe deficiencies concerning conceptual requirements in both requirement sets. These
conceptual deficiencies also resulted in severe deficiencies in functional requirements. Mingle filled well
the conceptual requirements of both sets. It also successfully met the functional requirements from the
books. However, Mingle failed to fulfill the important functional requirements from the case com-
pany that concerned work-hour recording and reporting. Rally Enterprise Edition adequately fulfilled
the conceptual and functional requirements from the book review, but the tool had severe conceptual
and functional deficiencies regarding the work-hour recording and reporting requirements from the case
company. ScrumWorks Pro had many deficiencies concerning the conceptual and functional require-
ments from the book review and the case company.

The results of this research show that although tools for agile software development by-the-book exist,
realworld software development companies have additional requirements which may not be fulfilled by
the current tools. In this case, the majority of the additional requirements concerned work-hour recording
and reporting. Tool developers should take into account the real world needs of software development
organizations when creating tools. In order to enable the development of tools that better match the
realworld requirements, further research into other agile software development organizations should be
conducted to identify what kind of additional requirements the organizations have.

Keywords

Agile software development, project management, software development tool sup-
port

TEKNILLINEN KORKEAKOULU DIPLOMITYON TIIVISTELMA
Tietotekniikan osasto

Tekija Paivays
: Ville Heikkili S 01.12.2008
S UBATA
Sivumaa 3ii + 118

Tyon nimi . . .) .
Ketterdn ohjelmistokehityksen hallinnan tyokalutuki

Professuuri Koodi
Ohjelmistotuotanto T-76

Ty6n valvoj
yon vaivoja Tomi Minnisto, TkT

Ty6n ohjaaja
y jaa] Jarno Vihéniitty, TkL

Tamén diplomityon tavoite oli selvittdd vaatimukset, jotka tirkeimmat ketterit ohjelmistokehitysmene-
telmit ja tapausyritys asettavat tyokaluille, joilla hallitaan ohjelmistokehitystyotd. Nédiden vaatimusten
avulla pyrittiin selvittiméain tdyttdako jokin télld hetkelld saatavilla oleva tyokalu vaatimukset riittdvin
hyvin. Ketterien menetelmien tutkimus ja kiytté on yleistynyt nopeasti sen jilkeen, kun Agile Manifes-
to julkaistiin vuonna 2001, ja lukuisia tyokaluja on kehitetty tyon ja vaatimusten hallintaan ketterdssi
ohjelmistokehityksessi. Téstd huolimatta tutkimustietoa siitd, miten hyvin olemassaolevat tyokalut tdyt-
tavit ketterien menetelmien tarpeet, on vihian. Aiheeseen liittyvi tieteellinen ty6 on keskittynyt uusien
tyokalujen kehitykseen ja uusien vaatimusten etsintdin.

Ketterdda ohjelmistokehitystd késittelevien populaariartikkelien analyysin perusteella Extreme Pro-
gramming ja Scrum olivat kaikkein tirkeimmat ketterdt menetelmét. Menetelmiin liittyvit vaatimukset
hankittiin menetelmiohjekirjallisuudesta. Tapausyrityksen vaatimukset hankittiin haastattelujen avulla.
Tuloksena saadut vaatimukset voitiin jakaa kahteen erityyppiseen ryhmién. Ensimmaéinen ryhma sisilsi
konseptuaalisia vaatimuksia, jotka kertovat millaista tietoa tyokaluun on voitava tallentaa. Toinen ryhmé
sisélsi toiminnallisia vaatimuksia, jotka kertovat mité tyokalulla pitdd olla mahdollista tehdd. Avoimen
lahdekoodin tyokalu Agilefant ja kaupalliset tyokalut Mingle, Rally Enteprise Edition ja ScrumWorks
Pro valittiin katselmointia varten. Tamén jilkeen tyokalut katselmoitiin yksi kerrallaan.

Agilefant-tyokalussa oli vakavia puutteita konseptuaalisiin vaatimuksiin liittyen. Niistd puutteista
seurasi myOs vakavia toiminnallisia puutteita. Mingle tdytti konseptuaaliset vaatimukset ja menetel-
mikirjallisuuden toiminnalliset vaatimukset erittdin hyvin. Se ei kuitenkaan tayttinyt tapausyrityksen
tuntiseurantaan ja -raportointiin liittyvii tirkeitd vaatimuksia. Rally Enteprise Edition tdytti menetelmi-
kirjallisuuden konseptuaaliset ja tominnalliset vaatimukset hyvin. Tydkalussa oli kuitenkin vakavia kon-
septuaalisia ja toiminnallisia puutteita koskien tapausyrityksen tuntiseurantaan ja -raportointiin liittyvid
vaatimuksia. ScrumWorks Pro:ssa oli vakavia puutteita liittyen menetelmaikirjallisuudesta ja tapausyri-
tyksestd hankittuihin konseptuaalisiin ja toiminnallisiin vaatimuksiin.

Tamin diplomityon tulokset osoittavat, ettd ominaisuuksiltaan riittdvid tyokaluja menetelmikirjalli-
suuden mukaisen ketterdn ohjelmistokehityksen hallintaan on olemassa. Ohjelmistoyrityksilld on kui-
tenkin lisdvaatimuksia, joita nykyiset tyokalut eivit valttdmattd tdytd. Tdssd tutkimuksessa ndmai lisd-
vaatimukset kisittelivit pddosin tuntiseurantaa ja -raportointia. Tyokaluja kehittdvien tahojen tulisikin
ottaa paremmin huomioon ketterdid ohjelmistokehitysti tekevien yritysten todelliset tarpeet. Jatkotutki-
muksen tulisi selvittdd, millaisia vaatimuksia muilla ketterdd ohjelmistokehitysti tekevillad yrityksilld on
ohjelmistokehityksen hallintatyokalulle.

Avainsanat
Ketterd ohjelmistokehitys, projektinhallinta, ohjelmistokehityksen tyokalutuki

Contents

Introduction
1.1 Motivation o o e e e e e e e e e e e
1.2 Research goal and questions,

Research process

2.1 Selection of the included agile methods
2.2 Agile software development book requirements extraction
2.3 Selectionof the casecompany
2.4 Selection of the interviewees in the case company
2.5 Case company requirements elicitation
2.6 Selection of the agile software developmenttools
2.7 Agile software development tool reviews,

Materials

3.1 Agile software development methods
3.2 Agile software development textbooks
3.3 Agile software development managementtools

Requirements for a tool according to the book review

4.1 Identified concepttypes Lo
4.2 Identified time horizons L Lo
4.3 Identified containersof work Lo oL
4.4 Identified piecesof work o L.,
4.5 Concept maps of the identified concepts
4.6 Selectionofwork Lo
477 Monitoring Progress . . . « v v v v e v e e e e e e e e e e e e e e e e e
4.8 Summary of the requirements from the book review

Requirements for a tool for the case company

5.1 Identified concepttypes e
5.2 Time horizons identified in the case company
5.3 Containers of work identified in the case company
5.4 Pieces of work identified in the case company
5.5 Concept map of the identified concepts in the case company
5.6 Selection of work inthe case company
5.7 Monitoring progress in the case company

il

15
15
15
17

20
20
21
24
28
33
33
36
38

5.8 Requirements for views in the case company 49

5.9 Work-hour reports in the case company 50
5.10 Summary of the requirements for the case company 51
Results of the tool review 53
6.1 Results for Agilefant 54
6.2 ResultsforMingle 61
6.3 Results for Rally Enterprise Edition 68
6.4 Results for ScrumWorksPro o oo, 76
6.5 Summary of the tool requirements and features 82
Discussion 90
7.1 Discussion on the tool features and the requirements 90
7.2 Discussion on tool conceptual model categories and weaknesses 95
7.3 Discussion on threats to validity of results 95
Conclusions 100
8.1 Conclusionsontheresults, 100
8.2 Summary of contributions L L L. 101
8.3 Furtherresearch e 101
Related literature 106
Interview introduction and questions 108
B.1 Introduction for the subjects in Finnish 108
B.2 Questions fordevelopers oo, 109
B.3 Questionsformanagerso 112
List of the identified tools 115

v

List of Figures

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2

6.1
6.2
6.3
6.4

6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

6.15
6.16
6.17
6.18
6.19

6.20

Overall structure of theresearch 5
Concept types of the book review requirements 21
Scrumconceptmap e e e e e e e 34
Extreme Programming conceptmap 34
Combinedconceptmapo 35
Example of a sprint backlog burn-down chart 37
Example of monitoring work in Extreme Programming 38
Summary of the requirements from the book review 40
Case company CONCEPLMAP . . « . . ¢ v v v v v v v vt e 47
Summary of the requirements from the case company 52
Colo-coding of the tool review result concept maps 54
High-level conceptual model of Agilefant concepts 54
Conceptual map of the book review concepts colored by match with Agilefant 55

Conceptual map of the case company concepts colored by match with Ag-

ilefant oL 55
Agilefant product backlog view oL Lo 57
Agilefant iteration burn-downexample oL 61
High-level conceptual model of Mingle concepts 62
Conceptual map of the book review concepts colored by match with Mingle 62

Conceptual map of the case company concepts colored by match with Mingle 63

Mingle card tree view example oL oo 64
Mingle release burn-upexample L., 67
High-level conceptual model of Rally EE concepts 69
Conceptual map of the book review concepts colored by match with Rally EE 70
Conceptual map of the case company concepts colored by match with Rally

EE . . e 70
User Story list view in Rally Enterprise Edition 71
Rally Enterprise Edition iteration burn-down example 75
High-level conceptual model of ScrumWorks Pro concepts 76
Conceptual map of the book review concepts colored by match with Scrum-
Works Pro o 77
Conceptual map of the case company concepts colored by match with Scrum-
Works Pro o 77
ScrumWorks Pro Java-Webstart user interface 79

6.21 ScrumWorks Pro sprint burn-down example

Vi

List of Tables

2.1

3.1
3.2
33
34

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
54
5.5

6.1
6.2
6.3
6.4
6.4
6.5
6.6
6.7
6.8

C.1
C.1
C2

Testbed computer system information

Results from the agile method popular articlesearch
Books included in the book review
Open-source tool candidates forreview
Commercial closed-source tool candidates for review

Scrum product backlog item properties
Scrum task properties L. e
Extreme Programming story properties
Extreme Programming task properties
Combined backlog item properties
Combined task properties e e e

Case company requirement propertieso
Case company task properties it e e
Case company effort spent entry properties
Requirements for the developer daily work view
Example of work division view L L Lo,

Book review time horizon requirements compared to the tools’ features
Case company time horizon requirements compared to the tools’ features
Book review pieces of work compared to the tools’ features
Case company pieces of work compared to tool features
Continued case company pieces of work compared to tool features
Work selection requirements and the tool features
Progress monitoring requirements and tool features
Case company views and tool features
Case company work-hour reporting requirements and the tool features . . .

Identified open-source tools oL Lo
Identified open-source tools continued
Identified commercial closed-source tools

vil

Chapter 1

Introduction

This chapter contains an introduction to the thesis. Section 1.1 describes the motivation for
conducting the research that is described in this thesis. Section 1.2 presents the high-level
research question of the research. It also describes the three lower-level research questions
that are used in answering the high-level question. The common aspects of agile methods
and further sub-research questions that were used in the research are also presented in this
section.

1.1 Motivation

Following the creation of the Manifesto for Agile Software Development [,

], agile software development methods have accumulated interest, both within the aca-
demic community and in the software industry. One aspect that is common to many agile
methods is the management of work as small pieces of work such as stories in Extreme
Programming (XP) and backlog items in Scrum. Agile methods are iterative and incremen-
tal: work is planned and done in short iterations which build upon the previous iterations.
In more traditional software process, requirements will pass through multiple steps before
they are implemented in software source code [, , p- 66]. The trail from elicita-
tion to implementation is shorter in agile methods and the requirements are easily altered or
reprioritized during implementation. Another common aspect in agile methods is the em-
powerment of the software development team. Each development team member is expected
to select the next thing to do without explicit instructions from a manager. This practice also
differs from the traditional way to manage work.

Traditional project management tools such as PERT charts, Gantt charts and work
breakdown structure charts could be used with agile methods. Unlike in traditional projects,
the expectation in agile software development is that only a small part of the requirements
is known when the project starts and that new requirements will constantly emerge during
development. This makes it unfeasible to follow the progress of the development work
with these traditional tools. Recreating the traditional charts whenever a new requirement
emerges would take resources out of development work. Therefore new lightweight tools
for management of work are needed.

The existing research on the subject has concentrated on tools for Extreme Program-

ming [9 9 B B s b ’]

] or more specifically managing user stories in a XP context [

, ,]. Furthermore, the goal of the existing research has mainly been to create
new tools for managing agile software development which are augmented with some kind
of additional functionality which, based on his own experiences, the author of the research
has deemed necessary. None of the found related research literature has used an external
real world agile software development organization as a source of requirements. None of
the existing research systematically reviews the existing tools for managing agile software
development. While the results from the related literature can be used to validate the re-
sults of this research, a more general approach toward the selection of the included agile
methods and a case organization study are required in order to elicit the requirements for
reviewing the existing tools for managing agile software development. See Appendix A for
a more detailed description of research literature that is related to managing agile software
development.

The exact requirements for a development management tool depend on many factors,
such as which agile method is used and how much the method has been customized. How-
ever, the requirements from a few most prominent agile methods, combined with require-
ments from a real world agile development organization, will provide an idea of the current
status of the available tool support for agile software development management. The re-
sults from this thesis will allow any interested party to identify tools for closer investigation
according to the organization’s special needs.

1.2 Research goal and questions

The goal of this thesis is to find out if the publicly available tools for managing the daily
work of an agile software development organization have sufficient features for that purpose
or whether they lack some functionality that prevents their efficient use. The following
high-level research problem is based on this research goal:

Does any tool available for free evaluation have sufficient functionality for managing the
daily work of an agile software development organization?

The search for an answer to the high-level research problem is accomplished by using
the three research questions which are presented in the list below. The majority of the re-
search for answers to questions one and two is independently performed. However, the
answers to the first question are used in the formulation of the research process for answer-
ing the second question. The answers to the first two questions are subsequently used in
the research for answers to the third question, where the tools available for evaluation are
compared to the identified requirements.

1 What are the requirements of the most prominent agile methods for a tool that
manages the daily work of an agile software development team, according to agile
software development methodology textbooks?

2 What are the requirements of a real world agile software development organization
for a tool that manages the daily work of an agile software development team?

3 Does any tool which is available for evaluation fill those requirements sufficiently
well?

To help elicit of the most relevant requirements to answer the questions one and two,
aspects that are characteristic of agile software development are used to formulate more
specific research sub-questions. These aspects are briefly introduced in the thesis motivation
in Section 1.1 and are summarized as follows.

e Work is conducted and planned in iterations which build upon previous iterations.

Shorter time horizons are planned in greater detail and longer time horizons are
planned in less detail.

Work is split into small pieces which are individually managed.

The development team autonomously selects the execution order of work during a
development iteration.

The progress of work is monitored with lightweight indicators.

The following more specific research sub-questions are used to answer research ques-
tions one and two. All questions in the list are used to answer both questions.

(a) What can be identified as “pieces of work”? That is, something that needs to be done.
(b) What information do the “pieces of work™ contain?

(c) How is “the work that needs to be done” recorded?

(d) How is “the work that needs to be done” managed?

(e) How is “the next thing that a developer should do” selected?

(f) What planning time horizons are used?

(g) What information do these time horizons contain?

(h) How is the progress of work monitored during the development?

Chapter 2

Research process

This chapter provides a detailed description of the research process of this thesis. Figure
2.1 contains a flowchart that shows the overall structure of the research process. The re-
search was started by performing a mini-research to determine the scope of the research on
agile methods. At the time of writing, many agile methods were actively discussed and re-
searched. The selection process for the agile methods for inclusion in this research was not
trivial. A high number of practitioner guidebooks have also been written on agile software
development methods and it would have been impractical to read them all.

The first step in the mini-research was the selection of the most prominent agile meth-
ods. The second step was the selection of a set of books which cover the most prominent
agile methods. As the first research goal of this thesis is to determine the requirements for a
tool that supports by-the-book agile software development, conference papers and journal
articles were excluded from the search. In the third step of the mini-research two of the
four initially selected most prominent agile methods were excluded from the research. The
scoping mini-research is described in detail in Section 2.1.

The first research question in this thesis is, “What requirements do the most prominent
agile methods have for a tool that manages the daily work of agile software development
team, according to agile software development methodology textbooks?” This research
question was answered by conducting a book review of the selected authoritative practi-
tioner guidebooks for the agile methods that were included in the research. Section 2.2
describes the book review process.

The second research question of this thesis is, “What requirements does a real world
agile software development organization have for a tool that manages the daily work of a
software development team?”” Answers to this research question were searched by conduct-
ing a case study in a real world agile software development organization. The selection
of organization is described in detail in Section 2.3 and the selection of interviewees is
described in detail in Section 2.4. Section 2.5 describes the software development organi-
zation requirements elicitation process.

The third research question of this thesis is, “Does any tool available for evaluation
sufficiently fulfill those requirements?”” The requirements which have been referenced here
are the requirements elicited in the book review process and case company study. The
answer to this research question was investigated by reviewing a selection of open-source
and commercial agile software development management tools. The tool selection process
is described in detail in Section 2.6. As a result, one open source tool and three commercial

closed source tools were selected for review. Detailed introductions to the selected tools
can be found in Chapter 6. Section 2.7 describes the process used in reviewing the tools.

Search for related
work

v

Selection of the
most prominent
agile methods

v

Book selection

v

Book review

'

Selection of the
included agile
methods

v v

Agile method
requirements
analysis

Case organization
selection

Interviewee
selection

\—iv Y

Interviews

v

Case company
requirements
analysis

Tool selection

Tool review

Figure 2.1: Overall structure of the research

2.1 Selection of the included agile methods

The selection of the agile methods that were included in this research is described in this
section. The search for the most prominent agile methods was started by searching for Web
pages which contained information on agile software development. The two following
sources were identified in this search:

Agile Alliance is an umbrella organization of different entities that are interested in agile
software development. The two main sources selected for the preliminary agile soft-
ware development method search from the Agile Alliance website were articles that
were linked from the website and the Agile Narratives Program, which aims to gather
personal stories which are relevant to agile software development.

InfoQ is an online community website that covers several topics including agile software
development. Books about Agile and Articles about Agile sections were included in
the research.

Articles from these sources were browsed and an article was included in the review if
its title was somehow related to agile project or requirements management. The publication
year of each included article was recorded to form a preliminary image of the evolution
of agile methodology. No strict search terms, selection criteria, or a search protocol were
used in this phase, as the goal was to form an idea of the prominence of the different agile
methods instead of extracting statistically significant quantitative information.

The selected articles were read and any mentions of agile methods were recorded along
with the article’s year of publication. Any references to books on agile software develop-
ment and to computerized tools for agile software development work management were
also recorded.

34 articles were selected for closer inspection. Only one of these articles was excluded
for not containing relevant material. No relevant material was found on the Agile Narratives
website.

Two criterion were used in the agile method selection: The total number of articles
which referenced the method and the time span in which the articles which mentioned the
method were published. The latter criteria was expected to reflect the long-term importance
of the agile method in question; for example, whether the method received attention for a
few years and then faded into obscurity or if it managed to remain relevant until the present
day.

Amazon.com Web-page was used as the source for books that cover the selected meth-
ods. The names of the methods were used as search strings and the few first pages of search
results were browsed.

Several books were selected to be read during this stage. After reading the books, a
decision was made to exclude two of the four included methods. The first excluded method
was Lean Software Development. It concentrates on providing guidance for making a soft-
ware development processes more lean and does not offer a practical software development
process. The second excluded method was excluded Feature Driven Development (FDD).
The method is notably different from the two included methods and a separate tool review
would have been required in order to evaluate the tools’ compliance with FDD. The inclu-
sion of the method would have provide little value over the results from the two methods
that ultimately were included.

As a result of these steps, Scrum and Extreme Programming were selected for detailed
analysis in this research.

2.2 Agile software development book requirements extrac-
tion

This section presents the protocol which was used to extract the requirements of the book
review. The goal of the book review was to obtain information on how the selected agile
methods work as described by the authors of the methods. The research sub-questions
which were presented in Section 1.2 were used to guide the review of the selected books.
However, the recorded results were not limited to contain only answers to the questions.

The results from the selected books were recorded in a mind map. The table of contents
of each selected book was read and the chapters which potentially contained answers to the
research sub-questions were noted. The chapters were then read and any answers to the
sub-questions were recorded in a mind map with a reference to the page which contained
the answer.

After the book was read a the mind map was used to develop a concept map of the agile
method as it was described in the book. If concepts or relations between them were unclear,
then the book was referenced for clarification.

The concept maps were analyzed to identify the discrete types of concepts that existed
in each map. The identification of the different concept types was based on the differences
in the function of the concepts. The four identified concept types serve different purposes in
the methods. Each concept in each map was then mapped into the set of identified concepts
(see Section 4.1).

There were two notable decisions which were related to the concept types. An “actor”
concept type, which could contain, for example, person or team concepts, was not included
in the concept types. Scrum and XP were considered single team-centric methods in the
scope of this thesis. Only one concept which required a team member as a value was
identified in both methods. Other information concerning actors is implied by the context
of the project and does not need to be explicitly recorded in the methods. This makes
separate concept type to contain actor type concepts unnecessary, as the information can
be recorded equally well with the other concept types. The second notable decision was
to include the container of work concept type as a separate concept type. The identified
containers of work could have been included in the conceptual models as parts of the related
time horizons. However, there are notable differences between the relationships among the
containers of work and the relationships between the time horizons to which the containers
belong. The separate container of work concept type makes illustrating these differences
much simpler.

One new concept map for both of the two selected methods was created by merging the
previous two concept maps that were created based on the books. By using the new concept
map, the two original concept maps, the mind map, and the source books, an explanation
was written for each concept and for the relationships between concepts. These results can
be found in Chapter 4.

In addition to the individual concept maps of the two methods, a map which combines
the concepts from the two methods was created. Many real world users of Scrum and XP
have customized the methods to some extent [,] and the com-
parison to the exact conceptual requirements from the two methods is less valuable than a
comparison to the combined conceptual requirements. Any tool that fills all combined con-

ceptual requirements also fills the individual conceptual requirements from both methods.

The combined conceptual model was not just a mechanical combination of the concepts
from the two methods. Connections between concepts were added in cases where it seemed
appropriate, considering the consistency of the model as a whole. For example, a connec-
tion between a project and release has been added (see Figure 4.4), as such connection
exists in Extreme Programming between a release and its iterations (see Figure 4.3).

The concepts and the relationships in the conceptual models were not prioritized or
refined to create the requirements for a tool. The books which were used as sources give
little indication of the relative importance between the different concepts which exist in the
agile methods. The concepts in the combined conceptual model were directly used as data
model requirements for the tools since they indicate what type of information needs to be
saved within a tool. The inclusion of all identified conceptual and functional requirements
in the tool reviews facilitated the formation of informed opinions about the sufficiency of
the tools.

Requirements for selection of work and monitoring progress were also elicited from the
books. These requirements were created by first extracting answers to the related questions
from the books and then recording them in a mind map. Next, the requirements were created
according to the mind map. A combination of the requirements from the both methods was
also created in a similar manner.

2.3 Selection of the case company

The software development methods and processes in software development organizations
vary widely according to many different factors, such as the size of the organization, the
type of the software developed and time-to-market requirements. Conducting a large-scale
inspection of requirements in many different software development organizations is out of
the scope of this thesis. However, taking the requirements from a single software devel-
opment organization provides some insight into the kinds of requirements that real world
software development organizations have.

Large software development organizations are usually divided into many subdivisions
and each might have its own software development process. In addition, a large organiza-
tional structure creates a set of separate issues which are mostly related to communication
and are out of the scope of this thesis. On the other hand, very small organizations can
do without much process at all and the requirements from a such organization would not
be very interesting considering the goals of this thesis. Medium-sized organizations are
the best candidates because they may have defined processes for software development in
place, yet they are still small enough that it is possible to obtain an understanding of the
organization’s processes by conducting a set of interviews.

For the purposes of this thesis, a medium-sized software development company that
was willing to participate was selected. Because the company was looking for a new tool
to manage the daily work of its employees, it was motivated to contribute to this thesis
since it stood to benefit from the results. The company offered both software products
and services and employed agile software development at least at some level within their
software development. As an added benefit, the company’s official language is Finnish,
which is also the native language of the interviewees and the author. Therefore, there were

no language barriers to be overcome.

2.4 Selection of the interviewees in the case company

Three different roles that have to do with software development were selected for interviews
within the case company. The first selected role was senior software developer. A senior
software developer spends most of his or her time developing software. In addition to writ-
ing program code, the duties of this position include tasks such as testing, low-level design
and participation in the architectural design of the software. A senior software developer
works daily with the requirements or features that need to be developed into the software.
Considering the research questions of this thesis, the needs for a tool that manages a senior
software developer’s daily work are very important.

The position of software development team leader is the second selected role. A soft-
ware development team leader also participates in software development tasks, but some of
his or her time is spent managing software development. This includes clarifying require-
ments for the developers, analyzing and prioritizing requirements, monitoring progress of
work and communicating the project’s status to stakeholders. Because the software devel-
opment team leader is responsible for managing the requirements and monitoring progress
of the software development, his or her needs for a tool to manage the daily work must also
be considered.

The position of project manager was the third selected role. A project manager is re-
sponsible for planning and managing projects, which requires an awareness of the status of
each project that he or she is managing. During the planning of a project, a project manager
also plans at such level of granularity, that the team leaders and developers can begin to
develop the project according to the plan. This means that a project manager needs to be
aware of the daily work of the developers. Therefore, a project manager has his or hers
specific needs for a tool for managing daily work.

One person per each role was identified at the company and asked to be interviewed.
Each agreed to be interviewed. Each interviewee was contributing to several different cus-
tomer projects. The senior software developer and the team leader were also participating
in documentation and bug-fixing and the project manager was participating in training ac-
tivities.

2.5 Case company requirements elicitation

The second research question (see Section 1.2) of this thesis was answered by conducting
a series of interviews in a real world agile software development organization. This section
describes how the interviews were conducted and analyzed. Section 2.5.1 describes the
practical arrangements of the interviews. Section 2.5.2 describes how the results from the
interviews were analyzed.

2.5.1 Interview methodology

Two different sets of interview questions were created for the interviews. The first set of
questions targeted interviewees whose jobs mainly constitute software development activ-

9

ities such as coding. The second set of questions was aimed at interviewees with more of
a management type of job. The questions were created created according to the research
sub-questions that were presented in Section 1.2 and based on the results from the book
review.

The interview was constructed in a semi-structured fashion. The questions were ar-
ranged in a tree-like structure in which general questions were placed closest to the trunk
and more specific questions formed the branches. If the answer to a question was expected
to be either yes or no, two alternative branches were formed to account for follow-up ques-
tions. The questions were formulated according to the author’s knowledge on general soft-
ware engineering and on project management practices. In addition to the questions, an in-
troduction for the interviewees was produced. For the most part this introduction contained
statements that were intended to make the interviewee as comfortable as possible with the
interview situation. The original introduction and the two sets of interview questions can
be found in Appendix B. All questions were in Finnish.

Interviews were conducted in one of the company’s meeting rooms. In addition to the
author and the interviewee, one other person participated in the interviews. His purpose
was to take notes during the interview to facilitate the analysis of the interviews. He was
also allowed to make questions to the interviewees when it appeared that the author had
missed an opportunity to ask something of importance. The interviews were also recorded
to facilitate the analysis.

When the introduction was read to the first interviewee, it became apparent that, instead
of putting the participant at ease, he became less relaxed. Therefore, only the introduc-
tion’s most important elements regarding privacy and confidentiality were read during the
following two interviews. The interviews were conducted in semi-structured fashion. The
interviews were started by asking the first question in the trunk of the question tree struc-
ture. After the interviewee had answered the question, follow-up questions were asked.
The follow-up questions were either branches of the previous question or free-form ques-
tions based on the previous answer. The follow-up questions continued until the whole
branch was exhausted, whereupon the next question in the trunk of the tree was asked. If
the interviewee had already answered a question that came later in the question tree, then
the question was skipped. The interview continued until all questions in the structure were
exhausted and no more relevant free-form questions came to mind.

2.5.2 Interview analysis

The analysis of the interviews was conducted after all three interviews had been performed.
The analysis was performed by looking at the notes that the second interviewer had taken
during the interview and by listening the recordings of the interview. The analysis results of
each of the interviews were recorded in separate mind maps. Instead of the tree formation
which organized the questions, the analysis mind maps were grouped through an association
technique. Data elicited from the interviews was recorded in the mind map and grouped and
organized in an appropriate manner. If later data revealed that the previous organization was
inappropriate, then the data was reorganized. All three interviews were separately analyzed
in this fashion.

Based on the three analysis mind maps, a concept map of the concepts that are involved
in managing the daily work of the software developers was created. Most of the concepts

10

in this map were mapped to the concept types which were identified in the agile software
development book review (see Section 4.1). However, the concept map included one con-
cept type that could not be mapped to the four previously identified types. As a result, one
of the original four concepts was broadened to include the new concept type.

Based on the three original mind maps, the concept map, and the interview recordings,
a new mind map was constructed which consisted of the requirements for a tool based on
the interviews. The new mind map was primarily constructed to enable the voting and the
verification described in the next paragraph, as the conceptual map and the three original
mind maps would have been too complicated to explain and employ in a such event. The
requirements were divided into groups in the mind map based on their similarity. The indi-
vidual requirements were also annotated to aid the verification and voting. The annotations
were intended to show the current state of the requirements considering the tools that the
company had in use when the interviews were conducted.

A two-hour meeting was arranged with the company for the prioritization and verifica-
tion of the requirements. The three interviewees participated in the meeting. In addition, a
wide variety of employees who fill different roles within the company were present. These
included customer support personnel, programmers, and managers. The prioritization of
the requirements was performed by giving each participant a set of cards with numbers
from 1 to 4 printed on them. Each number represented a priority class. Number 1 meant
that the requirement was critical, 2 meant that the requirement was useful, 3 meant that
the requirement was not needed and 4 meant that the voter could or would not comment.
These classes and the annotations used in the requirements mind map were explained to
the participants before the voting commenced. During the voting, each requirement was
explained by the author. If the participants agreed that the author had correctly understood
the requirement, then the voting commenced. If the participants agreed that a requirement
needed to be altered, then it was discussed by the participants until an acceptable alternative
could be formulated.

The voting was conducted in the following way. All company employees that were
present individually selected a priority card without showing his or her selection to others.
When all voters had made their selection, they simultaneously revealed their votes. If the
statistical mode of the votes was larger than the number of other priorities, then the prior-
ity was accepted and recorded on the mind map. Otherwise the participants whose votes
differed from the mode were asked to discuss why they voted they way they did. After the
discussion, a second round of votes was cast. The process did not require a second round
of discussion or third round of voting.

The only significant exception to the voting process were the requirements that were
annotated as being previously implemented in a tool that was already in use at the company
to manage the developer’s daily work. If a discussion was not raised on a such requirement,
it was marked as priority level 1 without voting. If the need to vote the priority of the
requirement became apparent during the discussion, the priority of the requirement was
voted as described in the previous paragraph.

A second meeting about the requirements for reporting work hours was arranged a few
days following the discussion and voting meeting. Work-hour reporting is a broad topic and
could not be handled in detail during the voting and verification meeting. One senior devel-
oper and one development team leader participated in the work-hour reporting requirements
specification meeting. The author of this thesis was not the moderator of this meeting. In-

11

stead, it was moderated by a researcher from the TKK SoberIT laboratory. The goal of
the meeting was not to prioritize the work-hour reporting requirements, but to explore the
company’s needs for work-hour reporting functionality in general. The SoberIT researcher
presented his views on how the reporting functionality should be implemented. The topic
was then discussed among the participants. Voting was not conducted in this meeting. The
requirements for work-hour reporting were based on this meeting and the interviews the
author carried out.

2.6 Selection of the agile software development tools

It was not possible to answer the third research question by reviewing every publicly avail-
able agile software development management tool, because there was no guarantee that all
existing tools were found. Furthermore, it would have taken an impractical amount of time
to review each of the found tools. This issue was mitigated by creating a set of criterion to
select the tools that were to be reviewed. A decision to was made to limit the scope to two
open-source and two commercial closed-source tools. This number was considered large
enough to give a good picture of the current status of the tool support.

The first step in the tool selection process was to find as many agile software develop-
ment management tools as possible. The methods listed below were used in the search for
tools.

e During the selection of the most prominent agile methods (see Section 2.1), all refer-
ences to tools that were found in the articles were recorded.

e A keyword search was conducted within the SourceForge open source development
repository. The searched description field keywords were “story”, “backlog”, “scrum”,
and “extreme programming”. Each keyword was used in isolation. The search was
limited to “Software Development™ and “Project Management” categories. Tools

were selected based on their descriptions from the results.

o A Google search of two different search phrases was performed. These search phrases
were “scrum backlog management tool” and “extreme programming story manage-
ment tool”. Results were compiled from these results and from sponsored links.

e Several tools were identified through information from informal sources, such as tips
from colleagues of the author.

All identified tools were collected in two lists. The first list contained 53 open-source
tools and the second list contained 24 closed-source commercial tools. The complete lists
can be found in Appendix C.

Second step in the tool selection process was to apply exclusion criteria to the identified
tools. The exclusion criteria are explained in the following list. The numbers in the list
correspond to the headings in the tables of tools that are presented in Appendix C. The
exclusion criteria were then applied to the lists of tools.

1. The tool must be in a mature development stage. The version number of the tool
should be at least 1.0. This excludes, for example, release candidates and beta ver-
sions. The tools used in managing the daily work of agile software development store

12

crucial information about the development process. Such tools should be relatively
bug-free and mature enough to prevent productivity losses caused by a malfunction
in a tool.

2. The development of the tool must be alive. A software development organization
using a tool must be able to expect that bugs and other issues in the tool are going to
be fixed in the future by the developer of the tool. The users themselves cannot be
expected to fix any issues. This excludes abandoned or inactive open-source projects
and discontinued commercial products. Open-source projects with only one author
or contributor are also excluded on the basis that the risk of discontinuation of the
project is too great if something happens to the author. To avoid seemingly alive, but
inactive projects, the latest version of the tool must have been released after January
1, 2008. Incremental releases, such as bug fixes and security updates, are accepted as
releases.

3. The tool must be primarily directed toward managing the daily work of agile software
development organizations. A tool that does not reference agile software develop-
ment in its intended use or feature list is probably directed toward more traditional
projects and is cluttered by features that are not useful in agile context. Tools that
contain features that can be used to manage agile software development, but that also
contain significant amount of unrelated functionality are also excluded, as the extra
functionality clutters the tool. An important part of the agile software development
philosophy is to use the simplest tool that works and the extra features and customiza-
tion options beyond what is required are considered harmful. An example of this kind
of tool is a development suite that contains functionality in many aspects of software
development, from document management and version control to automated testing.

4. The tool must be available for evaluation. Some commercial closed-source tools do
not offer an evaluation version, a trial account, or a demo version. Evaluation of these
tools would require purchasing a license for the tool which is not possible considering
the resource constraints of this research.

Each of the selected open-source tools were then closely inspected to determine whether
the tool could be included in the final review. At this point, all but one of the open-source
tools were excluded from the final review. Because only one open-source tool was not
excluded from the detailed review, the original goal to review two open-source tools and
two commercial closed-source tools could not be reached. In order to keep the original
scope of a total of four tools, the decision was made to review one additional commercial
closed-source tool.

The third goal of this thesis was to find out if any tool sufficiently fulfilled the require-
ments of agile software development management. The closed-source tools that would be
reviewed more deeply were attempted to be selected in a such way that the selected tools
would reflect different philosophies toward project management. This consideration was
expected to maximize the probability of finding a tool that would fulfill the requirements. If
several similar tools were found, the tool which was most promising, based on its descrip-
tion and feature lists, was selected. Each of the three commercial closed-source tools that
were initially selected were also included in the final review.

13

2.7 Agile software development tool reviews

The first step in the review of the selected tools was gaining access to the tools so they
could be reviewed. Various access methods were identified depending of the type of the
tool. Some tools ran as services on their developer’s servers. They could be accessed with
a Web browser and did not require installation in the testbed computer. For those tools, an
online demonstration or trial accounts were acquired and used in the reviews. Other tools
needed to be installed to the testbed computer. These tools were installed according to any
available basic installation instructions.

The system information of the testbed computer used in the test is shown in Table 2.1.
While the testbed system did not reflect the hardware configuration of a typical server ma-
chine, the reviews in this thesis were focused solely on the functionality of the tools and
not on their performance or reliability. The basic functionality of the tools that were re-
viewed should not have been affected by the hardware configuration that was used. Thus,
the hardware differences between a typical server machine and the testbed machine were
consequently ignored.

Table 2.1: Testbed computer system information

Base system Dell Latitude D530 (laptop PC)
Processor Intel Core 2 Duo 2,2GHz
Memory 2048MB 667MHZ DDR2
Hard disk 7200 RPM Serial ATA
Operating system Windows XP Professional SP3
Web browser Mozilla Firefox 3

There were two sets of requirements that needed to be compared to the features in the
selected tools. The first set was the requirements from the book review (see Section 4.8) and
the second set was the requirements from the case company (see Section 5.10). A separate
review was conducted for each of the two requirement sets.

The reviews were conducted by opening the map of the conceptual requirements. Each
concept in the requirements was compared to concepts which were available in the tool. The
concepts in the concept map were notated depending on how good match for the concept
was found within the tool. If there was some ambiguity on which concepts to match, the
conceptual requirements and the concepts in the tool were matched in a such way that
maximized the number of matching concepts. All concepts in the requirements map were
matched one by one. Any concepts in the tool that did not have a corresponding concept
in the requirement concepts but had to be used for functional reasons were added to the
concept map and marked as excess concepts. The breadth of the conceptual requirements
that were filled by the tool was then evaluated based on the markup of the concepts in
the concept map. Functional requirements that did not directly relate to concepts such as
monitoring work or views in the tool were reviewed in an exploratory fashion.

When it was possible to configure a tool to better match the requirements, the config-
uration functionality was used. In the case of an extensive and complicated configuration
process, the tool was only configured to the extent that an average tool user could be ex-
pected to be willing to do.

14

Chapter 3

Materials

This chapter contains descriptions of the materials that were used in this research. Inter-
mediate results of the materials selection processes are also included. A description of
the reason for exclusion is also provided with respect to the materials that have ultimately
been omitted from this research. Section 3.1 contains the results from the most prominent
agile methods selection process. Section 3.2 contains the results from the agile software
development practitioner textbook selection. Section 3.3 contains the results from the agile
software management tool selection.

3.1 Agile software development methods

This section presents the results from the selection of the most prominent agile software
development methods. A description of how the selection was made is provided in Section
2.1. 14 agile software development methods were identified from the 33 articles that were
read. The results concerning the prominence of the identified agile methods are summarized
in Table 3.1. The first column shows the method’s name and, if available, the generally
accepted abbreviation of the method’s name. The total number the method is referenced in
the articles is located in the second column and the publication years for the articles that
mention the method are shown in the third column.

Based on these results, four agile methods were identified as the most prominent. These
methods are Extreme Programming, Feature-Driven Development, Lean Software Devel-
opment, and Scrum.

3.2 Agile software development textbooks

This section introduces the six books that were initially selected according to the title and
description that was available on Amazon.com (see Section 2.1). The list of the books
that were selected to be read can be found in Table 3.2. The row that references inclusion
displays whether the material from the book was included in the in-depth book review.
Agile Software Development with Scrum [,] 1s the first of-
ficial book about Scrum by the method’s creators, Ken Schwaber and Mike Beedle. In
addition to describing the Scrum process, the book also contains information on the philo-
sophical and theoretical background of Scrum. A newer book, The Enterprise and Scrum

15

Table 3.1: Results from the agile method popular article search
Method # Years referenced

Adaptive Software Development (ASD) 3 2001, 2002
Agile Unified Process (AgileUP) 3 2007
Crystal 4 2001, 2002
Dynamic Systems Development Methodology (DSDM) 4 2002, 2006
Evolutionary Project Management (EVO) 1 2006
Extreme Programming (XP) 26 2000, 2001, 2002, 2003,
2004, 2005, 2006, 2007
Feature-Driven Development (FDD) 5 2002, 2004, 2005, 2006,
2007
ICONIX 1 2005
Lean Software Development 4 2002, 2003, 2006, 2007
Open Unified Process (OpenUP) 2 2007
Scrum 11 2001, 2002, 2004, 2006,
2007
Spiral Development 1 2002
Trilogy’s Fast Cycle Time 1 2001
Usage Centered Design 1 2002
Table 3.2: Books included in the book review
Book Included
Extreme Programming Explained Ist ed. [,] yes
Extreme Programming Explained 2nd ed. [,] yes
A Practical Guide to Feature-Driven Development [no
, |
Lean Software Development: An Agile Toolkit [no
,]
Agile Software Development With Scrum [, yes
]
The Enterprise and Scrum [,] yes

16

[,], is mainly focused on using Scrum on enterprise level, but it also includes
a brief introduction to Scrum. In the case of conflicting information, the more recently pub-
lished book was used as the authoritative source.

The first edition of Extreme Programming Explained [,] is the first Extreme
Programming book written by Kent Beck, one of the original authors of the XP method
[,]. It provides a general introduction to the practices of XP. The second edition
of the book [,] concentrates on the values, principles, and philosophy
of XP, but it also includes some instructions on the practical side of XP.

Feature Driven Development and Lean Software Development were not included in the
in-depth book review.

A decision to exclude Lean Software Development from the scope of the research was
made after reading Lean Software Development: An Agile Toolkit by

[]. The book describes a set of thinking tools, ... to aid software devel-
opment leaders as they develop the agile practices that work best in their particular domain.”
[, , p- 8] instead of describing a concrete development

process and offers little relevant information for this research. This point of view was fur-
ther fortified by [, p- 166]:

“Lean Software Development provides the theory behind agile software de-
velopment practices and gives organizations a set of principles from which to
fashion software engineering processes that will work best in the context of
their customers, their domain, their development capability, and their unique
situation.”

After reading and analyzing (see Section 2.2 for the book review protocol) A Practical
Guide to Feature Driven Development by [] the decision was made
to exclude Feature Driven Development from the rest of the research. Feature Driven De-
velopment differs notably from Scrum and XP in its approach and philosophy to software

development [, , p- 280-283]. While creating a combination model of Ex-
treme Programming and Scrum was considered to be relatively easy due to the similarities
between the two methods [, , p- 163], the requirements that FDD has for a tool

are very different and would have required a completely separate tool review.

3.3 Agile software development management tools

As a result of applying the exclusion criteria to the list of all found tools (see Section 2.6),
four open-source and nine commercial closed-source tools were left as potential candidates
for the detailed review. The open source tools are listed in Table 3.3 and the commercial
tools are listed in Table 3.4. The first column in the tables contains the tool names and the
second column references the tools’ authors.

The open-source tools to be included in the tool review were selected first. The first
candidate was Agilefant, which was developed by the Software Business and Engineering
Institute in Helsinki University of Technology. The tool was selected for inclusion in the
in-depth review. A general introduction to Agilefant can be found in Section 6.1.1

The second open-source candidate for review was eXtreme Management Tool by Zest
Software. The tool is primarily intended to manage development in an Extreme Program-

17

Table 3.3: Open-source tool candidates for review

Tool Author

Agilefant TKK / SoberIT
AgilePlanner Frank Maurer et al.
eXtreme Management Tool Zest Software
Project Dune Gerard Toonstra et al.

Table 3.4: Commercial closed-source tool candidates for review

Tool Author

DevPlanner Fedorenko

Mingle ThoughtWorks

OnTime Axosoft

Rally Enterprise Edition Rally Software Development
ScrumDesk ScrumDesk

ScrumWorks Pro Danube Technologies
VersionOne VersionOne

VisionProject Visionera

ming project. It is implemented as an plug-in on Plone content management system. eX-
treme Management Tool was first selected to be the second tool to be reviewed. The web
page of the tool does not offer any installation instructions. Installation of the tool was
attempted several times with several different methods based on information in a general
3rd party plug-in installation guide for Plone. While the installation seemed to success
each time, the result was always a broken Plone instance. Based on the lack of installation
instructions and the troublesome installation process the tool was finally dropped from the
detailed review.

The third candidate open source tool was AgilePlanner created by The Agile Software
Engineering/e-Business engineering (ASE/EBE) group at the University of Calgary. Ag-
ilePlanner’s functionality is geared toward providing virtual board for planning game with
story cards for large and distributed projects. It provides little project management func-
tionality and therefore it was not a good candidate and was therefore excluded from the
detailed review.

The fourth open source tool candidate was Project Dune, which is an open source tool
and project developed by a group of contributors headed by Gerard Toonstra. Most of
the tool’s features concentrate on managing issues and documentation. The tool’s feature
list includes managing Scrum tasks. However, managing tasks is implemented as an aside
on the issue management; every task in the tool must be linked to an issue. Because of
the focus on issue management, the tool is not suitable for general management of agile
software development and was excluded from the detailed review.

Based on the findings described above, Agilefant was the only open source tool included
in the detailed review.

The only commercial closed source tool excluded based on how the developer of the
tool describes the the tool was DevPlanner by Fedorenko. The tool’s description says it is
a “personal day planning software” [,]. DevPlanner’s main purpose is to
help an individual developer to plan and follow the usage of time with task estimation and

18

daily schedule. The tool is capable of creating team reports, but it does not have sufficient
features to be useful in managing work at a team level. DevPlanner could be used to manage
the work of an individual developer during agile software development, but considering the
goals of this thesis, it was not relevant. Therefore, it was excluded from the detailed review.

The rest of the commercial tools were divided into three groups that differ notably
in philosophy toward software development. The first group represents tools that have
flexible conceptual models and must be configured before they can be used. Mingle is
the only tool that belongs to this group. The second group represents tools that are aimed
toward a specific agile software development method. ScrumWorks Pro and ScrumDesk
belong to this group. The third group represents tools that are intended for agile software
development in general. These tools may offer some configuration options, but they do not
require extensive configuration to be useful. Rally Enterprise Edition, OnTime, VersionOne
and VisionProject belong to this group.

One tool from each group was selected to be reviewed in depth. The selected tools
were Mingle, Rally Enterprise Edition and ScrumWorks Pro. General introductions to the
selected tools can be found in Sections 6.2.1, 6.3.1 and 6.4.1, respectively. Mingle was the
self-evident selection from the first group, as it was the only tool in the group. ScrumDesk’s
features are directed for providing a virtual board for story cards in a Scrum project, while
ScrumWorks Pro is more project management oriented. Based on this, ScrumWorks Pro
was selected for detailed review. No large differences in the coverage of interesting features
were found in the four tools in the third group. There were however notable differences in
the amount of features not related to the subject matter of this thesis. Rally Enterprise
Edition was selected to represent the third group. It seemed to contain the least amount of
unrelated functionality.

19

Chapter 4

Requirements for a tool according to the
book review

This chapter describes the results of the book review. Each section contains requirements
for Scrum, XP and the combined model. Section 4.1 presents the four concept types that
were identified in the analysis of the results. Most of the requirements resulting from this
analysis are mapped to these four concept types. Conceptual maps of the two methods and
the combined model can be found in Section 4.5. Descriptions of the identified concepts
(disregarding properties, which only specify other concepts) are found starting from Section
4.2, which describes the identified time horizons. The followings Sections 4.3 and 4.4
describe the identified containers of work and the identified pieces of work, respectively.

There are two requirements that are related to every concept but that are not listed in
this chapter. These requirements are the creation of a new instance of a concept type and
the deletion of an old one. These operations are implicit requirements for every concept of
every type and they are not repeated for each concept.

In addition to the requirements identified from the conceptual maps, the requirements
for selection of work (Section 4.6) and monitoring progress (Section 4.7) are described in
this chapter. Finally, Section 4.8 presents a summary of the requirements from the book
review.

When Extreme Programming or Scrum is referenced as a source of requirements in this
chapter, it only represents the method as described in the books used as sources. Other
implementations of the methods exist and references to these two methods should not be
interpreted as generalizations to all published implementations of the methods.

4.1 Identified concept types

Figure 4.1 shows the four different types of concepts that were identified in each included
method. All concepts that are of importance in this research were mapped to these four
types. The concept types are explained in the following list.

Time horizon is a part of temporal dimension that has a defined purpose in the method.

From a planning perspective, a time horizon is a length of time which is planned
ahead.

20

contains . f K has zero
:{Contmner [wort)ny—' Time horizon

may belong to

|

Figure 4.1: Concept types of the book review requirements

Container of work groups units of work. Most often the grouping is done based on the
time horizon in which the piece of work is going to be done, but other groupings also
exist.

Piece of work is an abstraction of the actual work that needs to be done. It may be pre-
sented in different ways, for example as a description of something the system must
be capable of or as an actual description of something that needs to be done.

Property specifies the concept to which it is associated. All other concept types may have
properties associated with them.

4.2 Identified time horizons

This section presents the time horizons identified in the book review. Four time horizons
were identified in Scrum and two time horizons were identified in XP. The time horizons
identified in Scrum are described in Section 4.2.1 and the time horizons identified in XP are
described in Section 4.2.2. In addition, the combined model of the time horizons from both
methods is described in Section 4.2.3.

4.2.1 Time horizons in Scrum

This section describes the four time horizons identified in Scrum. These time horizons
were the product, project, release and sprint. Based on the sources used, no direct rela-
tionship exists between the product, release and sprint time horizons. However, the three
time horizons do have indirect relationships between them, as their associated containers of
work have direct relationships (see Section 4.3.1). Unlike the other three time horizons, the
project time horizon does not have a container of work associated with it. However, it has
a direct relationship with the product time horizon.

Product

The product time horizon represents the complete life cycle of a product and it is the highest
level time horizon in Scrum. Each product time horizon has a product backlog attached to it.
The product has a vision of the system, or a system vision property. The vision of the system
to be built is the highest level planning tool in Scrum. The vision may be vague and stated
in market terms at first, but becomes clearer as the development of the product proceeds.
Implementing all product backlog items results in realization of the system vision.

21

Project

A product is developed by one or more Scrum projects. All projects which develop the same
product share the same product backlog. The project is not a well defined time horizon in
Scrum. It is more of a context in which Scrum is used. Scrum defines two properties specific
to the project time horizon: the complexity factor and the project goal. The complexity
factor increases the effort estimates of product backlog items based on the characteristics
of the project that decrease the productivity of the developers in the project. Project goal is
the reason the project exists. When the project goal is reached the project is completed.

Release

In Scrum, the release is the time horizon that is used in long term planning. The length
of a release is not defined in Scrum, but several sprints are usually completed during one
release. Each release has a date and a release backlog (see Section 4.3.1). The division of
product backlog items into release backlogs conveys the long term development plan of a
product. If more or less work than originally planned is completed in a release, the contents
of the release backlog may be altered or the date of the release may be changed.

Sprint

The sprint is the development iteration level time horizon in Scrum. The sprints belonging
to the same release are executed in sequential order. One month is the normal length of a
sprint, but a shorter duration may be used. Regardless of the length, each sprint in a Scrum
project must be of equal length. There are two containers of work (see Section 4.3.1) related
to the sprint: A set of product backlog items selected to be developed in a sprint and a sprint
backlog. In addition the sprint has a sprint goal, a sprint plan and a team capacity.

The sprint goal is a subset of a project goal and it describes the purpose of a sprint.
A sprint goal is crafted based on the product backlog items that have been selected to the
sprint in a such way that the completion of the items will result in reaching the sprint goal.
Tasks in a sprint backlog are devised in a such way that completing them will convert the
product backlog selected to the sprint into the sprint goal. If the scope of a sprint needs to
be reduced, product backlog items can be removed from the sprint and re-entered into the
product backlog or the scope of the items can be reduced, as long as what remains meets
the sprint goal.

The sprint plan is a tentative plan of how a sprint will be carried out. This includes a
plan of what needs to be done, how it will be done and who will do it. The sprint backlog
can be considered to be a part of the sprint plan.

The team capacity tells how much work a team is capable of doing in a sprint. Sprint’s
team capacity is derived from the effort estimates of product backlog items that a team man-
aged to complete in a preceding sprint. In the first sprint the team capacity is an estimate.

4.2.2 Time horizons in Extreme Programming

Extreme Programming defines two time horizons: the release and the iteration.
[, p- 91] mentions the project time horizon, which has a collection of stories
and a deployment date as properties. The relationship between the project time horizon and

22

the rest of the XP method is not explained in the sources used and, therefore, project time
horizon is excluded from the results concerning XP.

Release

The release is the long term planning time horizon in Extreme Programming. The release
time horizon has stories selected to the release as a container of work. The details of a
release in XP are planned by picking the stories that are going to be implemented into the
release. The suggested length of a release is a quarter of an year, but other lengths can be
used. The date of a release can also be calculated from the effort estimates of the stories that
have been selected to be implemented in the release. The release has one or more themes.
The themes are textual descriptions of how the release fits in to the big picture. No detailed
information on how to write themes is given in the sources used.

Iteration

The iteration is the development level time horizon in Extreme Programming. Each release
contains several subsequent iterations. The iteration time horizon has a collection of tasks,
stories selected to the iteration and “done” stories as containers of work. The collection
of tasks in an iteration acts as a detailed plan for the iteration. The suggested length of an
iteration is one week, but other lengths can be used. After the completion of an iteration
the actual work that was accomplished is recorded. This value is then used as a guideline
when selecting stories into the following iteration.

4.2.3 Combined time horizons

XP and Scrum both have nearly identical release and iteration time horizons. In addition to
these two time horizons, Scrum describes two higher level time horizons: the project and the
product. The time horizons form a hierarchical structure, where a higher level time horizon
may contain one or more lower level time horizons. All time horizons except project have a
backlog (see Section 4.3.3) containing backlog items (see Section 4.4.3) associated to them.
The names of the combined time horizons follow the names in Scrum with the exception of
the lowest level time horizon, where the more general iteration is used instead of the Scrum
specific sprint.

Product

The product time horizon represents the complete life cycle of a product from the product’s
inception to its discontinuation. Apart from a name or other identifier, the product has
no properties associated with it. Each product has a product backlog which contains all
backlog items that have been created for the product. Regardless of whether the backlog
items have been selected to be developed or not, a product’s backlog contains all work that
should be done for a product.

23

Project

The project time horizon is the only time horizon which has no backlog associated with
it. Project has two properties: a complexity factor and one or more project goals. The
complexity factor reflects the complexity of a project and increases the effort estimates of
backlog items related to the project accordingly. The project goals are textual representa-
tions of the high level goals of a project. A project may be associated with a product that is
being developed in the project, but projects that are not associated with a product may also
exist.

Release

The release time horizon is used to plan the content of product releases. In addition to a
name or an identifier, each release has a set date. A release may also have several release
goals, which are textual representations of the purposes of the release. A release may
be associated with a project which is the context of the release, but releases that are not
associated with any projects may also exist. If a release is associated with a project, each
release goal may be associated with one project goal. Each release has a release backlog
containing all backlog items selected to be developed in the release.

Iteration

The iteration is the development level planning time horizon. An iteration may be associ-
ated with a release, but iterations not associated with a release may also exist. Each iteration
has a set length and may have one or more iteration goals. An iteration has a capacity prop-
erty which is the amount of work that is estimated to be completed in the iteration. The
actual amount of work accomplished in an iteration is also recorded after the iteration is
over. Iteration goals are textual representations of the goals of an iteration. If an iteration
is associated with a release, each iteration goal may be associated with one release goal.
Each iteration has an iteration backlog associated with it. The iteration backlog contains all
backlog items that have been planned to be implemented in an iteration.

4.3 Identified containers of work

This section presents the containers of work identified in the book review. The different
backlogs in Scrum and collections of stories in Extreme Programming are quite similar in
purpose. One notable difference is that, in Scrum, the backlog items picked from a higher
level backlog to a lower level backlog are still part of the higher level backlog, while in
XP stories are moved between containers. In addition to the containers of backlog items or
stories, both methods have a container for a different type of piece of work called task. The
containers of work in Scrum are presented in Section 4.3.1 and the containers of work in XP
are presented in Section 4.3.2. In addition, a combination of the two methods’ containers is
presented in Section 4.3.3.

24

4.3.1 Containers of work in Scrum

There are two kinds of containers of work in Scrum. One type contains product backlog
items and the other tasks. Product backlog items are contained in product backlogs, release
backlogs and in a product backlog selected into a sprint. Selecting an item into a release
backlog or sprint does not remove it from the product backlog. The two lower level backlogs
are kinds of temporal dividers of the whole product backlog and are containers only from
a logical point of view. The sprint backlog is the only container for tasks. Tasks exist only
in the sprint backlog. The sprint backlog is completely distinct from the three containers of
product backlog items.

Product Backlog

The product backlog is a prioritized list of product backlog items that must be done for
a product to realize its system vision (see Section 4.2.1). All known items that belong to
a product are listed in the product backlog. A product backlog constantly changes as the
priorities of items change and new items are added. A product backlog exists from the
beginning of the development of a product with Scrum-process to the termination of the
product.

Release Backlog

The release backlog is a part of the product backlog that has been selected for a release
of a product. A product backlog is divided into several proposed release backlogs. The
closer the date of a release is, the more detailed are the release backlog items in the release
backlog. A product’s release backlogs are altered during the development of the product to
adapt to the changing environment and requirements.

Product Backlog in Sprint

The product backlog in a sprint is the part of a product backlog that is selected to be im-
plemented in a sprint. Only such limited number of product backlog items are selected
that they can be turned into an increment of product functionality during the sprint. This
selection is affected by the team capacity of the team that is developing the product in the
upcoming sprint. A team capacity is derived from the effort estimates of the product back-
log items that the team completed in the previous sprint. If the sprint is the first sprint, then
the team capacity is an estimate.

Sprint Backlog

A sprint backlog contains all tasks that have been devised for a sprint. In addition to normal
tasks, a sprint backlog can contain reminders of probable future work. These reminders
are special tasks that don’t have any specifications and are marked as being remainders.
Reminders of future work are created when all tasks for a sprint cannot be formulated
before further investigation or design. The sprint backlog can only exist in the context of a
particular sprint.

25

4.3.2 Containers of work in Extreme Programming

Extreme Programming has two kinds of containers of work. The first type contains stories
and the second type tasks. Unlike the backlogs in Scrum (see Section 4.3.1), the containers
in XP are not explicitly defined in the sources used. Each XP time horizon (see Section
4.2.2) has a set of stories selected into it. In addition, the iteration has tasks that have been
devised for it. These are the main containers of work in XP. XP also has a container which
contains “done” stories.

Stories not in a release

The first container of stories in XP contains the stories that have not yet been selected into
a release and the stories that have been removed from an ongoing release. The container is
not explicitly named in the sources used and will be called the stories not in a release in
this thesis.

Stories in a release

The second container of stories in XP is the stories that have been selected into a release
from the collection of stories not in a release. This container will be called the stories in a
release in this thesis. Only an ongoing release or a release that is currently being planned
have a such container. Future releases after the next one are not planned beforehand using
stories. The only stories selected to a release are those that can be implemented in the time
available.

Stories in an iteration

The third container of stories in XP is the stories that have been selected for implementation
in an iteration. It will be called the stories in an iteration in this thesis. The container
contains the most valuable stories that can be implemented in the iteration. The stories are
selected from the collection of stories in a release.

“Done” stories

In addition to the other containers described in this section, Extreme Programming Ex-
plained 2nd edition has a picture [, , p- 40] that shows a collection
of “done” stories. The exact role of the collection of “done” stories is not explained. This
leaves open several questions: Is the “done”-status a property of a story or is there a con-
tainer of work for “done” stories? Should the “done” stories be discarded after an iteration
or a release is completed or kept as an history log of the project? For the purpose of this
research the container of “done” stories is assumed to contain the completed stories of the
ongoing iteration which were moved to the “done” container from the stories in an iteration
container. The container will be called the “done” stories in this thesis.

Tasks of an iteration

The only container in which tasks can exist is the collection of tasks that have been devised
for an iteration. This container will be called the fasks of an iteration in this thesis. Option-

26

ally the tasks of an iteration can be kept in a stack so that the topmost task on the stack is
always the first to be selected for completion. If tasks are not used (see Section 4.4.2) in a
XP project, this container does not exist.

4.3.3 Combined containers of work

The five containers of work in the two methods can be mapped almost exactly into five
combined containers of work. The only exception is the collection of “done” stories in
Extreme Programming. This collection is left out of the combined concepts, as a separate
“done” flag conveys the same information.

Because Extreme Programming terminology does not give explicit names for the col-
lections of stories or tasks, the names for the combined containers of work have been taken
mostly from Scrum terminology with two exceptions: Scrum terminology does not explic-
itly name the list of product backlog items selected to be developed in a sprint and the
collection of tasks in a sprint is named sprint backlog. As all other backlogs in Scrum con-
tain backlog items instead of tasks, this is a potential source of confusion in the terminology.
To increase consistency and avoid confusion between the different types of backlogs, the
list of backlog items in an iteration is named iteration backlog and the set of tasks in an
iteration is named task list.

The backlogs in the combined model keep the backlog items belonging to them in a
priority order. If relative priority is used in the backlog item prioritization (see Section
4.4.3), the backlogs keep items in a relative priority order. If priority classes are used,
the backlogs keep items grouped into classes and the groups are kept in a relative priority
order. If a combination of the two is used, the backlogs keep their backlog items prioritized
relatively inside the priority class groupings and the groups are also relatively prioritized.

Product backlog

The product backlog is the highest level container of work in the combined concept map.
Each product has one product backlog. All work that is going be done, is currently under
work or has already been completed for a product is listed in the product backlog. As such,
the product backlog acts also as a history log for the development of the product.

Release backlog

The release backlog contains the backlog items that have been selected to be implemented
in a release. A release backlog is a subset of a product backlog if the release in question
is associated with a product. A product backlog may be divided into several subsequent
release backlogs, but a backlog item can only belong to at most one release backlog at a
time.

Iteration backlog

The iteration backlog contains the backlog items that have been selected to be implemented
in an iteration. An iteration backlog is a subset of a release backlog if the iteration in ques-
tion is associated with a release. A release backlog may be divided into several subsequent

27

iteration backlogs, but a backlog item can only belong to at most one iteration backlog at a
time.

Task list

The tasks that have been devised for an iteration are listed in the task list. Tasks can only
exist in the context of an iteration. While tasks in Scrum are not directly connected with
backlog items, this connection is available in the combined concept map. Unlike tasks,
backlog items can be moved between iteration, release and product backlogs. This may
result in a situation where tasks that are associated with a backlog item are orphaned in an
iteration when the associated backlog item is moved to a different backlog. To avoid the
possible confusion caused by this situation, the task list should clearly indicate the tasks
that are associated with backlog items that are not in the same iteration’s backlog.

4.4 Identified pieces of work

This section presents the pieces of work identified in the two agile methods. In addition to
the individual methods, a combined model of the two methods’ pieces of work is presented
in Section 4.4.3. The pieces of work in Scrum are described in Section 4.4.1 and the pieces
of work in XP in Section 4.4.2. Both methods have two different types of pieces of work.
The first type is called backlog item in Scrum and story in Extreme Programming. The
second type is called task in both methods.

4.4.1 Pieces of work in Scrum

Scrum has two different pieces of work. The first one is the product backlog item and the
second one is the fask. The two pieces of work serve different purposes and their progress
is monitored on different time horizons (see Section 4.2.1). Excluding work such as the
daily scrum, which is part of the Scrum process itself, the two pieces represent all work that
is done in a Scrum software development project.

Product Backlog item

The first piece of work in Scrum is the product backlog item. Table 4.1 summarizes the
properties of the product backlog item. A product backlog item is a requirement or a feature
and may be, for example, functionality, issue, bug fix, technology or enhancement. Product
backlog items always reside in a product backlog. See table 4.3.1 for more info on the
product backlog.

The only required operations on the product backlog item are setting and changing its
properties. This includes changing the priority order between product backlog items in a
product backlog.

Task

The second piece of work in Scrum is the task. A sprint backlog contains all work a team
plans to accomplish during a sprint. The items in a sprint backlog are called tasks. By

28

Table 4.1: Scrum product backlog item properties

Property Definition
Name A short descriptive identifier
Description A description of what the item consists of

Initial estimate

Adjusted estimate

Work remaining

Relative priority

Issue status

completing the tasks in a sprint backlog the development team reaches the sprint goal or
goals of a sprint (see Section 4.2.1). Tasks are not direct decompositions of product backlog
items selected into a sprint but rather things that need to be completed to turn the items into
shippable product functionality. In terms of estimated development effort and description
detail, the task is more fine grained than the product backlog item. Table 4.2 summarizes
the properties of the task. The only required operations on the task are setting and changing

its properties.

An amount of effort in days that was estimated to go into the
development of the item before the development started

An initial estimate adjusted with a complexity factor (see Section
4.2.1); The value is used in the selection of new items into a re-
lease or a sprint

Amount of work in days that is estimated to be remaining in the
beginning of each Sprint; The value is used in the selection of
unfinished items into a release or a sprint

The priority of the item related to the other items in a product
backlog; The priority is used in the selection of product backlog
items into releases and sprints

An item may be denoted as an issue; An issue needs to be refined
and turned into a regular item or items before work on it can begin

Table 4.2: Scrum task properties

Property Definition

Description A detailed description of the task

Originator The team member who created the task

Responsible The team member who is responsible of doing the task

Work remaining

Status

An amount of work in hours that is estimated to be remaining for
each day of a sprint; that is to say, there is one value for each by-
gone day of the sprint; this value is used during a sprint to monitor
if the fulfillment of the task is feasible before the end of the sprint
The progress status of the task; May be “not started”, “in
progress” or “completed”; this property is used to monitor how

the fulfillment of a task is proceeding

4.4.2 Pieces of work in Extreme Programming

Two different pieces of work are used in Extreme Programming. The first piece is the story
and the second is the fask. Usually tasks are direct decompositions of one or more stories,

29

but tasks that are not related to any story can also exist. The two units of work have similar
purpose, but their progress is monitored on different time horizons (see Section 4.2.2).

Story

The first piece of work in XP is the story. It is described in the sourced used as an piece
of customer visible functionality, as something the system needs to do and as a customer
requested feature. Table 4.3 summarizes the properties of the story.

In addition to setting and changing the properties of a story, splitting a story into two or
more stories must be possible. This is done if the whole story cannot be estimated or a part
of a story is more important than the rest.

Table 4.3: Extreme Programming story properties
Property Definition

Name A short name for the story

Description A short paragraph describing the purpose of the story

Effort estimate The development effort estimated to go into implementation of
the story; can be in real time (hours or days) or in abstract story
points

Value class The value class to which the story belongs; is one of: (1) system
will not function without, (2) provides significant business value
or, (3) nice to have; used in the selection of stories to be imple-
mented in a release (see Section 4.3.2)

Risk class The estimation imprecision risk class the story belongs to; is one
of: (1) can be estimated precisely, (2) can be estimated reasonably
well or, (3) cannot be estimated at all; used in the selection of
stories to be implemented in a release (see Section 4.3.2)

Priority class ~ The priority class can be one of the following: (1) work on ex-
clusion of all else, or (2) low value; only used when all selected
stories cannot be implemented in a release or an iteration to direct
effort into the most crucial tasks

Task

The second piece of work in Extreme Programming is the task. A task describes something
that a programmer knows the system must do. Tasks are usually direct decompositions of
one or more stories, but tasks that are not directly related to any stories can also exist. Table
4.4 summarizes the properties of the task.

In addition to changing the properties of a task, the operations that are required for the
task are splitting a task if the task is too large (more than few days) and combining several
tasks that are too small (hour or less each).

According to the sources used, the need for tasks can be eliminated by using tasks that
are small enough. However, the sources used do not explain how the properties of the story
and the task are to be combined or define how small is small enough.

30

Table 4.4: Extreme Programming task properties

Property Definition

Description The description of the task

Estimate The programming effort estimate of the task estimated in ideal
programming days

Effort spent Records how much time the responsible person has has spent im-
plementing the task; the unit used is not specified in the sources
used

Effort left Records how much time is estimated to be left in the implemen-
tation of the task in ideal programming days

Responsible The person who is responsible for estimating and performing the
task

Related stories One or more stories the task is decomposed from; may be empty
if the task is not related to any stories

4.4.3 Combined pieces of work

Both XP and Scrum have two different pieces of work which are conceptually quite similar.
The first one is a high level planning tool that is used in planning which requirements and
features should be implemented and when they are going to be implemented. This com-
bined high level piece of work is called backlog item in the combined concept framework
presented in this chapter. The second piece of work in both methods is called fask and
that name will be also used in the combined concept framework. Tasks are used in the
operational level planning of iterations.

Backlog item

The naming of the first piece of work does not imply that Scrum is favored over Extreme
Programming. It is rather an effort to avoid the implied writing format that the name “story”
conveys. In addition, the term backlog is often used to represent the collection of work
that needs to be done: “an accumulation of tasks unperformed or materials not processed”
[;]

Table 4.5 describes the properties of the combined backlog item. Instead of the XP-
style container of “done” stories, a flag is raised when the backlog item is “done”. This
simplifies the monitoring of progress in the combined model (see Section 4.7.3). The only
operations that are required for the combined backlog item are changing the properties it
has and selecting it to different backlogs.

Task

In XP a task is usually a direct decomposition of a story into smaller parts. However,
in Scrum tasks describe something that needs to be completed by a developer instead of
describing a requirement or feature for the system. Apart from this difference, the two
pieces of work are quite similar. Both are used in iteration level planning to plan the more
detailed execution of an iteration. Table 4.6 shows the properties of the combined task. In

31

Table 4.5: Combined backlog item properties

Property Definition
Name A short descriptive and unique name
Description A short paragraph describing what the item consist of

Initial estimate

Priority

Risk class

Value class

Adjusted estimate

Urgency flag

Done flag

An initial development effort estimate of the backlog item; the
unit is a point which can for example represent days, hours or
abstract estimation points

The priority of the backlog item; can be either relative to other
backlog items, based on at least three different priority classes
or a combination of the two: relative priority order inside each
priority class

The estimation precision class to which the backlog item belongs;
is one of (1) can be estimated precisely, (2) can be estimated rea-
sonably well, or (3) cannot be estimated (issue)

Value class to which the backlog item belongs; Is one of (1) sys-
tem will not function without, (2) provides significant business
value, or (3) nice to have

If the project complexity factor is used (see Section 4.2.3), the ad-
justed estimate of the backlog item is calculated based on it; when
present, the adjusted estimate is used in all calculations instead of
the initial estimate

Backlog items that have the urgency flag raised must be worked
on in exclusion of all other backlog items

Completed backlog items are marked as “done” by raising the
done flag

32

Table 4.6: Combined task properties

Property Definition
Description A detailed description of the task
Effort left The amount of work that is estimated to be remaining af-

ter each day of an iteration, a.k.a. there is one value for
each bygone day of the iteration; The unit is a point which
can represent for example hours, days or abstract estimation

points
Responsible The person who is responsible of the execution of the task
Originator The person who created the task
Status The progress status of the task; Is one of (1) not started, (2)

started or (3) completed

Effort spent The amount of work that the responsible person has spent
in the implementation of the task; The unit is a point which
can represent for example minutes, hours or days

Related backlog items The backlog item or items the task is related to; may be
none if the task is not related to any backlog items

addition to changing the properties that the task has, splitting and combining tasks should
be possible.

4.5 Concept maps of the identified concepts

This section contains figures of the three concept maps that were created. See Section 4.1
for an explanation of the four different concept types used in the maps. Detailed descrip-
tions of the concepts in the maps and their relationships can be found in Sections 4.2—4.4.
Figure 4.2 shows the concept map of concepts in Scrum, Figure 4.3 shows the concept map
of concepts in Extreme Programming and Figure 4.4 shows the concept map of concepts in
the combined model.

4.6 Selection of work

This section describes how a developer in a Scrum (Section 4.6.1) or XP (Section 4.6.2)
project selects the next item he or she is going to complete. In addition, a combination of
requirements for selection of work from the two methods is presented in Section 4.6.3.

4.6.1 Selection of work in Scrum

The next thing a developer should do during a development iteration in Scrum is selected
based on the best judgment of the developer during a daily scrum meeting. If there are tasks
that the developer is responsible for, the developer might select one of the tasks and work
on it. The selection of the task is again based on the best judgment of the developer. Product
backlog items have a relative priority order, but as tasks are not direct derivates of backlog

33

Adjusted estimate | ¢— affects —| Complexity factor | &— has a

4— has a—|

<

Product Backlog item

has many

Status

has one for

Work remaining[——t+—

-has

is develped
by many
|
Product Backlog has a—
contains =
many is sublset of
contains __(pelease Backlog
many
X is subset of
contains
many —

Product Backlog
in Sprint

a—p»| Project goal
A

is subset

is met by
has a comp[etlng
turn into functionality \
Sprint
is related to a—p‘_a has a —p ol
o e—twsa™ J/
Team capacity has a is m?t by
hasa completing
Sprint Plan
A A
is part of
Task)4— C?_;‘;i';s Sprlnt Backlog

the Sprint

is

may contaln
many

a kind of
|

Figure 4.2:

Priority class

may have a

Scrum concept map

Stories not
in a release

selected
from

I

contains
many

T

has one

or more

Stories in has a
\ contains —| @ release >
man
4— has a 4 Y hoe d oo
/ —_ contains Seflreocr’fd / several
e ,
Stories in
contains an iteration
many
e
related to

one or more

Effort spent | ¢——— has a

Effort left
Responsible

«—contains many —

"Done"
stories

Tasks of an
iteration

Figure 4.3: Extreme Programming concept map

34

has a

Actual
work
accomplished

Adjusted estimate | €— affects —| Complexity factor| ¢——————has a

) : may be -
1s ba?'s of — developed in—p ___ may have —>
Initial estimate has a ene ormore one ermore god
|
has a
Name
may contain
Descrlptlon Product Backlog one or more
may be
- k : contains assoZiated
|s d ass o many is subset of has a to

4— has a—| ;
Value class qs contains

\many -
Urgency flag / has many

Release Backlog

may have Release
has a—(Release)- R —
one or more goal

Effort remainin may contain Length
St / may be

Done flag

associated
to

Prlorlty class haS One _
contains
many is subset of is related to has a
Relatlve prlorlty may be

related to ‘
af s Iteration
Iteration Backlo — ay have
Descrlptlon one o more l has 2 - one or more —> goal

Responsible \ /has a has 2
[Status] contains / \
h R Task 4——— ——(Task list
as a many Actual work
m accomplished
has one for
each day
Effort spent of iteration

Figure 4.4: Combined concept map

35

items they can only be used as a reference. In addition to completing a task, a developer
may need to attend a design session, refine an issue or perform some other action related to
software development with Scrum.

4.6.2 Selection of work in Extreme Programming

During Extreme Programming’s iteration planning each programmer signs up for a set of
tasks. During iteration a programmer may select one of the tasks he is responsible for and
find a pair programming partner to implement it with or he can act as a pair for one of
the other programmers. The selection of a task and the pairing are done based on the best
judgment of the programmer in question.

An alternative for the iteration planning time task sign up is to use a stack of tasks. Task
selection is done by picking the topmost task for implantation and then finding a pair to
implement it with. After the task has been implemented, the programmer picks the next
task from the top of the stack.

4.6.3 Combined selection of work

Two combined selection of work requirements can be devised based on the requirements
from Scrum and XP. The first requirement is a way for developers to see the tasks that have
been assigned to them. As tasks have no priority order, the selection of the next task is also
based on the best judgment of the developer. The second requirement is the implementation
of the stack based task selection from Extreme Programming. It can be implemented for
example by keeping an ordered list of tasks, from which the developer picks the topmost
unassigned task.

4.7 Monitoring progress

This section describes how the progress of work in a Scrum (Section 4.7.1) or XP (Section
4.7.2) is monitored. Example charts that are used for monitoring progress in the two meth-
ods are also provided. Combined progress of work monitoring requirements are described
in Section 4.7.3.

4.7.1 Monitoring progress in Scrum

The progress of work is monitored in Scrum on both Sprint and Release time horizons
using burn-down charts. On the sprint level, a burn-down chart displays the amount of
work remaining in hours in the sprint backlog. One data point summed from the effort
estimates of the tasks in the sprint is shown for each day of the sprint. Figure 4.5 shows an
example of a sprint backlog burn-down chart. The date of a sprint backlog completion can
be estimated by comparing the reduction speed of remaining work of the previous days to
the amount of remaining work calculated by summing the remaining work of all tasks. This
comparison can be done in several ways, for example by using the average daily reduction
in remaining work.

36

On the release time horizon, a release backlog burn-down chart is used. The release
backlog burn-down chart is similar to the sprint backlog burn-down chart, but the time axle
is in Scrum sprints and the remaining work is recorded as days of work. The amount of
remaining work is calculated by summing the remaining work of all product backlog items
that belong to the release backlog.

180
1gn fF—F—8
170 L]
160

150

Waork remaining
|
|

30

20

10

711 19.11. 21.11. 23.11. 25.11. 27.11. 20.11. 1.12. 3.12. 5.12. 7.12.
Date

Figure 4.5: Example of a sprint backlog burn-down chart

4.7.2 Monitoring progress in Extreme Programming

In Extreme Programming, the progress of work is monitored on the release, iteration and
individual programmer levels. On the release level, the progress of work is monitored by
monitoring the amount of stories in the stories in a release container of work.

On the iteration level, the progress of work is monitored by comparing the amount of
stories that are in the stories in an iteration container to the amount of stories that are in
the “done” container of work. For example, if the stories in an iteration container has
more stories than the “done” container when the end of the iteration is near, it is likely that
all stories cannot be completed before the iteration end. The sources used do not specify
whether the estimated amount of work in the stories or only the number of stories should be
used in monitoring work. Figure 4.6 shows an example of monitoring progress of work in
XP. The gray boxes in the figure represent individual stories and the three squares represent
different containers of work.

On the individual developer level progress of work is monitored from the effort left
estimates of tasks. If the sum of a developer’s tasks effort left estimates is larger than the

37

Release lteration Done

r r

Figure 4.6: Example of monitoring work in Extreme Programming

work time left in the iteration, the developer is probably over committed and cannot finish
all tasks.

4.7.3 Combined progress monitoring

The method of monitoring the progress of work on the release and iteration levels is quite
similar in both methods. The largest difference is that the burn-down charts in Scrum also
display historical data, while the amount of stories in the different stages of development
used in Extreme Programming displays only the current situation. In addition, the progress
of work on backlog items is not monitored during a sprint in Scrum, while in Extreme
Programming the progress of work on stories during an iteration is monitored by comparing
the amount of “done” stories to the amount of stories in the iteration that are not yet done.

Both methods’ progress monitoring requirements are included in the requirements of the
combined model. The first requirement is the existence of Scrum style release and iteration
burn-down charts. The release burn-down chart shows the sum of effort left estimates of
all backlog items in a release backlog in the beginning of each iteration of a release. The
iteration burn-down chart shows the sum of effort left estimates of all tasks in an iteration
backlog for each day of an iteration. The second requirement is a Extreme Programming
style numerical or graphical display which allows the comparison of “done” stories to the
rest of the stories in an iteration or release.

One requirement for monitoring progress on the individual programmer level is taken
from XP. An individual developer must be able to see the sum of effort left estimates of the
tasks that are assigned to him in a selected iteration.

4.8 Summary of the requirements from the book review

This section summarizes all combined model requirements. For more detailed information
on each requirement, see the corresponding section in this chapter. The summary of require-
ments is presented in figure 4.7. The requirements are presented in a tree form. The first
level of branching groups the different types of requirements together, while the second and
third level branches present the concrete requirements. Some of the requirements that de-
scribe connections between concepts are described as optional, which emphasizes the fact
that the connection is not always mandatory. This does not imply, that all other concepts

38

must always contain some information. For example a backlog item with blank description
can exist. The backlogs and the task list are not listed as separate main requirements, but as
sub-requirements of the corresponding time horizons.

39

Time horizons Product

Product Backlog

Summary of the combined

Froject

Project goals

requirements from the book
review

Release

Complexity factor

Dptional connection to a product

Date

Iteration

Release backlog as a subset of product backlog

Release goals with optienal connection to a
project goal

Optional connection to a project

Length

Pieces of work Backlog

Capacity

Actual work accomplished

Task list

Iteration backlog as a subset of release backlog

Iteration goals with optional connection to a
release goal

Optional connection to a release

item Name

Task

Description
Risk class
Walue class
Urgency flag
Done flag

Priority class OR relative priority

Effort remaining for each iteration

Initial estimate

Adjusted estimate calculated from
the complexity factor of the
project

Mame

Description
Respansible
Status
Originator
Effort spent
Effort left

Optional related backlog items

Work selection Task list

showing the tasks assigned to selected individual

1 Stack based task list

Monitoring progress Release burndown chart

Iteration burndown chart

ta

Display of amount of backlog items “done” compared

the items in iteration backlog and release backlog

Display of task effart left sum of individual
developer per iteration

Figure 4.7: Summary of the requirements from the book review

40

Chapter 5

Requirements for a tool for the case
company

This chapter presents the requirements for a tool for the case company. See Section 2.3 for
information on the case company. Section 5.1 presents the concept types that were iden-
tified in the case company. Section 5.2 describes the time horizons that were identified
in the case company. Section 5.3 describes the containers of work identified in the case
company. Section 5.4 describes the pieces of work identified in the case company. Section
5.5 presents the conceptual map of the identified case company concepts. Section 5.6 de-
scribes the selection of work requirements from the case company. Section 5.7 describes
the work monitoring requirements of the case company. Section 5.8 describes the require-
ments the case company has for views in a tool. Section 5.9 describes the requirements the
case company has for work-hour reports. Finally, Section 5.10 presents a summary of the
requirements from the case company.

As in Chapter 4, creating a new instance of a concept and deleting an instance are
implicit requirements and are not repeated for each concept described in this chapter.

5.1 Identified concept types

The concepts in the conceptual model based on the case company are mostly identical to
the concept types presented in Section 4.1. There are however two additions to the concept
types. The first one allows accommodation of the two priority classes that the concepts are
divided into. These two priority classes are mandatory and nice to have. For the purpose
of making the rest of this chapter easier to read, these two priorities will be denoted by 1
for mandatory requirements and by 2 for nice to have requirements. In the concept map
concepts that belong to the priority class 1 have solid borders and colored background and
concepts that belong to the priority class 2 have dash line borders and plain background.
The second addition is an extension to the piece of work concept type. The original concept
type presented in Chapter 4 covers pieces of work that need to be done in the future. This
concept type is extended to also cover pieces of work that record work that has been done
in the past. There is only one concept of this extended type in the map of the identified
concepts of the case company; It is the effort spent entry piece of work. This extended
concept type is identified by colored background with no borders.

41

5.2 Time horizons identified in the case company

Two priority 1 time horizons were identified in the case company. The first identified time
horizon is the project and the second is the iteration. Both of the identified time horizons
share many aspects, but serve a different purpose in the case company.

The project time horizon is a long-term planning tool. As the case company produces
both software products and software services, the projects vary notably in type. Some types
of projects are not projects in the traditional sense of the term, as they might not have a
fixed set of resources or a deadline. Such projects include semi-continuous bug fixing in the
product platform or continuous enhancement of documentation. Grouping such activities
under the term project is practical as it removes the need for a separate container for work
that is not related to any traditional project. The project time horizon is also used in the
traditional sense of the term for projects such as customer specific software development
projects, which have a fixed set of resources and a deadline.

The project time horizon has a set of responsible persons, a deadline, a number of sold
hours and a number of planned hours as priority 1 properties. All of these can be empty. If
the project was sold to a customer, the number of sold hours contains information on how
many work hours were sold to the customer of the project. The number of planned hours
shows how many hours were actually planned for the project. Projects usually last for at
least several months and can last for more than a year. The project time horizon has also
one priority 2 property, the project type. This property makes it possible to classify the
project into one of the types defined in the case company. The selection of types is not fixed
and can changed when required. The project has two priority 1 containers of work attached
to it. The first one is the requirements in the project, which contains the requirements that
must be implemented during the project. The second container is the tasks in the project,
which contains the tasks that have been generated for the project.

The iteration time horizon is a short-term planning tool. Like the project, the iteration
has a fixed deadline as a priority 1 property. Iterations are always done in the context of a
project and projects are usually divided into several iterations. The length of an iteration
varies depending on the project, and can be as long as four months. The end of an itera-
tion usually marks some important date, such as an agreed delivery point of the software
developed in the project.

The iteration time horizon has one priority 1 container of work and one priority 2 con-
tainer of work. The priority 1 container of work is the tasks in an iteration, which contains
all tasks that should be performed in an iteration. These tasks are a subset of the tasks in a
project to which the iteration belongs. The priority 2 container of work is the requirements
in the iteration. The requirements in this container are a subset of the requirements of the
project the iteration is a part and will be implemented in the iteration.

5.3 Containers of work identified in the case company

A total of four containers of work divided in to two different types were identified in the
case company. Three of the containers are priority 1 requirements and one is a priority
2 requirement. The first type of container contains tasks and both of the containers of
this type are of priority 1. The tasks in a project contains tasks that have been devised to

42

be implemented in the project to which the container belongs. The fasks in an iteration
container contains tasks that have been selected from a tasks of a project container to be
implemented in an iteration or are independently devised to be implemented in the iteration.
If tasks have priorities, which is priority 2 requirement, then the tasks in either container
must be ordered in relative priority order.

The second type of container contains requirements. The requirements of a project is
a priority 1 container of work. It contains all requirements that must be implemented in
a project. The requirements of an iteration is a priority 2 container of work. It contains
requirements that are selected from a project to be implemented in the iteration to which
the container belongs.

Later in this chapter the reference to the container of work a task or requirement belongs
to is often omitted for the sake of readability. As each time horizon has only one of each
type of container of work, referencing a container of work by the name of the time horizon
to which it belongs does not cause ambiguity.

5.4 Pieces of work identified in the case company

Three different pieces of work were identified in the case company. All three are priority
1 requirements. The first piece of work is the requirement, the second piece of work is the
task and the third piece of work is the effort spent entry.

The requirement is a piece of work that describes something the system or software
must be capable of doing. Requirements are described on a high abstraction level and their
actual content may vary greatly in style and detail level. Most often a requirement describes
some feature that the software needs to have. The requirement has three priority 1 properties
and two priority 2 properties. The properties are summarized in the Table 5.1. The only
operations required for requirements are moving them between projects and iterations (if
they can reside in iterations) and changing the properties and relationships they have.

Table 5.1: Case company requirement properties

Property Priority Definition

Responsible 1 The person who is responsible for the implementa-
tion of the requirement

Priority 1 The priority of the requirement on scale of 1 to 3

Links to specification 1 Links to documents in external systems that de-

documents scribe the requirement more precisely

Originator 2 The person who is the originator or creator of the
requirement

Attached specification 2 Links to documents kept in the tool that describe

documents the requirement more precisely

The second piece of work is the task. The task describes something that needs to be
done. The properties that belong to the task are summarized in Table 5.2. Tasks may
be related to one or many requirements. This relation is priority 1 requirement. Having
a task related to many requirements is required, for example, when implementing a task

43

that enables some functionality that advances the implementation of several requirements
that depend on that functionality. A priority 2 requirement for the task is relation to several
projects besides the project or iteration container to which the task belongs. This enables the
tracing of tasks that advance several projects in addition to the iteration or project to which
they belong. Priority 1 operations required for the task are moving it between projects and
iterations and changing its properties and relationships. The task has also one priority 2
operation: the tool should provide assistance in splitting one task into two or more tasks.
The specifics of this requirement are left open. As priority 1 requirement a task also holds
information on how much total effort has been spent on it. This information is calculated
from the effort spent entries related to the task.

A task may also be related to an issue record in an external issue management system.
This is a priority 2 requirement. Issues are special kinds of pieces of work, as they may
vary greatly in size and essence. They may be for example bugs or feature requests. Issues
may be reported directly by a client to an issue management system and a process com-
pletely separate from the normal software requirements management process can be used
to manage the issues. While Scrum advocates storing all work that needs to be done in the
product backlog [, , p- 72], the sheer number of issues in a large
project would overwhelm this container. For example, the current number of open items
in the bug management system of the Firefox project [,] was
over 15000 at the time of writing. Managing issues is a large topic in itself and outside
of the scope of this thesis. It will not be explored further. For more information on issue
management tools see, for example, an article written by []. In some cases
importing an issue from an issue management system to a tool managing the daily work of
the software developers may be required. In the case company, the tool used to manage is-
sues is Bugzilla [,]. There is one priority 2 requirement related
to this functionality. The tool must be capable of importing bugs from Bugzilla as tasks in
the tool. The exact implementation of this is left unspecified. For example it can be done
by specifying a bug identifier number or by free text search in the bug database done from
the tool.

As effort spent entries (see next paragraph) are always related to a task, a task named
Miscellaneous is usually created in the case company for each iteration or project. All effort
spent entries that are not related to any real task are related to this task. For example, effort
spent reports for quick bug fixes which do not have corresponding tasks are related to this
task. The case company did not see a need for any kind of automation or more general
implementation of this functionality and no new requirements therefore stem from it.

The third piece of work is the effort spent entry. This piece of work does not describe
something that needs to be done. Instead, it records work that has already been done or
more specifically how much time the has been spent doing a particular task. The properties
of the effort spent entry unit of work are described in Table 5.3. The effort spent entry
piece of work also differs from the two other pieces of work in that it does not reside in
any container of work. The effort spent entry is always related to a task. Usually creating
a new effort spent entry means that some work has done to advance a particular task the
entry in related to. Effort spent entries are primarily used to generate effort spent reports
(see Section 5.9). The only required operations for the effort spent entry is changing its
properties. Effort spent entry’s target task can be changed after it has been created. This
requirement simplifies correcting errors in task targeting.

44

Table 5.2: Case company task properties

Property Priority Definition

Description 1 A description of what the task consists of

One responsible 1 The person who is responsible for the implementa-
tion of the task

Many responsible 1 Several persons who are responsible of the im-

persons with weights plementation of the task with different weights of
responsibility; the weights reflect how deeply in-
volved each responsible person is in the implemen-
tation of the task

Many responsible 2 Several persons who are responsible of the imple-

persons mentation of the task; this property is a subset of
the many responsible persons with weights prop-
erty, but here each person has an equal weight

Overdue flag 1 A task is marked overdue if the deadline of the it-
eration or project it belongs to has passed and the
task has not been implemented

Implementation status 1 The implementation status of the task; status can
be one of new, open, reviewable or closed, which
are priority 1 requirements or blocked, which is a
priority 2 requirement; setting closed status should
set the remaining effort automatically to O

Original estimate 1 The original estimate of the effort needed for the
implementation of the task

Remaining effort 1 An estimate of the remaining effort needed for the
implementation of the task

Percentage done 1 An automatically calculated estimate of the work
completion percent; calculated from the remaining
effort and the original estimate; can be over 100%
if the original estimate is lower than the remaining
effort

Billable flag 1 A task is marked billable if can be billed from a
client

Deadline 2 The date when the task must be done

Priority 2 The priority of the task related to the other tasks in
the same container of work

Sold effort estimate 2 The effort estimate that was sold to a customer

Creator 2 The person who created the task

Reviewer 2 The person who is responsible for reviewing the
task

Reviewed flag 2 A flag that is raised when the task has been re-
viewed

Change history 2 A log of all changes that have been done to the task

or its properties

45

Table 5.3: Case company effort spent entry properties

Property Priority Definition

Amount 1 A number of hours of work that has been per-
formed

Date 1 The date the work was performed

Comment 1 Extra information about the performed work

Work type 1 One of the work types listed in a company wide list

of possible work types; work types can be added to
and removed from the list when required

Recorder 2 The person recording the performed work

Work performers 1 One or more persons who performed the work; the
total amount of work is the amount times the num-
ber of persons; used when several people did the
same work at the same time for example they par-
ticipated in the same meeting

5.5 Concept map of the identified concepts in the case com-
pany

Figure 5.1 presents the concept map of the concepts identified in the case company. See
Section 5.1 for explanation of the different types of concepts in the concept map. The
individual concepts and the relationships between them are explained in Sections 5.2-5.4.

5.6 Selection of work in the case company

The selection of work in the case company is done on two levels. The first level is the
selection of the next requirements which are going to be implemented. Information about
the requirements is stored in a folder structure in a shared network drive. The selection of
the requirements that are going to be implemented next is done in meetings with customers
and in meetings among the different stakeholders in the case company. Usually the im-
plementation order of the requirements is directly or indirectly based on the wishes of the
customers, but dependencies between different requirements can affect the selection. Only
requirements for a tool for managing the daily work of the software developers stemming
from the selection of the next requirement to implement are views that show what is the cur-
rent status of the requirements that are being developed. See Section 5.8 for descriptions of
these requirements.

The second level of work selection is the task level. Usually the broader guidelines for
task selection are laid out in a team meeting or in discussions with the team leader. The
broader guidelines are based on many factors like what work is currently unfinished, what
kinds of dependencies the tasks have, what the customer would like to have next and which
tasks are most profitable to execute. The case company does not however see a need for
the dependencies and customer wishes to be stored to the daily work management tool.
Tasks that originate from customers may be stored in a spreadsheet and discussed by the

46

Link to ! Attached
1 specification !

specification
document

Open Reviewable Closed ':_B_Igc_k_ef:l_:
‘N\ ? _/_—v—"" document i
isoneof - _________ v

| Responsible Priority

Status T v

Original estimate
. /' has a
IS
calculated —| %

" TDefault’
--hasa- 9 work !
.

.

N
RO Pt St

¥ - contains

from
Remaining effort
T many .__
b 1 Requirements in
may be . an iteration

is split into
many

\ related to
many

may be related

Billable flag| ¢—— has a
to many

Tasks in
a project

may have

contains

/
oy
s vl
iReviewer : B , many \
R
, ,
. ,
e /
may be 7 many are .
related has doneforal hasmany . N\ ‘om————t ' work | ___Y_,
. to many with has many
Pie , weights S N
----------- ‘A L has a " B
 Issue record ! K \ is based on
! inexternal 1 _____| » Effort N either
! system 1 iChange, spent < |
 history | entry Responsible may be »[Overdue]|
N
has one

or more

Figure 5.1: Case company concept map

47

team responsible of implementing them before they are stored into the current daily work
management tool.

An individual programmer usually selects the next thing he should do from the list of
tasks in the ongoing iterations. He may also check from the tool what he did during the
previous day or week for reference. The current tool shows a developer all tasks that have
been assigned to him and the developer picks the task to advance based on what tasks
are started but incomplete, urgent or not started. The current tool has the capability of
emphasizing urgent tasks, however this functionality is mostly not used and the urgency of
a task is usually based on the best judgment of the developer. Due to the small size of the
development teams in the case company, tasks do not have a priority. The best judgment of
a developer is regarded sufficient for selecting the top priority task. Requirements related
to the selection of the next thing a developer should do focus on the views that the tool has.
These requirements are elaborated in Section 5.8. In addition to the views, one priority 2
requirement related to the selection of work exists. The tool must notify the person who
is set as the responsible for a task by e-mail. Specifics such as whether the e-mail in sent
immediately or as a digest and other notification preferences are left unspecified.

In addition to the tasks in the current tool, developers are also assigned work more
informally. This work is most often assigned face to face, by phone or by e-mail. Usually
this means that an urgent issue needs to be fixed as soon as possible. The developers do not
usually create separate tasks for such work. If an effort spent entry must be created for such
work, it is attached to Miscellaneous task in the iteration or project (see Section 5.4).

5.7 Monitoring progress in the case company

The main way to monitor the progress of work of an individual programmer in the case
company is the regular meetings held by the development teams. In these meetings each
team member describes what is the status of the tasks that he is responsible for, what he is
going to do next and whether there are any problems that need to be solved. The past effort
spent entries can be used to review what the programmer has done previously.

The progress of work on individual tasks can be monitored from the effort spent entries
of the tasks. The current tool also emphasizes overdue tasks, which are tasks that are not
done when their iteration’s deadline has been passed. While the current tool supports effort
left estimation on tasks, this functionality is mostly not used and thus cannot be used in
monitoring the progress of work on tasks. The progress of a project as a whole is monitored
informally in meetings.

The progress of work in an iteration is monitored with an iteration burn-down graph,
which is a priority 1 requirement. The iteration burn-down graph is similar to the sprint
burn-down graph used in Scrum and described in Section 4.7.1. The vertical axis shows the
effort left, while the horizontal axis shows dates.

Requirements related to monitoring the progress of work in the case company are fo-
cused on the views the tool supports. These requirements are described in Section 5.8.

48

5.8 Requirements for views in the case company

Four priority 1 requirements for views a tool should have were elicited from the case com-
pany. The first view is required by software developers to manage their daily work. The
view is per-person based; it shows information of one person at a time. The view has 4 pri-
ority 1 requirements and one priority 2 requirement. These requirements are summarized in
Table 5.4. This view is closely related to the selection of the next thing a developer should
do presented in Section 5.6. The requirements for this view do not include the emphasis of
tasks that are overdue. The case company did not see a need to emphasize overdue tasks in
the list of tasks.

Table 5.4: Requirements for the developer daily work view

Requirement Priority Definition

List of assigned tasks 1 A lists all tasks that are assigned to the selected
person

List of tasks to review 1 If tasks are assigned reviewers (see Table 5.2), this

list contains all tasks that the selected person is as-
signed to review

List of effort spent en- 1 A lists all effort spent entries the person has created

tries during the current week and the previous week

Effort spent calendar 1 A calendar from which a date can be selected; all
effort spent entries created for the selected date are
then displayed

Effort left per iteration 2 A list of per iteration sums of effort left estimates
for all tasks the selected person is assigned respon-
sible to.

The second view shows a division of remaining work split in time horizons and persons.
It is intended for project managers or team leaders. It shows the amount of work remaining
for each person in each ongoing iteration or project. This is the only priority 1 requirement
for this view. The amount of work remaining for each person is calculated by summing the
effort left estimates of each task for which the person is responsible. Table 5.5 shows an
example of how this view could look. The exact way the data should be presented in this
view is left unspecified and the figure is strictly an example.

Table 5.5: Example of work division view

Project 1 Project 2
Iteration 1 Iteration 2 Iteration 1 Iteration 2

Person A | 190 150 40 30 30

Person B | 30 30 150 40 110
Person C | 230 100 130

Person D 230 145 85

Person E | 20 20 120 60 60

Total 470 250 220 530 245 285

49

The third view is meant to be used in status meetings of software development teams.
The team status meetings in the case company are arranged so that each member of the
team tells what they have done since the last meeting, what they are going to do next and
what problems they have if any. This convention is very much like the daily scrum meeting
practiced in Scrum [, , p- 31], but done on a weekly scale instead
of daily. The view has only one priority 1 requirement. The view is required to show the
effort spent entries of the selected person that have been created for the tasks assigned to
him during a time period. The time period must be freely selectable.

The fourth view is a management team view for the upper management of the case
company. This view shows each of the ongoing projects, the number of hours budgeted for
each of the projects, the number of hours sold for each of the projects and the number of
hours that have been reported for each of the projects (in effort spent entries).

In addition to these particular views, views for viewing and editing different concept
types must exist. For example, a view that shows all tasks in an iteration could exist.
The exact contents and layouts of these views are not specified, as these requirements are
covered by the requirements of editing the different concepts, properties and relationships.

5.9 Work-hour reports in the case company

A set of requirements for spent effort reporting functionality was elicited from the research
in the case company. Since much of the information leading to this set of requirements orig-
inated from the time sheets specification meeting (see Section 2.5.2), these requirements are
not prioritized like the other requirements in this chapter and should be considered less re-
liable. The time sheets specification meeting also introduced some new requirements to the
concepts presented previously in this chapter. These requirements are handled separately in
this section.

The first requirement for effort spent reporting is a report that shows the total amount of
hours reported for a selected project or iteration. This number is calculated from the effort
spent entries of tasks that are located in the iteration or project. In addition to the total
number of hours, separate values should be shown for effort spent entries that are marked
billable and for those that are not. For projects that contain iterations the totals for the
project and for each iteration belonging to the project are shown. The second requirement
is a report that shows the total number of hours for a selected person in a selected time
period. The hours should be shown separately for different projects, iterations and work
types. The third requirement is a report that shows how much a person has spent effort in
each work type in a selected iteration or project.

There are two new requirements for concepts related to work-hour reports. The first
requirement is a default work type for projects and iterations. Whenever a new effort spent
entry is created, this work type is the default work type for that effort spent entry. This
reasoning behind this requirement is, that iterations or projects in the case company some
times have one work type that dominates the work done in the project or iteration. Selecting
the same work type each time from a long list of possible work types quickly becomes
tedious. The second requirement is, that it must be possible to lock projects and iterations.
Effort spent entries cannot be changed or created to tasks in locked iterations and projects.
Some times employees in the case company were not certain of which iteration or project

50

work hours should be reported to, especially in the case of consecutive iterations in the same
project. If a project manager can lock past iterations and projects, reporting work hours to
wrong target becomes less likely.

5.10 Summary of the requirements for the case company

The requirements from the case company are summarized in Figure 5.2. The requirements
are presented in a tree structure. The first level branches group different types of require-
ments together, while the deeper branches represent requirements and sub-requirements.
See the corresponding sections in this chapter for more information on each individual re-
quirement. The numbers preceding each requirement are equal to the priority numbers
introduced in Section 5.1. The requirements identified in the work-hour reporting meeting
(see Section 2.5.2 are identified by a clock icon. These requirements have no priority. The
containers of work are not listed as separate main requirements, but as sub-requirements of
the corresponding time horizons. As the containers presented here have no properties asso-
ciated to them and are only related to the pieces of work and time horizons, this simplifies
the presentation of requirements. Changing the properties and relationships the concepts
have are not listed as separate requirements. They are fundamental implicit requirements
and are expected to be implemented for every concept.

51

Summary of the
requirements from the case
company

Time horizons @ project @

persons

@ peadline

@ sold hours

@ Planned hours

@ Type

@ Tasks in the project

@ requirements in the project
€D Default work type

€D Locked flag

@ peadline

@ Related project
@ Tasks in the iteration

@ teration

@ Requirements in the iteration
€D pefault work type
@ Locked flag

Pieces of work @ Requirement @

@ Priority

‘@ Links to specification documents

\2) Attached specification documents
@ originator

‘@D Task___ @ pescription

@ One responsible person
@ many ble persons with weights

Y Many responsible persons
‘@ overdue flag
@ implementation status
@ subtopic
‘@ original estimate
‘@ Remaining effort
@ percentage done
@ Billable flag
@ peadline
@ priority
@ sold effort estimate
@ creator
@ Reviewer
@ Reviewed flag
@ Change history
‘@ Related requirements
@ Related projects
@ Related issue in external system

2 Splitting task to several tasks

‘@ Importing bugs as tasks from Bugzilla

@ Amount
@ pate
| @ comment
@ work type
@ Recorder
@ Work performers
@ Target task

‘@ Effort spent entry

Work selection @ e-mail event notifications

Monitoring work @ jteration

Views @ Daily work of a developer @ List of assigned tasks

@ List of tasks to review
@ List of effort spent entries

@ Effort spent calendar
@ Effort left per iteration

Y ining work in time horizons @ Waork division display

Effort spent per persond during

@ Status meeting @ selected time period

@ Ongoing projects' status @ Ongoing projects' effort status

Work hours reports D Hours in an iteration or project 5 Hour totals in iterations if project

D Total hours
€D Non Billable hours
<D Billable hours

D selected person

@ Selected time period
D) Hours per iteration or project

D selected person

D Hours per iteration or project
D Hours per work type

D Hours of a person in time period

€D Hours of a person per work type

Figure 5.2: Summary of the requirements from the case company

52

Chapter 6

Results of the tool review

The results of the tool review are described in this chapter. When describing the features
that a tool has, only the features that are relevant to the book review or case company are
included. Every tool reviewed in this chapter has features in addition to those described,
but the additional features provide no added value, as we are only interested in how well
the tools fill the requirements from the book review or case company. When a tool is said
to lack some feature, it should be interpreted in the context in which it is stated. The most
common situation is that, in some sense, the tool in question might have the feature, but
using the feature would require something that is in conflict with the requirements the tool
is compared to. Section 6.1 presents the results for Agilefant, Section 6.2 presents the
results for Mingle, Section 6.3 presents the results for Rally Enterprise Edition and Section
6.4 presents the results for ScrumWorks Pro.

Each section contains one conceptual for each set of requirements. See Section 2.7 for
more information on how these maps were created. The concepts in the maps are color-
coded depending on how good a fit for the concept can be found in the tool reviewed in
the section. The color-coding used in these maps is presented in Figure 6.1. The blue-gray
background concepts and black text relationships denote concepts that have a good match
in the tool. Yellow background concepts and dark green relationships denote concepts that
have an approximate or rough match in the tool. Light red background concepts and orange
relationships have no match in the tool. Light blue background concepts and dark blue
relationships denote concepts that had to be in order used to enable some required concept
but were not a part of the requirements. Dotted lines and box borders denote second-priority
case company concepts and a box without borders denotes the effort spent entry piece of
work.

In addition, each section contains one additional concept map. These maps present the
high-level concepts and relationships using the terms in the tool. The contents of the con-
cept maps are explained in the sections following each of the concept maps. For Agilefant,
ScrumWorks Pro, and Rally EE, the maps show how time horizons, containers of work,
and pieces of work are arranged in the tool. The conceptual model used in Mingle is highly
configurable and the meta-model used in the configuration is shown in the concept map.

When referencing the conceptual maps which contain the conceptual requirements from
the book review and the case company, the notion of conceptual requirements is mostly
omitted and terms case company requirements for case company conceptual requirements
and book review requirements for book review conceptual requirements are used instead.

53

Good rough ___ Rough

match match match
good
ma+tch excess
No no
match match — | Excess

Figure 6.1: Colo-coding of the tool review result concept maps

Since the more general terms encompass both conceptual requirements and other require-
ments, this should cause no confusion.

When comparing the features of a tool to the requirements from the case company,
the priorities of the requirements are omitted from the text. However, the priorities are
included as superscript prefixes in the tables that summarize the features in Section 6.5. “1”
denotes a priority 1 requirement, “?” indicates a priority 2 requirement, and “?”’ represents
a requirement that is related to the work-hour reporting functionality. See Section 2.5.2 for
more information on the priorities.

6.1 Results for Agilefant

This section presents the results of the Agilefant review. For general information on the
tool, see Section 6.1.1. Figure 6.3 presents the color-coded book review concept map and
Figure 6.4 presents the color-coded case company concept map.

Figure 6.2 presents a high-level conceptual model of the concepts in Agilefant. The
later sections describe the mapping of the conceptual and other requirements to the Ag-
ilefant features. Results of comparing the Agilefant features to the requirements from the
book review and case company are described in Sections 6.1.2-6.1.6. Requirements for
views and work-hour reporting are from the case company only and the results for these
requirements are described in Section 6.1.7 and Section 6.1.8.

Effort log Product has a-
entry Backlog
~ |

contains i
contains

many are many many

done for a ¢

* / contains Project h
Backlog Item |€— many | Backlog asa-—
l |

contains . contains
contains man
many Y

v

~ +
Iteration
Backlog has a-

many

Figure 6.2: High-level conceptual model of Agilefant concepts

54

Adjusted estimate | «¢— affects —| Complexity factor | ¢——————— has a

is basis of
|

may be ma
o y have »
= = <4—hasa developed in " one or more
Original estimate one or more

has a ‘

Descrlptlon \ (Ao et may contain may contain

contains one or more one O?T more
many

associated
is subset of has a to

RISk class
&«

<4—has a—|
Value class ¢— contains

many ~| Release Backlog
Urgency flag / has many

Effort remaining may contain
~_ one or more

may have
one or more

—

T

may be
Prlorlty class has one associated
contains to
many is iubi?f of is re\ated to has a

Relative priority may be |

related to
have
Iteratlon Backlo has a— may —>
Descrlptlon one ormore -_ " one or more

has a
Responsible has a

V\

hasa——‘

s

contains
< many

has one for

each day
Effort spent of iteration

Effort left

Figure 6.3: Conceptual map of the book review concepts colored by match with Agilefant

Link to | Attached !
specification 1 specification
document i _document 1

v

Status / 7 i Responsible

igi i has
Original estimate e \ f
/‘ has many has a Io’ckéa"
Requlrements " fag '
ina pro;ect “ ______ |
c?v:;an‘;s - has a o
must be\ong s 1 Default |

Remalmng effort - contains toa -- has a- }l work

T many .__
W b ' Requlrements m
may be an iteration
related to L’

Blllable ﬂag 47 has a many

is split into
many

may be related
to many

contains may have
many \ -

,,,,,,,,,,,, L may be /' many are R has a
{Reviewed flag | related has donefora \ has many S koo
"""""" to many With has man i type 1 'Locked' Deadline
g ; D U = '
,,,,,,,,,,, ‘A K has a N
! Issue record] i N is based on
i inexternal . _____J > Effort either
1 system 1 |Change spent

___________ . ;ir]i§t707r}’7: / entry Responsible
N

Figure 6.4: Conceptual map of the case company concepts colored by match with Agilefant

55

6.1.1 Introduction to Agilefant

Agilefant [,] is a backlog management tool de-
veloped by the Software Business and Engineering Laboratory at Helsinki University of
Technology. Agilefant is a Web-based tool running on a Web-server and accessed with
a Web browser. Agilefant is installed on a Tomcat Web-application-server and it uses an
external MySql-server as a database back end. Agilefant’s installation guide recommends
that given versions of the supporting software are installed and the tool has not been sys-
tematically tested in environments other than the recommended one. In practice, this means
that when Agilefant is installed into an existing server infrastructure, the existing services
in the environment are likely insufficient to run Agilefant and installation of new services
is required.

The reviewed version of Agilefant contained features that encompass backlog manage-
ment, work-hour reporting, work monitoring and short-term planning. Backlogs on prod-
uct, project and iteration levels contain backlog items. Each product in the tool can have a
set of development themes associated with it and these themes can be used to group backlog
items. In addition, each iteration can have several goals and backlog items can be assigned
to these goals. Backlog items offer such features as prioritization, status, and groups of
responsible developers. Tasks in Agilefant represent more fine-grained work. Tasks are
always created under backlog items. Work hours can be logged for each backlog item and
work-hour reports can be created and filtered by backlog, user, and time span. Agilefant
contains a daily work view for developers. This view displays the backlog items which a se-
lected developer is responsible for and also shows how much assigned work the developer
has. The product level backlog view offers a road map chart which shows the product’s
projects and iterations on a time axle.

Figure 6.5 presents an example of Agilefant’s product backlog view. The tree structure
on the left side of the screen shows products, projects and iterations. The currently selected
backlog is shown in orange color. The product backlog view covers most of the screen. The
drop-down boxes in the bottom of the view enable editing multiple selected backlog items
at the same time.

6.1.2 Time horizons in Agilefant

Agilefant has a tree-like structure of time horizons. The tree consists of three levels, which
are the product, the project and the iteration. The product is the highest level time horizon
and many projects can be attached to it. In turn, the project time horizon in turn may have
several iterations attached.

Agilefant’s product time horizon matches the product time horizon in the book re-
view requirements. Each product in Agilefant has a product backlog attached to it, which
matches the corresponding book review requirement. The product in Agilefant also has a
list of projects attached to it. The highest-level time horizon in the case company is the
project. However, the rigid tree structure in Agilefant forces the use of the product time
horizon.

The project time horizon in Agilefant roughly corresponds to the release time horizon in
the book review requirements. No project time horizon as it is presented in the book review
requirements exist in Agilefant. The project time horizon in Agilefant is a good match

56

— Mike Manager Iogoull
' Agilefant

Create new » [Q_\ Daily Work] W Backlogs | [ﬁ Dev Portfolio] [&) Timesheets] [L Adrnimstratiun}
'Pomt of Sale Daily Wark Den

E-Point of Sale Planning Der

= Point of Sale Planning Demo

~Basic Functionality Paint of Sale Planning Demo
S Advanced Functionality ==
“fteration 1 Details Edit » *|=
teration 2 Point of Sale softwar

Product roadmap Id\splay quartal -

Basic Functionality Advanced Functionality (400h)
lteration 1 (200h) Keration 2 (200h)

Timeline & S1M,

Project s |teration Theme
Projects Create new »
St. Name Project type Iter. info Assignees Start date End date Actions
@ Basic Functionality & Software Development 0/0 2 2008-08-01 2008-08-31 & R
@ Advanced Functionality (7 Software Development 112 2 2008-09-16 2008-10-16 & R
Themes Create new »
Backlog items Create new »
. S Effort Original Effort -
Name Responsibles Priority Progress Left Ecfanals Epent Actions
™ Internationalization ++ Mot started 150h 150h 2 R
150h 150h Oh
State I Keep original =
Move to IPuimofSaIe Planning Demo j
Priarity | Keep original =l

Responsibles [Assign

Save | Celete selected |

Figure 6.5: Agilefant product backlog view

57

to the project time horizon in the case company requirements. Each project in Agilefant
must belong to a product, as projects that do not belong to any product cannot exist in
Agilefant. Projects in Agilefant must have a project type, which is selected from a list
of available types. The list can be freely edited. This corresponds to the project type
property requirement in the case company, but forces the creation of extra concept, when
compared to the book review conceptual map. The Agilefant project also has a list of
iterations attached to it. Projects in Agilefant must have an end date, which corresponds to
the release date in the book review requirements and to the deadline in the case company
requirements. While Agilefant mandates the use of the end date, unlike in the case company
where it does not have to be set, but the end date can be set to such a distant future date
that it does not practically exist. The project in Agilefant has a project backlog container of
work attached to it. The project backlog is a rough match to the tasks in a project container
in the case company and release backlog in the book review.

The iteration time horizon in Agilefant roughly corresponds to the iteration time hori-
zon in the book review requirements and it is a good match to the iteration time horizon in
the case company requirements. Each iteration must belong to a project in Agilefant, which
matches the iteration in case company requirements, but does not match the book review
requirements where iterations do not have to belong to any project. Iterations in Agilefant
must have an end date, which is optional in the case company requirements. As with the
project time horizon, this can be circumvented by setting the end date to a distant future
date. The iteration in Agilefant has a set of iteration goals attached to it. This container
roughly matches the requirements in an iteration container of work in the case company re-
quirements. An iteration in Agilefant may have one or more textual iteration goal attached
to it, but releases in Agilefant do not have release goals. Therefore, Agilefant’s iteration
goals are only a rough match to the book review requirement of iteration goals. The Agile-
fant iteration also has an iteration backlog attached to it, which corresponds to the iteration
backlog in the book review requirements and tasks in an iteration container of work in the
case company requirements.

6.1.3 Containers of work in Agilefant

All containers of work in Agilefant belong to the same type and to different time horizons.
The containers of work are the product backlog, the project backlog and the iteration back-
log. All these containers of work contain backlog items. Backlog items can be moved
between the containers of work. However, a backlog item always belongs to exactly one
container of work. For example, a backlog item in an iteration belongs to the iteration back-
log of the iteration, but not to the project backlog of the project that the iteration is a part of.
This corresponds to the way the tasks in a project and the tasks in an iteration work in the
case company requirements, but is in conflict with the way the containers work in the book
review requirements where a lower-level backlog is a subset of a higher-level backlog.

While Agilefant does not have a specific container of work for requirements, the itera-
tion goals of an iteration can be roughly matched with the requirements in an iteration in
the case company requirements. Each iteration in Agilefant can have a set of iteration goals
which can be moved between iterations.

58

6.1.4 Pieces of work in Agilefant

Agilefant has three different pieces of work, which are the backlog item, the task, and the
logged effort entry. The backlog item and the task in Agilefant are comparable to their
namesakes in the book review requirements. The task in Agilefant does not have a corre-
sponding piece of work in the case company requirements. The piece of work resembling
the task in the case company requirements is the Agilefant backlog item. The properties of
the backlog item that match the case company requirement’s are the original estimate, the
effort left, the description and the priority. In addition, the iteration goal piece of work in
Agilefant can be roughly used as the case company requirement piece of work.

The backlog item in Agilefant roughly corresponds to the backlog item in the book
review requirements. Properties of the backlog item that match book review requirements
are the name, the description, the status, the original estimate, and the effort left in hours.
The state of a backlog item can be one of several, including “done”. The state property of
the Agilefant backlog item matches very closely the status property in the case company
requirements, as every state has a corresponding status. The “done” status can be used in
a fashion similar to the done flag in the book review requirements. The Agilefant backlog
item has also a list of tasks attached to it. A similar relationship exists in the book review
requirements, but unlike in Agilefant, the task in book review requirements can be related
to more than one backlog item or none at all.

The task in Agilefant differs substantially from the task in the book review requirements.
Tasks in Agilefant always belong to exactly one backlog item and cannot be moved between
backlog items. They do not belong to a separate container of work. A task in Agilefant has
a description and a status as properties that match the book review requirements, but it has
no other matching properties. The status of an Agilefant task is selected from a list which
contains choices that correspond to the choices of status in the book review requirement’s
task.

The iteration goal in Agilefant and the requirement in the case company requirements
seem different on superficial level. However, iteration goals can be easily formed so that
they match requirements by stating that the iteration goal is to implement certain require-
ment. Just as a requirement can be related to many tasks in the case company, an iteration
goal can be related to many backlog items in Agilefant. However, the iteration goal does
not possess any of the requirement’s properties in addition to this relationship.

Effort spent entries for a tasks in the case company can be created as effort log entries
for backlog items in Agilefant. Unlike in the case company requirements, the effort log
entries are always attached to a backlog item and cannot be moved between backlog items.
The properties of effort log entries in Agilefant are a very close match to the requirements
from the case company. The matching properties of effort log entry are the amount, the
date, the comment, the work type and one or more work performers.

6.1.5 Selection of work in Agilefant

Agilefant has a per-person daily work view which shows the backlog items assigned to the
selected person. It also shows the selected person’s weekly work load. However, this view
does not show a list of tasks assigned to the person, as in the book review requirements.
The task in Agilefant does not have a responsible person property. For the same reason,

59

the XP-style, stack-based task selection in the book review requirements is not possible in
Agilefant.

Most of the requirements for selection of work in the case company are related to the
requirements for views which are presented in Section 6.1.7. The case company has one
additional requirement that is related to selection of work; namely, the requirement for the
tool to send e-mail notifications of new events. Agilefant does not have this feature.

6.1.6 Monitoring progress in Agilefant

As the task has no effort left estimate in Agilefant, no book review requirements style iter-
ation burn-down chart can be drawn based on the effort left estimates of tasks. Agilefant
is capable of drawing an iteration burn-down chart of effort left estimate sums of backlog
items plotted on each day of an iteration. This does not match the burn-down chart require-
ments from the book review, as backlog items in it have only one effort estimate at the start
of each iteration and the time scale of a release burn-down chart is in iterations. However,
the iteration burn-down chart in the case company requirements is based on the effort left
estimates of tasks and corresponds to the iteration burn down chart in Agilefant.

Figure 6.6 shows an example of Agilefant’s iteration burn-down chart. The solid red
dots show sums of effort left estimates of backlog items in the iteration. The effort left
estimate sum of current day is shown with a hollow red dot. The gray line shows a predicted
velocity based on the speed of change in the effort left sum. The blue line shows a reference
velocity based on linear effort decrement speed.

Agilefant has a view that shows a list of backlog items in an iteration or release. Backlog
items in the list are color-coded according to their status. While total numbers of backlog
items of different status are not shown, the color-coding can be used as a visual clue to asses
the progress of an iteration. This partially fills the second type of monitoring work require-
ment from the book review. Because the amounts and status of backlog items in a release
cannot be compared to those in a iterations belonging to it in Agilefant, the monitoring
progress on release level part of the requirement is not met.

Individual developers’ progress is monitored in the book review requirements by the
sum of the tasks’ effort left estimates. This is not possible in Agilefant, as tasks have no
effort left estimates.

6.1.7 Views in Agilefant

Agilefant has a daily work view of a developer functionality. This view contains a list
backlog items the selected developer is responsible for and a table which shows the effort
left sums for the developer spread over the upcoming weeks. This view is the only view
feature that corresponds to the requirements of case company for views.

6.1.8 Work-hour reports in Agilefant

Agilefant is capable of creating work-hour reports. A work-hour report can be generated for
selected backlogs, a selected time period, and selected persons. The report contains sums
of effort log entries for each time period and each backlog item and can be expanded to
show details of every logged effort entry created in the selected time period. As the backlog

60

Iteration burndown

Effort left

Date

= Actual velocity = Currentday - Scaping — Reference veloclty --- Predicted velacity

Figure 6.6: Agilefant iteration burn-down example

item in Agilefant does not have the billable flag property and the logged effort entry does
not have a work type, the work-hour reports in Agilefant cannot contain this information.

6.2 Results for Mingle

Mingle requires extensive configuration before it can be used in project management. To
give the reader of this thesis a better image of how the configuration is done, the conceptual
model and configuration of Mingle is briefly described in Section 6.2.1 along with the
general introduction to the tool. Figure 6.7 contains a high-level conceptual model of the
concepts in Mingle. Unlike the most other conceptual maps in this thesis, the concepts in
the map are not categorized in the concept types presented in Section 5.1. Instead, Mingle’s
card based meta-model is shown.

Conceptual maps colored by how good of a match the concepts have in the tool are
shown in Figure 6.8 for the book review concept map and in Figure 6.9 for the case company
concept map. See the beginning of Chapter 6 for information on the color-coding.

Results for the time horizons, containers of work, pieces of work, selection of work,
and monitoring progress in Mingle, compared to the book review and case company re-
quirements, are presented in Sections 6.2.2-6.2.5. Results that handle requirements exclu-
sively from the case company are found in Section 6.2.6 for the requirements for views and
Section 6.2.7 for the requirements for work-hour reports.

6.2.1 Introduction to Mingle

Mingle [,] is an agile project management and team collaboration tool
from ThoughtWorks, Inc. The tool is Web-based and is used with a Web browser, but it must
be installed in to the user’s environment as ThoughtWorks does not provide it as a software
service. The tool requires an external database service to be available in the installation
environment but requires no other external services.

Mingle’s conceptual model is extremely flexible and configurable. The tool has three
primary concepts which store information, which are cards, properties, and card trees. The

61

Card property

has many
| is an
<4— instance ——
‘ of a ‘
may belong may belong
to many to many
Card type is an o
tree instance of a

Figure 6.7: High-level conceptual model of Mingle concepts

Adjusted estimate | € affects —| Complexity factor| ¢————has a

is basis of

may be ma
o y have >
— - <4—hasa developed in—p- @ one or more
Initial estimate one or more
has a
[Name] I
v
Product Backlo
i one or more may be
R k] contains / associated
|s < ass Vs many is subset of has a to
4— has a —| .
Value class Eredag izm < contams‘
r \many Release Backlog may have
Urgency flag one or more
has many
Effort remaining may contain may be
Prlorlty class has one . one or more associated
contains to
‘ many is subset of is rdaud to has a
Relative priority Wlla‘/dbe |
related to
Iteration Backlo — may have
has a
Respon5|ble / has a
Status contains /
as a—— T Sk many
has one for
each day
Effort spent of iteration

Figure 6.8: Conceptual map of the book review concepts colored by match with Mingle

62

[Open] [Blocked: Unkto | [Attached |
‘N\ ? YT specification | I specification
document . document
isomeof . _________ g Wt

| Responslble Pr\or\ty Or|g|nat0r

""""" /‘,»" Responslb\e w Sold
has -~ \ hours

Status
Or\glnal estimate
many
as a’ has many has a [Locked
Requirements i flag)
ca\culated —|% ready in a project \ ['
from contalns/ has a \ bl
R 4— many ~ " IDefauit]
equlrement --hasa- > k!
Remalnlng effort - contains : ‘tNor 1
. ype !

many .. _ R/

Descrlptlon b Requlrements m
may © an iteration
related to L’
BlHabIe flag s a many G has a

may be related
to many

- conta\ns Tasks in has 2
4"—’ many a project R

contains

is split into
many

may have

S sets

vl may be ! many are
,,,,,,,,,,,, 7% Yy /

| Reviewed flag ' related has donefora\ hasmany .
____________ . to many V""*}ht has many’
- B weights N
77777777777 A
f Issue record ‘; e is based on
i inexternal .+ _____J > Effort \ either
! system | 1Change | spent < ‘
"""""" | history | entry Responsible may be————p-[Overdue|

has one
or more

has a

Figure 6.9: Conceptual map of the case company concepts colored by match with Mingle

most important concept in Mingle is the card. Every card has a name and a description.
Cards in Mingle are divided into configurable card types and each card in a type has the
same configuration. Card types can be configured by creating card properties and assigning
them to card types. Many card types can have the same property, which enables filtering
many card types with the same property value. The card property types supported by Mingle
are a text or number selected from a configurable list, a free text or number, a date, a user
selected from the list of users in the tool, or a formula that calculates a value from the other
numerical properties of the card type. Each card can have many different properties.

Card trees are formed by linking cards into tree structures. The tree structures are con-
figured by creating card type trees which describe relationships between card types. Each
card type can belong to many card type trees. Card type trees cannot contain loops; how-
ever, loops can be created by using the same card types in several card type trees. Each
card type in a card type tree can have strictly one direct parent type and one direct child
type, but the actual cards can skip levels in a tree; for example a card can be direct child of
its grandparent type card in a card tree. The number of children a card has in a tree is not
limited. Card types that belong to card type trees can have aggregate properties, which are
calculated from the properties of it’s child cards.

Mingle offers several different ways to display and filter cards. All cards can be viewed
as a graphical grid of cards or as a list of cards. Cards displayed in the grid can be filtered,
sorted, and colored according to their properties. The list of cards can be filtered by proper-
ties and card types and configured to show any property values card types have. Card trees

63

can be displayed as graphical card trees or as hierarchical lists. Cards in card trees can be
filtered and hierarchical lists can be configured to show any properties card types have.

Mingle contains a wiki system which allows dynamic content to be placed on wiki
pages. Dynamic content can be created using SQL-style language. The language is quite
complex, but some functional examples are provided in an example project in a default
Mingle installation. Users of the tool cannot be expected to learn the dynamic content
creation language to efficiently use the tool. Based on this, the feature descriptions in this
thesis concerning the dynamic content creation language are based on the examples given
in the example project.

Figure 6.10 shows an example of a card tree view in Mingle. The tabs on the top of
the screen are quick links to saved filters and views. The cards in the screen belong to a
planning card tree which contains releases, iterations, stories, and tasks. The tree has been
filtered to show only release 1 and iterations 1 and 2.

Sl +Defect +Story +Task | & profile for Ville Heikkila | [® Sign out _

Demo project 1

E Ay & History

& overview [E BA Card Wall [E Development Card Wall [£] Feature Tree [E QA Card Wall = Risks =) Tasks - Current Iter... Project admin

Select tree: Planning tree v View as: @ List @ Hierarchy Grid @ Tree

@ configure current tree (& Manage trees

=== Link to this =3

) <| > | Resst
Planning tree
(configure)
+*
x
IRe\easeL #3231
+
x x
IIteratiun 1 #34) IIteratiun 2 #35
+ +
»® x x ® ® ® ®
Login to the #1 Mavigste to and #3 View list of mails #2| Compose and #6| Paginstion #5 Save e-mail #8 View new mails #4
e-mail rezd e-mail save (as a draft) through mails in addrasses in an differently so
=pplication a new mail folder to view more online address book that [can easily
+ L] L] +*
x ®
Build #86| Build #85
Somathing something else
L] +*

Figure 6.10: Mingle card tree view example

6.2.2 Time horizons and containers of work in Mingle

Time horizons are implemented as cards in Mingle. Card types corresponding to the book
review product time horizon, project time horizon, release time horizon, and iteration time

64

horizon can be created in Mingle. Likewise, card types corresponding to the case company
project and iteration time horizons can be created.

The containers of work in the book review requirements can be implemented in Mingle
by creating a card type tree in which the product is the highest level card type and has
project, release, iteration, and, finally, backlog item as hierarchy of child card types. Cards
of the backlog item card type can then be located under any higher level node in the tree.
This also means that backlog items can be located under projects, which is not a part of the
book review requirements. Cards in a card tree always belong to all parents in all hierarchy
levels. This corresponds to the book review requirements of backlogs that are subsets of
parent backlogs. The task list container of work in the book review requirements can be
created in Mingle by creating a card type tree in which the iteration card type has the task
as child card type.

Similarly, the containers of requirements in the case company requirements can be cre-
ated in Mingle by creating a card type tree in which the project card type has the iteration
as a child card type and the iteration has the requirement card type as a child card type. The
containers of tasks in case company requirements can be created with a similar tree with
the exception that the lowest level card type is the task.

The different level goals the time horizons have in the book review requirements can
be created as card types in Mingle and the connections from the time horizons to the goals
can be created as two-level card type trees in which the time horizon card type is the parent
and the goal card type is the child. The hierarchy of the goals can also be created as a card
type tree in which the project goal is the highest level card type and has the release goal as
a child card type, which, in turn, has the iteration goal as a child card type.

The other properties of the time horizons in the book review and case company can be
created as card type properties in Mingle. In the book review requirements these properties
are the release date for the release and the length, the capacity, and the actual work accom-
plished for the iteration. For the project in the case company requirements, the properties
are the deadline, the sold hours, the planned hours, and the type. Card type properties in
Mingle cannot contain multiple values, so only one responsible person can be appointed
to the case company project time horizon card type’s responsible property. The work-hour
reporting related properties, the default work type, and the locked flag, could be created as
properties in Mingle. However, the tool lacks the functionality to employ these values as
explained in the requirements (see Section 5.9) and thus, these properties are considered
missing.

6.2.3 Pieces of work in Mingle

The backlog item piece of work from the book review can be created in Mingle as the
backlog item card type. The properties that can be created for the backlog item card type
in Mingle that exactly match the properties of the backlog item in the book review are the
name, the description, the risk class, the value class, the priority class, and the initial esti-
mate. The properties urgency and done, which belong to the flag type in the requirements,
can be implemented as value properties with two possible values. The priority of the back-
log item piece of work can be implemented as a priority class property. As properties can
have only one value in Mingle, a backlog item card can have only one effort left value.
The project card type card can have the complexity factor property, but this value cannot be

65

used to automatically calculate adjusted estimates for backlog items. A card type tree that
contains the backlog item cards type as the parent and the task card type as the child can be
created in Mingle.

A task card type corresponding to the book review task piece of work can be created in
Mingle. All properties the book review task has can be created in Mingle. These properties
are the name, the description, the responsible person, the status class, the originator person,
the effort spent value, and the effort left value. As tasks cards are the child node in the card
type tree, each task may be related to only one backlog item in Mingle.

The requirement piece of work from the case company can be created as the require-
ment card type in Mingle. The properties of the requirement card type that match the
case company requirement are the responsible person, the priority class, and the origina-
tor. Specification document files can be uploaded to Mingle and attached to requirement
cards. Mingle does not support URL type properties and, as a result, the links to an external
specification requirement can be implemented only as a single non-link free text property.

The task piece of work from the case company can be created as the task card type in
Mingle. The task card type’s properties matching the case company task’s requirements are
the description, the responsible person, the status class, the original estimate, the remaining
effort, the percentage done, the deadline, the sold effort estimate, the creator person, and
the reviewer person. The overdue flag, the billable flag, and the reviewed flag can be im-
plemented as properties with two possible values. Change history is recorded for all cards
in Mingle and it corresponds to the case company task’s change history requirement. The
task’s relationship to many requirements can be implemented as a card tree with the task
card type as the parent and the requirement card type as the child. Many requirement cards
can be connected to one task card using this card tree. Similarly, the relationship between
one task and many projects can be implemented as a card type tree which has the task card
type as parent and the project card type as the child.

The effort spent entry piece of work of the case company requirements can be created
in Mingle as the effort spent entry card type. This card type can be attached to the task card
type by creating a card type tree where the task card type is the parent and the effort spent
entry card type is the child. The effort spent entry card type can be given the a performer
property, but unlike the requirement from the case company, this property can have only
one value. The other properties of the case company effort spent entry can be implemented
as properties in Mingle. These properties are the amount, the date, the comment, the work
type, and the recorder person.

6.2.4 Selection of work in Mingle

Cards can be filtered by the card type or by any property in Mingle. This enables creation
of a filter that shows only the task cards assigned to the selected person, which corresponds
to the requirement from the book review. A quick link for the filter can be created for quick
access. The stack-based task list can be created in Mingle by filtering the cards by status
and arranging them in to alphabetical order. The topmost not started task card can be then
selected from the list. Mingle does not have the ability to send e-mail when a property
value changes, which would correspond to the requirement from the case company. Other
work selection-related requirements from the case company are related to views and are
described in Section 6.2.6.

66

6.2.5 Monitoring progress in Mingle

Release and iteration burn-down charts corresponding to the book review requirements and
the case company requirements can be created with the dynamic content creation language
in Mingle. The language has some limitations; for example, the iteration or release that the
burn-down chart is drawn for must be selected from the workspace project properties and
card tree relationships cannot be used in selection of cards or properties. Because card tree
relationships cannot be used in the dynamic content creating language, a display of task
effort left sums of individual developers per iteration cannot be created.

Figure 6.11 shows an example of charts in Mingle. The chart shows the release burn-up
of an release. The black line on the top of the chart is the total amount of work that needs to
be done in the release and the different colored lines show the amounts of work in different
states. The dotted trend lines show the average speeds of increment of the done work in the
different states.

Mingle’s card filtering and sorting functionality can be used to create a filter which
corresponds to the display of “done” backlog items requirement from the book review.
Different status backlog items can be colored with different colors and then filtered and
sorted based on which release or iteration is their parent in the card tree.

Current Release Burn-Up

2 P — Scope

3 304 ’ = — Analysis

- complete
Development
complete

— a4 complete

— &ccepted

- - &nalysis
complete Trend

o+t Developmert
SR SIS IIISIIIASS compiete Trend
AN AN N NN N AL - - Q& complete
AR AR A DA VAV AR SRl Trend
FENPFTPNP LIPS - - Accepted Trend
Date

Figure 6.11: Mingle release burn-up example

6.2.6 Views in mingle

The customized filters, views, and dynamic content generation language in Mingle enable
creation of customized views and pages which can be saved for later retrieval. However,
there are some limitations to the views. The most important limitation, considering the
daily work of developer view, is that the required information cannot be combined into
one view and several saved card filters must be used instead. Wiki pages created in Mingle
cannot contain card filter views, but they can contain many pieces of dynamically generated
content.

A card filters showing all task cards a person is set as the responsible, or reviewer can
be created and saved. This matches the first two sub-requirements for the daily work of a

67

developer view requirement in the case company. Another card filter that shows the selected
person’s effort spent entry cards for the selected time period can be created and saved.
This view roughly corresponds to the case company requirements for the view showing
the current and previous weeks’ effort spent entries. The filter also roughly matches the
requirement for the effort spent calendar. The dates used in these card filters must be hand-
selected each time the filter is used. The effort left per iteration view requirement can be
implemented by creating a card list view which shows iterations and their task effort left
sums, which can be implemented as an aggregate property in the iteration card type. Similar
to the filters described above, the status meeting view requirement can be implemented with
a card filter.

The work division view requirement cannot be implemented in Mingle. The tool’s data
filtering and aggregation features are not powerful enough for the implementation of the
view. The card type property aggregation function does not allow conditional operations
and each dynamically generated content object can only use single card type as the data
source.

The ongoing project’s status view requirement is simple to implement with Mingle’s
card list view by simple filtering by card type and then selecting the required property
values to be displayed in the list.

6.2.7 Work-hour reports in Mingle

The work-hour reporting functionality can be implemented in Mingle by summing and fil-
tering effort spent entry cards. Aggregate properties of card types in Mingle cannot use
conditional logic when calculating values. Because of this limitation, the work-hour report-
ing functionality in the tool is very limited when compared to the requirements from the
case company. Sum of effort spent entry card’s spent work property values can be reported
as an aggregate property value of an iteration or project and it is calculated from all effort
spent entry cards in the card tree under the project or iteration. None of the more advanced
reports can be generated because the tool lacks conditional filtering of aggregate proper-
ties. Even if the tool had such functionality, the conditions would have to be changed in
the project setting by hand each time a new report needs to be created. The effort spent
reporting requirements from the case company the tool lacks are the hours of a person in
time period and the hours of a person per work type.

6.3 Results for Rally Enterprise Edition

This section presents the results of the Rally Enterprise Edition (Rally EE) review. For
more general information on the tool, see Section 6.3.1. Figure 6.13 presents the color-
coded book review concept map and Figure 6.14 presents the color coded case company
concept map.

Figure 6.12 presents a high-level conceptual model of the concepts in Rally EE. The
later sections describe the mapping of concepts from the requirements to Rally EE features
and explain the other features in Rally EE. The results of comparing features of Rally EE to
the requirements from the book review and case company are described in Sections 6.3.2—
6.3.6. The requirements for views and work-hour reporting are from the case company only

68

and the results for these requirements are in Section 6.3.7 and Section 6.3.8.

may be related
to a higher level

Project
Backlog has a—

contains contains
many many
ease

contains Release contains
User Story |4— many | Backlog has a —("Rel many

contains contains can be a is ext_-:cuted
many many subset of during a

L Iteration
backlog has a—

Figure 6.12: High-level conceptual model of Rally EE concepts

6.3.1 Introduction to Rally Enterprise Edition

Rally Enterprise Edition [,] 1s an agile software devel-
opment life cycle management software. It contains functionality for project management
and requirements tracking, as well as test and defects tracking. Rally is developed by Rally
Software Development Corporation. Limited functionality Community Edition of Rally is
also available. Rally Enterprise Edition can be installed to the user’s environment. Rally
Software also offers Rally as a service hosted on the development corporation’s servers.

Rally follows XP- and Scrum-style philosophy to software development management
in which software is developed in projects which consist of releases and iterations. Actual
work is managed with work objects that are user stories, tasks, and defects, which can
be scheduled to releases or iterations. In addition, user stories can form hierarchies. In
Rally EE, projects may form hierarchies and one instance of the tool can contain several
workspaces. Each workspace in Rally EE is completely isolated from other workspaces
and has it’s own settings and project hierarchies. Default fields of work objects in Rally
EE can be configured to be hidden and new fields can be created. User story prioritization
can be configured by workspace to be done either in relation to other backlog items or by a
number value.

Rally EE offers many views that display information on iterations and releases. In
addition to simply listing all user stories, tasks, and defects, the views can be used to filter
and sort work objects. User stories can be moved between projects, releases, and iterations
by using a drag-and-drop interface. Rally EE also has a dashboard view which displays
status information on iterations, releases, and work objects. It also has a “My Home”
view, which can be configured with widgets to show different kinds of information. Some
examples of widgets are a list of tasks assigned to the current user and an iteration burn-
down chart.

Figure 6.15 shows an user story list in Rally EE. The “User Stories” view can show all
user stories stored in the tool. The stories can be filtered and sorted by different properties

69

Adjusted estimate | «— affects —| Complexity factor|€————— has a

is basis of may be
may have
| —developed in—} — one gr more_>
Initial estimate | €—— has an ' one or more

has a
Pr Backl
) one or more may be
R k ; contains /' associated
isk ¢ ass p many is subset of must has a to
4— has a—| Backlog item l have a
Value class <~ contains N
4 \nanv | Release Backlog has a — - mayhave
Urgency flag one or more
has many ! T
. Effort remaining ?naey;f:_lt;i_z may be
Tom as one
Priority class “« o contains \ associated
/ many is subset of is re\ated to has a

Relative priority may be
related to

Iteration Backlo — may have
\ must
Responsmle has a has a st

ntain:
<\ contains
many

has a——‘

has one for

each day
Effort spent of iteration
Effort left

Figure 6.13: Conceptual map of the book review concepts colored by match with Rally EE

lnkto | 1§ Atached]
specification : speclflcatlon i

o document | document |

isoneof o _________ B A

| Responsible 'm‘ | Originator / e
Status T Pl ZER P Responsible

has

many

Original estimate

has a has many has a TCocked

is Requirements ! flag)

calculated —| in a project [A '
contains — <«

from
& many

Remaining effort < - contains

many .
frecreren may be ' Requlrements in |
\ related to an iteration) L.
Billable flag 47 has a many)

/" iDefault’
--hasa- 1 work !

is split into

may be related
many

to many

is done
during a

many

may have

contains
many

~

____________ 5 moypd [/ manyare :
| Reviewed flag ! related has donefora\ hasmany . \
”””””” . to many With has many
i , weights N

___________ A /’ has a *

' Issue record ; . N is based on

: inexternal 1 _____J » Effort N either

i system iChange | spent <

”””””” 1 history | entry Responsible

/ N
has one
has a

or more
4/>/ \4 A [work
7e7r7: performer

Commen Work type .

Figure 6.14: Conceptual map of the case company concepts colored by match with Rally
EE

70

and filters can be saved as custom views. The priority order of the stories in the list can be
changed by dragging and dropping stories into different locations in the list.

Help & Training | Logout
‘m’ Mode: | PROJECT Setup
() R -
My Home Dashboards Badklog & Schedules Defects Search IEntEr Keywords m‘
Backlog | Plan | Releases | Iterations | User Stories = Tasks | [+
User Stories
_i-‘ =) | Views: |AII User Stories | = actions v | @
Al Rank & ID MName Release Iteration State Task Est To Do COwner Package
O # [= [an = A =l 90 90 m-_m[?f-\ll =l A =] Filter
Introduction to
Iteration Zero
us1 Tutorial, Click 2.0 20 20 "M
on the ‘plus’
icon to the left
. Setup your £
us2 iy 10 10 10 WEEY
Add Next
Us3 Tteration & Tteration 0 2.0 20 20 WEEY
Release
Create Backlog . o
Lsa of User Stories Tteration 0 1.0 Lo 10 [P
use Track Iteration Demo Release 1 2.0 20 20 \&FEH
Plan Mext B
uss Ttorstion Demo Release 1 10 L0 10 R
6 Items
Display: IZD o
Foefined Blin-Progress @ Completed [[Accepted .B\ocked
© 2003-2008 Rally Software Development Corp. | About | Rally Training and Community Forum Privacy Statement | Security Statement | Terms of Service | 0.08 seconds

Figure 6.15: User Story list view in Rally Enterprise Edition

6.3.2 Time horizons in Rally EE

Rally EE has three different time horizons, including the project, the release, and the itera-
tion. Projects can form project hierarchies. This enables the creation of an upper hierarchy-
level project which corresponds to the product in the book review and a lower hierarchy
project which corresponds to the project in the book review requirements. Projects can
also be created without hierarchy, which corresponds to the project in the case company.
Projects in Rally EE have none of the properties in the case company requirements for the
project time horizon.

The release time horizon in Rally EE is a fairly good match to the release time horizon
in the book review requirements. Unlike in the book review requirements, releases in Rally
EE always belong to a project. A release in Rally EE must have an end date, which matches
the date property of a release in the book review. Releases in Rally EE have a free-text
theme field, which is a rough match to the release goal book review requirement. However,
the themes cannot be associated to project goals, as such property does not exist in Rally
EE. Eachrelease in Rally EE must have a state, which is selected from a list containing three
options, which are planning, active, and accepted. Release time horizons must be used in
Rally EE to create iterations, as a release must be chosen when assigning user stories (see
6.3.4) to iterations. This differs from the case company requirements.

71

The iteration time horizon in Rally EE is a good match to the iteration time horizon in
the book review and case company. The iteration in Rally EE has an end date which matches
the length property in the book review and the deadline property in the case company. The
iteration can also have themes, which roughly correspond to the iteration goals requirement
in the book review. The themes are recorded in a free-text format and thus cannot be
linked to release themes. The default work type and the locked flag in the case company
requirements are not supported. The iteration in Rally EE has a resources property which
roughly matches the capacity requirement in the book review requirements. The unit of
resources can be configured to be hours, points, or any other units. The iteration also has an
actuals field, which is automatically calculated from the actuals fields of the tasks (see 6.3.4)
in the iteration. It only roughly corresponds to the actual work accomplished in the book
review requirements, as the value cannot be manually set. Like the release, the iteration in
Rally EE must have a state which is selected from the same options as in the release.

All time horizons in Rally EE have a container of work associated to them. The Section
6.3.3 describes the containers of work in Rally EE in more depth.

6.3.3 Containers of work in Rally EE

Rally EE has only one type of container of work, which is the backlog and contains user sto-
ries. Tasks, which are the second pieces of work in Rally EE (see 6.3.4), have no container
of work, as they always belong to an user story.

Each workspace (see 6.3.1) in Rally EE has one backlog containing all stories that
have been created in that workspace. In addition to belonging to the workspace backlog,
every user story must also belong to a project. This is a good match to the project backlog
in the book review requirements and the requirements in a project in the case company
requirement.

Stories in the workspace backlog can be selected into releases, which is a good match to
the release backlog requirement in the book review. Stories in the workspace backlog can
also be selected to iterations, which is a good match to the iteration backlog requirement in
the book review and the requirements in an iteration requirement in the case company.

The containers of work containing user stories in Rally EE are implemented as subsets
of higher level containers. Each user story in a lower hierarchy level backlog also belongs
to one higher level hierarchy backlog.

6.3.4 Pieces of work in Rally EE

Pieces of work are called work products in Rally EE. Rally has two different kinds of
pieces of work, which are the user story and the task. The properties the pieces of work
have in Rally EE can be configured on a per-workspace basis. Default properties can be
hidden, which hides them from all views in the tool. New properties can also be created
and their type may be boolean, date, decimal number, configurable drop-down list, integer,
text, string, or Web link. The pieces of work were configured to match the requirements as
closely as possible, while any unnecessary default properties were hidden. The values of
user created custom properties of work products in Rally EE are not displayed in any work
product list and are only displayed in detailed views which show only one work product at
a time. This greatly diminishes the usefulness of custom properties and, consequently, the

72

created custom properties are considered only rough matches to the requirements. Tasks in
Rally EE have no separate container of work and they always belong to a user story.

The user story in Rally EE is a good match to the backlog item in the book review
requirements. The properties of the user story that are a good match to the properties of
the backlog item are the name, the description, and the initial estimate. The unit used in
the initial estimate can be freely configured. Workspaces in Rally EE can be configured to
prioritize user stories in either relative priority order or by decimal priority values, which
matches the prioritization requirements in the book review. The done flag requirement in
the book review can be matched with a state property of the user story. The state can
have several values from “defined” to “accepted”, but using the intermediate values is not
required and the two values can be used as true and false values for the done flag. The
book review property requirements risk class, value class, and urgency flag can be created
as custom properties in Rally EE. However, the values of these properties are not shown on
any user story lists. The user story in Rally EE has an effort remaining field, but the field is
automatically calculated from the effort remaining values of the tasks belonging to the user
story and, consequently, the field is only a rough match to the effort remaining property of
the backlog item in the book review requirements.

The user story in Rally EE is a good match to the requirement piece of work of the
case company requirements. The responsible and priority property requirements have a
good match in Rally EE. User stories can have attached files, which matches the attached
specification documents requirement of the case company. A custom URL property can be
added to the user story in Rally EE, but the field accepts only well-formed www-addresses
and is only a rough match to the links to specification documents requirement in the case
company.

The task in Rally EE is a good match to the task in the book review requirements and
to the task in the case company requirements. Tasks in Rally EE always belong to exactly
one user story, which is against the book review requirements where the task can be related
to none to many backlog items or case company requirements where the task can be related
none to many requirements.

Rally EE’s task has several properties which are good matches to the book review task
property requirements, which are the description, the responsible, the status, and the effort
spent. The status of a task in Rally EE can be one of defined, in-progress, or completed,
and the three choices match the three choices the task status has in the book review require-
ments. Tasks in Rally EE have an original effort estimate and a to-do effort estimate. This
is only a rough match to the effort left per day in iteration requirement in the book review
where tasks have an effort left estimate for each day of the iteration the belong to.

Rally EE’s task has properties that are comparable to the original estimate, the remain-
ing effort, and the description in the case company requirements. The status of the task
in Rally EE has three options which match three of the five options in the case company
requirements. The custom properties that can be created for Rally EE’s task to match the
case company requirements are the billable flag, the deadline date, the sold effort estimate,
the reviewed flag, and the issue record in an external system. These are only rough matches
because of the weaknesses of custom properties in Rally EE. The issue record in an ex-
ternal system case company requirement can be created as URL property in Rally EE’s
task. If the external system records can be accessed with well formed URL consisting of
a www-address and identifier parameter, the URL property is a good match to the require-

73

ment. Rally EE keeps track of all changes done to tasks and this corresponds to the change
history requirement of the case company task. Tasks in Rally EE can have only one person
set as responsible. Tasks in Rally EE cannot be prioritized. Rally EE does not provide
functionality to assist in splitting tasks.

Rally EE has an add-on which enables importing bugs from Bugzilla. Bugs are imported
as issues, which are separate type pieces of work. The imported issues can be assigned to
users and iterations. This partially fills the case company requirement of importing Bugzilla
bugs as tasks.

The only location in which spent effort can be reported in Rally EE is tasks’ actual
effort property. No separate piece of work exists that matches the effort spent entry of the
case company requirements. The actual effort property contains only one value which must
be updated when additional effort needs to be recorded. This property is only an extremely
rough match to the case company’s effort spent entry piece of work and its amount property.

6.3.5 Selection of work in Rally EE

Rally EE has a “My Home” page which contains widgets showing different kinds of infor-
mation about the project. The widgets shown on the page can be selected from a palette
of available widgets. One of the widgets is called “My Tasks”. This widget lists tasks
that have been selected to a release or iteration and have been assigned to the current user
logged in to the tool. With the exception that tasks that are not in an iteration or release
are not shown and the user whose tasks are shown cannot be explicitly selected, this widget
matches exactly the book review requirement for the task list showing the tasks assigned to
the selected person.

The tasks view in Rally EE shows all tasks of a project and the view can be filtered
by an iteration or release. The tasks in the task view can be ordered into alphabetical or
internal ID order. Corresponding to the stack based task list requirement of the book review
the topmost incomplete task can then be selected for implementation.

Rally EE has notification rules feature which allows e-mail notifications to be sent based
on notification rules. The rules can be formed based on work item type and event. A rule
can be created that is exact match to the e-mail notification requirement of case company.

6.3.6 Monitoring progress in Rally EE

Rally EE is capable of drawing release burn-down charts. The time period shown in the
release-burn down charts in Rally EE is one release and one data point is drawn for each
day in the release. The release burn-down charts in Rally EE show two data sets. The
first is the planned work and it is calculated by summing the planned estimates of the user
stories in the release. The second is the remaining work which is calculated by summing
the planned estimates of the user stories in the release which are not in the “accepted” state.
The second data set is only a rough match to the release burn-down chart requirement of the
book review, as the release burn-down chart in the book review shows the amount of work
estimated to be left in the backlog items per each iteration but Rally EE’s release burn-down
chart only accepts all work left or completely done values for user stories and plots a value
for each bygone day of the release.

74

Rally EE also draws iteration burn-down charts for the iteration time horizon. These
charts show three data sets drawn on each bygone day of the iteration. The first data set is a
bar chart showing the amount of work in user stories calculated from the planned estimates
of the user stories that have accepted status and belong to the iteration. The data set second
is a bar graph showing the amount of work left in the tasks that belong to the user stories
selected to the iteration. The third data set is the ideal burn-down line, which is a line drawn
from the task effort left sum data point in the first day of the iteration to a zero value data
point at the last day of the iteration. Figure 6.16 shows an example of Rally EE’s iteration
burn-down chart. Disregarding that tasks always belong to user stories in Rally EE and that
the chart is a bar chart instead of a line chart, the second data set in the chart is a good match
to the iteration burn-down chart requirement of the book review and case company.

Rally EE has a view that shows all user stories that belong to the chosen project. This
list also displays the iteration or release the user story belongs to and shows the user story’s
status. This view roughly matches the book review requirement of the display of number of
backlog items in different containers and states.

The “My Tasks” widget on the Rally EE’s “My Home” view shows the tasks that are
assigned to the current user of the tool. The list of tasks shows effort left estimates and the
list can be filtered by iteration, which matches the task effort left sum display requirement
of the book review.

Iteration Burn Down =9
4

(Haurs)
~
(sIu10d) pardiaaoy

To Do

020k

Figure 6.16: Rally Enterprise Edition iteration burn-down example

6.3.7 Views in Rally EE

The developer daily work view requirements that are filled by Rally EE are the list of
assigned tasks and the effort left per iteration. These requirements are filled by the “My
Tasks” widget described in previous section. As reviewers cannot be assigned to tasks, the
list of tasks to review requirement is not filled. The effort spent in Rally EE is only recorded
in one field in each task and, consequently, the view requirements of the list of effort spent
entries, the effort spent calendar and, the effort spent per iteration are not filled. In addition,
the requirement for the status meeting view is not filled.

75

Rally EE has a view that shows a list of users and the tasks with effort left sums assigned
to each user. This list can be filtered by an iteration or horizon. The view is a rough match
to the work division view of the case company requirements. Rally EE has no view that is
even a rough match to the ongoing projects’ status view requirement of the case company.

6.3.8 Work-hour reports in Rally EE

Effort spent can be recorded in Rally EE only in tasks’ actuals field. A view containing
list of all tasks in a project exists in Rally EE and the tasks on the list can be filtered
by iteration, release, and user. The list also shows sums of the actuals of the tasks that
are listed. This view correspond to two case company work-hour reporting requirements,
which are the hours in an iteration or project and the hours of a person in a time period. The
sub-requirements of these two requirements that are not filled are the non-billable hours, the
billable hours, and the selected time period hours. The requirements are not filled because
the custom properties or a selected time period cannot be used in to filter the list. The hours
per person per work type requirement is also not filled because the work type is a custom

property.

6.4 Results for ScrumWorks Pro

This section presents the results of the ScrumWorks Pro review. For general information
on the tool, see Section 6.4.1. Figure 6.18 shows the color-coded book review concept map
and Figure 6.19 contains the color-coded case company concept map.

Figure 6.17 presents a high-level conceptual model of the concepts in ScrumWorks Pro.
Later sections describe the comparison of the book review and case company requirements
to ScrumWorks Pro’s features. Results of the comparison of ScrumWorks Pro’s features to
the requirements from the book review and case company are described in Sections 6.4.2—
6.4.6. Requirements for views and work-hour reporting are from the case company only
and the results for these requirements are in Section 6.4.7 and Section 6.4.8.

contains

many
contains
many contains

has a— ("Release many

/

Rlease
contains —| Backlog

‘ 4 ™many
Backlog item

¥~ contains
many —| Sprint
Backlog

iy

hasa —

Figure 6.17: High-level conceptual model of ScrumWorks Pro concepts

6.4.1 Introduction to ScrumWorks Pro

ScrumWorks Pro [,] is an agile software development management tool
designed primarily to be used with the Scrum process. The tool is developed by Danube

76

Adjusted estimate |« affects —| Complexity factor | €——————has a

is basis of may be
may have N
— - 4—hasa — developed in—p @ - one Zr more
Initial estimate one or more
|
has a
Product Backlo contains
many may be
contains one or more assocyated
|
RISk class e many is subset of Must have has a to
has al at least one |

Value class ¢ contains

\many I
[Urgency flag] flag / has many

Release Backlog

may have
one or more

has a—

—

must have
assigned ‘

Effort remaining may contain

may be
Priority class has one . one or more associated
contains to
A/ many is subset of is rc\atcd to has a
Relative priority may be |

related to

may have
ne or mor Iteration Backlo has a—
Descrlptlon one of more " one or more

Responsmle has a haS a

N

|

contains
many

hasa—— <+

has one for
each day
Effort spent of iteration
Effort Ieft

Figure 6.18: Conceptual map of the book review concepts colored by match with Scrum-
Works Pro

Link to 7" Attached |
specification| 1 specification !

document 1+ document
v

/r,»"/ Responsible

Status
Original estimate e

» - has many has a ‘Locked'
is Requirements ' flag
calculated —] in a project b '
from contains — bl
\

has a .
«— many ~ /’ """"
Remalmng effort

1 Default |
f'hBSa }l work !
- contains .]
T many .__ N
W b | Requirements in
may be ! an iteration . -
related to K e

Blllable ﬂag 47 as a many

has a

is split into
many

may be related
to many

--=""" contains
4’/ many

contains may have
many —

may be ,/ many are

related has donefora\ hasmany .
. to many with has many
’ . weights F X N '
D U, R .

,,,,,,,,,,, N . has a N
! Issue record] N is based on
| inexternal . Effort X either
{ system | Change | spent < |
"""""" \ history | entry Responsible may be

N

has one

has a

‘// . more

D; Commen Work type

Figure 6.19: Conceptual map of the case company concepts colored by match with Scrum-
Works Pro

77

Technologies, which also provides Scrum training. Limited functionality ScrumWork Basic
version of the software is also available for free. ScrumWorks Pro must be installed in the
user’s environment and is not provided as software service by Danube. The tool requires
no external services from the installation environment.

ScrumWorks Pro must be first accessed through a Web page. After connecting to the
Web page, the user has two alternative ways to access the software. The first way is Scrum-
Works Web access. The Web-based interface provides a list of all backlog items and tasks
in a selected product and sprint and allows manipulation of the backlog items and tasks.
The tasks that are assigned to the current user of the system can be highlighted in a “My
Tasks” view. The view also displays a sprint-burn down chart of the selected sprint. The
second way to access ScrumWorks Pro is to use a Java Webstart application, which is a
Java application loaded from the Web. Using the Webstart application requires that a Java
runtime environment is installed on the client machine. The Webstart application contains
much more functionality than the Web-based user interface and is the main way the soft-
ware is used. It however does not offer a view corresponding to the “My Tasks” view in the
Web page interface.

One ScrumWorks Pro server can contain many products at the same time. Each product
acts like a separate workspace. Programs that group several products can also be created.
Work is planned on high level by creating backlog items. The backlog items can then be
assigned to releases and sprints. Low-level work is planned by creating tasks under the
backlog items.

Figure 6.20 shows an example of ScrumWorks Pro Java Webstart user interface. The
right side of the screen contains the product backlog. All backlog items that have not
been selected to a sprint are listed in the product backlog. The product backlog is split
into releases. The top left corner of the screen shows sprint backlogs. Backlog items can
be dragged and dropped between the different backlogs. The order of the backlog items
can also be changed with a drag-and-drop user interface. Tasks are shown as sub-items in
the backlog lists. The bottom left corner of the screen contains an edit window. Selected
backlog item or task can be edited in this window.

6.4.2 Time horizons in ScrumWorks Pro

ScrumWorks Pro contains three time horizons, which are the product, release, and sprint.
These three time horizons are good matches to the product, release and iteration time hori-
zons in the book review requirements. No project time horizon exists in ScrumWorks. The
product time horizon in ScrumWorks Pro does not have a backlog attached to it. However, a
release backlog that does not have a start or end date can be created and used as the product
backlog. This also corresponds to the case company requirement for the requirements in
the project container of work. As projects in ScrumWorks Pro have no properties, none of
the property requirements for the project time horizon in the case company can be filled.
The tool requires that at least one team is created and every product must have at least one
team assigned to it.

The release time horizon in ScrumWorks Pro corresponds to the release time horizon
in the book review requirements. The release time horizon in ScrumWorks has an end date
which matches the date property requirement of the book review, but does not have the
release goals property. ScrumWorks Pro’s release has a container of work that contains

78

Scru mWorks Pro - Helsinki University of Technology - Logged in as: administrator - | EI|1|

File Edit View User Reports Themes Window Help

18l
Sample Product: Sprints by Team g R | Sample Product: Product Backlog g R ‘
View Impediments (1) | +/- Team | &
Sample Team One 'm Key Uncommitted Backlog Items)Tasks BacklogE...| rBY | ROI
‘ Sprints in Product Sample Product: = B Release 1.1 Texas Holdem and 5 ca...| Total: 11
Key Committed Backlog Trems|Tasks BackogE... | TaskHours BW Cards-164 [Bug. Card Managment. JIRA] K in Kin 2 1% | 1,35
& Sprint -- 5.7.2007 - 20.7.2007 Total: 13 Total: 2 | Total: 30 Cards-73 [Card Managment, Robustness] Custo... 2| 0% 045
Cards-177 = 1Al Bugl Computer never bluffs in Stud 4 g Cards-162 [Bug, Card Managment, JIRA] The Aj.. 3] 2% | 1,05
Research Al 2 Cards-178 [Bug] Afterthe Computer Checks i.. 1] 1% | 270
Cards-78 [Robustness] Select Number of Players 4 14 || Cards-176 [Bug] Third Street Betin Stud Cras... 3| 1%| 080
Cards-92 [Al. stud] Computer - Calling - Stud 5 8 B Wish List - No dates makes this rel...
Cards-75 [Epic] Qnline Play a0
£ Sample Product: Editors &5 Cards-70 [Card Managment, Robustness] Anima... 5 12% | 412
W FReszarch AT x| Cards-105 [Card Managment] Play Deck - Multi... -
72| Business Weight | Themes | History | Attachments | Cards-20 [Epic] Hand Probability 20| 61% | 515
“Title: |Commer_ Calling - Stud Cards-T1 [Card Managment, Robustness] Shuffl... 2 12% [10,30
Description: | 5. Stary " Cards-77 [Robustness] Ornate Dealer Token 2
As a player | would like the computer to make good choices aboutwhen to call. j Cards-79 [Rebustness] Shuffle Noise 1) 15% (2576
Cards-76 [Epic] Stud Poker Variants (1]

[Release 1.0 - Done and placed on b... Total: 0

Definition of Done:
This function refers to the poker hand rankings.

The computer player should call a % during the Initial Deal: =

* Effort: |5 Release: IFJeleasm 1 Texas Holdem and 5 card Stud LI I~ Done
in Story Paints(1-10)

Mew IS | Apply | Cancel |

Figure 6.20: ScrumWorks Pro Java-Webstart user interface

backlog items. This matches the release backlog requirement from the book review.

The sprint time horizon in ScrumWorks Pro is a good match to the iteration time hori-
zon in the book review requirements and the case company requirements. At least one team
must be assigned to a sprint when it is created. Sprints are always done in the context of
some project, which matches the case company requirement but conflicts with the book
review requirement. The sprint has a start and end date which corresponds to the length in
the book review requirements and to the deadline in the case company requirements. Sprint
can have a free-text goal field, which is a rough match to the iteration goal book review re-
quirement. The actual work accomplished property in the book review requirements can be
calculated from the estimates of the backlog items that have been done in a sprint in Scrum-
Works Pro. Sprints have a sprint backlog as a container of work and backlog items can
be moved between release backlogs and sprint backlogs. This corresponds to the iteration
backlog requirement of the book review and the requirements in the project requirement of
the case company.

6.4.3 Containers of work in ScrumWorks Pro

ScrumWorks Pro has one kind of container of work which contains backlog items (see
6.4.4). Sprints and releases both have this container of work which is called the sprint
backlog or the release backlog depending on which time horizon it belongs to. A release
backlog that belongs to a release that does not have a start and end date can be likened to
the project backlog container of work in the book review requirements.

Backlog items are moved between the containers of work in ScrumWorks Pro and can
only belong to one container of work at any time. Tasks (see 6.4.4) do not have a separate

79

container of work in ScrumWorks Pro.

6.4.4 Pieces of work in ScrumWorks Pro

ScrumWorks Pro has two different pieces of work, which are the backlog item and the
task. These match the backlog item and task pieces of work in the book review require-
ments. ScrumWork Pro’s backlog item is good match to the case company requirement’s
requirement piece of work. The properties the backlog item has that match the book review
backlog item requirements are the title, the description, the done flag, and the estimate.
ScrumWork Pro’s backlog item can have only one effort estimate. The effort estimate value
can be set when the backlog item is created and it can be changed later, but no history of
previous estimates is shown and, therefore, the requirement for original estimate property
of backlog item from the book review is not filled. Backlog items in ScrumWorks Pro are
always prioritized in a relative order, which does not match the case company prioritization
requirement of priority class based prioritization. The backlog item in ScrumWorks Pro has
a list of tasks attached to it. Files can be uploaded and attached to backlog items, which
matches the attached specifications documents requirement of the case company.

The task is the second piece of work in ScrumWorks Pro. It is a good match to the
task in the case company and the book review requirements. Tasks always belong to one
backlog item but they can be moved between backlog items. No separate container of work
for tasks exists in ScrumWorks Pro. This is in conflict with the requirements of the book
review and case company.

The task in ScrumWorks Pro has a status which can be one of not started, in progress,
impeded, or done. This is a good match to the task status property requirement in the book
review, but the list lacks the reviewable status of the case company task requirements.

The book review task property requirements that have a good match in ScrumWorks
Pro are the description, the responsible person, the status, the effort spent, and the effort
left. The only missing task property is the originator. The effort left and the effort spent in
ScrumWorks Pro task can be recorded per day and the total sum is also shown for the spent
effort. This matches the book review requirements.

ScrumWork’s task lacks all but one of the second priority requirements of the case
company. The change history second priority requirement is partially filled by the effort
left and effort spent history feature. The first priority task property requirements that are
filled by ScrumWorks Pro are the description, the remaining effort, and the one responsible
person. Tasks cannot be assigned multiple responsible persons in ScrumWorks Pro.

The case company effort spent entry piece of work does not have a corresponding piece
of work in ScrumWorks Pro. Spent effort can be recorded in tasks, which is a very rough
match to the effort spent entry requirement. One effort spent value can be recorded per day
and sum of these values is also shown. Many effort left entries cannot be recorded for a task
during one day and no one other than the task’s responsible person can record spent effort.

6.4.5 Selection of work in ScrumWorks Pro

The only selection of work requirement filled by ScrumWorks Pro is the requirement for
task list showing the tasks assigned to the selected person. ScrumWorks Pro has a “My

80

Tasks” display, which shows all backlog items and tasks of the selected project and the
tasks of the current user can be highlighted in this view.

6.4.6 Monitoring work in ScrumWorks Pro

ScrumWorks Pro draws a sprint burn-down chart based on task’s effort left estimates. Figure
6.21 shows an example of ScrumWorks Pro’s sprint burn-down chart. The red dots show
sums of task effort left estimates in the sprint. This matches the book review and case
company requirements for an iteration burn down chart. ScrumWorks Pro has a view that
shows all backlog items in all releases and iterations. Backlog item’s done flags are also
shown in this view. The view is a good match to the book review requirement of a list of
all backlog items “done” compared to the other backlog items. ScrumWorks Pro does not
draw release burn-down charts and it does not have a view for task’s effort left sums per
user.

Sprint Burndown
Team: Sample Team One Sprint: Lets Release 1.0! -- 5/7/2007 - 5/21/2007
500 " - . u
460 |
400
350
300 =
250
200 "
150 =
100 =
50 =

&-May 10-May 12:May 14May 1e-May 18May 20-May

Figure 6.21: ScrumWorks Pro sprint burn-down example

6.4.7 Views in ScrumWorks Pro

The “MyTasks” view in ScrumWorks is only a partial match to the daily work of a developer
view requirement, as only list of assigned tasks is shown. Other daily work of a developer
view requirements or any other views related requirements are not filled by ScrumWorks
Pro. ScrumWorks Pro does have a view that displays tasks and sums of tasks’ effort left
values, but this view cannot be filtered to show only tasks of the selected user.

6.4.8 Work-hour reports in ScrumWorks Pro

ScrumWorks’ ability to generate work-hour reports is limited to showing selected sprint’s
effort spent history table. This table shows each task’s effort spent entries per day and
sums of the effort spent entries values. This is a partial match to the hours in an iteration
or project case company requirement. Other hour reporting requirements are not filled by
ScrumWorks Pro.

81

6.5 Summary of the tool requirements and features

This section contains tables which summarize the results of the tool reviews. See the other
sections in this chapter for a detailed descriptions of the results.

Table 6.1 displays a comparison of the time horizon requirements from the book review
and tool features. Table 6.2 contains a comparison of time horizon requirements from the
case company and tool features. Table 6.3 displays a comparison of the pieces of work
requirements from the book review and tool features. Table 6.4 displays a comparison
of the pieces of work requirements from the case company and tool features. Table 6.5
compares the selection of work requirements from the book review and the case company
to the tool features. Table 6.6 compares the monitoring progress requirements from the
book review and the case company to tool features. Table 6.7 contains the comparison of
the view requirements from the case company and the tool features. Table 6.8 contains
the comparison of the work-hour reporting requirements from the case company and tool
features.

The first column of each table contains requirements from the case company or book re-
view. The following three columns contain matching features from the tools, if available. A
long line (—) denotes that the requirement was not filled by the tool in that column. The re-
quirements from the case company are denoted by a priority. The priority one requirements
are denoted by ?, the priority two requirements are denoted by 2, and the requirements re-
lated to work-hour reporting are denoted by 7. Boldface text denotes the main requirements
and features. The normal face requirements and features in the rows following the boldface
requirements and features are sub-requirements and sub-features related to the boldfaced
main requirements and features.

82

€8

Book review

Table 6.1: Book review time horizon requirements compared to the tools’ features

Agilefant

Mingle

Rally EE

ScrumWorks Pro

Product time horizon

Product backlog

Project time horizon

Optional connection to a product

Project goal

Release time horizon

Date

Release backlog as a subset of a
product backlog

Release goals with optional
connection to a project goal
Optional connection to a project

Iteration time horizon
Length

Capacity

Actual work accomplished

Task list

Iteration backlog as a subset of a
release backlog

Iteration goals with optional
connection to a release goal
Optional connection to a release

Product time horizon

Product backlog

Project time horizon

End date

Project backlog separate from a
product backlog

Mandatory connection to a product

Iteration time horizon

Start and end date

Sum of done backlog items’
original estimates

Iteration backlog separate from a
project backlog

Iteration goals

Mandatory connection to a project

Product card type
Card tree hierarchy
Project card type

Card tree connection to a product
card

Project goal card type

Release card type

Date

Card tree hierarchy

Release goal cards with a card tree
connection to a project goal card
Card tree connection to a project
card

Iteration card type

Length

Capacity

Actual work accomplished

Card type tree
Card tree hierarchy

Iteration goal cards with a card tree
connection to a release goal card
Card tree connection to a release
card

Upper hierarchy-level project in
project hierarchy

Workspace backlog with product
filtering

Lower hierarchy-level project in
a project hierarchy

Belongs to an upper level project in
hierarchy

Release time horizon

End date

Release backlog as a subset of a
workspace backlog

Free-text theme field

Mandatory connection to a product

Iteration time horizon
Start and end date
Resources

Sum of tasks’ actuals fields

Iteration backlog as a subset of a
workspace backlog
Free-text theme field

Mandatory connection to a project

Product time horizon

Release backlog without start and
end dates

Release time horizon

End date

Release backlog separate from a
product backlog

Mandatory connection to a product

Sprint time horizon

Start and end date

Sum of done backlog items’
original estimates

Sprint backlog separate from a
release backlog

Free-text goal field

78

Table 6.2: Case company time horizon requirements compared to the tools’ features

Case company Agilefant Mingle Rally EE ScrumWorks Pro

1 Project time horizon Project time horizon Project card type Project time horizon Project time horizon

1 Responsible persons — One responsible person — —

! Deadline End date Deadline End date —

1 Sold hours — Sold hours — —

1 Planned hours — Planned hours — —

! Type Type Type — —

! Tasks in the project Project backlog Card type tree — —

1 Requirements in the project — Card type tree User Stories in the project Backlog items in a dateless release

T Default work type

T Locked flag

! Iteration time horizon

1 Deadline

1 Mandatory connection to a
project

1 Tasks in the iteration

2 Requirements in the iteration
T Default work type

T Locked flag

Iteration time horizon
End date
Mandatory connection to a project

Iteration backlog
Iteration’s goals

Iteration card type

Deadline

Card tree connection to a project
card

Card type tree

Card type tree

Iteration time horizon
End date
Mandatory connection to a project

User stories in the iteration

backlog

Sprint time horizon
End date
Mandatory connection to a project

Backlog items in the iteration

¢8

Table 6.3: Book review pieces of work compared to the tools’ features

Book review Agilefant Mingle Rally EE ScrumWorks Pro
Backlog item Backlog item Backlog item card type User story Backlog item
Name Name Name Name Title

Description Description Description Description Description

Risk class — Risk class Custom field risk class —

Value class — Value class Custom field value class —

Urgency flag — Urgency value Custom field urgency flag —

Done flag Done status Done value Done status Done flag

Priority class or relative priority
Effort remaining for each iteration

Initial estimate
Adjusted estimate
Optional relationship to many tasks

Task

Name

Description

One responsible

Status class

One originator

Effort spent

Effort left

Optional relationship to many
backlog items

Priority class
Current effort remaining

Original estimate

Each tasks belongs to one backlog
item

Task

Name

Description

Status class

Always belongs to one backlog
item

Priority class
Current effort remaining

Initial estimate

Card tree relationship to many task
cards

Task card type

Name

Description

One responsible

Status class

One originator

Effort spent

Effort left

Card tree relationship to one
backlog item card

Priority class or relative priority
To Do calculated from task effort
left estimates

Planned estimate

Each tasks belongs to one user
story

Task

Name

Description

One responsible

Status class

Effort spent

Effort left

Always belongs to one user story

Relative priority

Estimate

Each task belongs to one backlog
item

Task

Name

Description

One responsible

Status class

Effort spent per day

Effort left

Always belongs to one backlog
item

98

Case company

Table 6.4: Case company pieces of work compared to tool features

Agilefant

Mingle

Rally EE

ScrumWorks Pro

1 Requirement

1 One responsible

1 Priority class

1 Links to specification documents
2 Attached specification documents
2 One originator

I Task

1 Description

1 One responsible

1 Many responsible persons with
weights

2 Many responsible persons

1 Overdue flag

L Status class

1 Original estimate

1 Remaining effort

1 Percentage done based on the
original estimate and remaining
effort

1 Billable flag

2 Deadline

2 Relative Priority

2 Sold effort estimate

2 One creator

2 One reviewer

2 Reviewed flag

2 Change history

! Related requirements

2 Related projects

2 Related issue in external system
2 Splitting tasks to several tasks

2 Importing bugs as tasks from
Bugzilla

Iteration goal

Backlog item
Description
One responsible

Many responsible persons

State class

Original estimate

Effort left

Percentage done based on the
status of the tasks belonging to the
backlog item

Relative priority

One related iteration goal

Requirement card type

One responsible

Priority class

Non-link free text URL

Attached specification documents
One originator

Task card type

Description

One responsible

Overdue value

Status class

Original estimate

Remaining effort

Percentage done based on the
original estimate and remaining
effort

Billable value

Deadline

Sold effort estimate

One creator

One reviewer

Reviewed value

Change history

Card tree relationship to many
requirement cards

Card tree relationship to many
projects

User story

One responsible

Priority class

Strictly formatted URL

Attached specification documents
Task

Description

One responsible

Custom field overdue flag
Status class

Original estimate

To-Do estimate

Custom field billable flag
Custom field deadline date
Custom field sold effort estimate

Custom field reviewed flag
Change history
One related user story

Strictly formatted URL
Importing bugs as issues from
Bugzilla

Backlog item

Relative priority

Attached specification documents
Task

Description

One responsible

Status class

Remaining effort

Effort history
One related backlog item

Importing bugs as backlog items
from Bugzilla

L8

Table 6.4: Continued case company pieces of work compared to tool features

Case company Agilefant Mingle Rally EE ScrumWorks Pro

1 Effort spent entry Effort log entry Effort spent entry card type Task’s actual effort field Tasks’s hours spent field
1 Amount Amount in hours Amount Amount Amount

1 Date Date Date — Date

1 Comment Comment Comment — —

1 Work type — Work type — —

2 One recorder
1 Work performers
1 Target task

Work selection

Work performers
Target backlog item

Agilefant

One recorder
One work performer
Card tree relationship to one task

Mingle

Target task

Table 6.5: Work selection requirements and the tool features

Rally EE

Target task

ScrumWorks Pro

Book review

Task list showing the tasks
assigned to the selected person
Stack based task list

Case company

2 E-mail notifications for newly
assigned tasks

Card filter showing the task cards
assigned to the selected person

Task list showing the tasks
assigned to the current user

List of tasks ordered by ID or name

E-mail notification rule for newly
assigned tasks

Task list highlighting the tasks
assigned to the current user

88

Monitoring progress

Table 6.6: Progress monitoring requirements and tool features

Agilefant

Mingle

Rally EE

ScrumWorks Pro

Book review
Release burn-down chart

Tteration burn-down chart based on
the effort left estimates of tasks

Display of number of backlog
items “done” compared to the
items in iteration backlog and
release backlog

Display of task effort left sum of an
individual developer per iteration

Case company

1 Jteration burn-down chart based
on tasks’ effort left estimates

Required view

Status color-coded list of backlog
items in an iteration or release

Iteration burn-down chart based on
backlog items’ effort left estimates

Programmed release burn-down
chart

Programmed iteration burn-down
chart based on the effort left
estimates of tasks cards

Card filter coloring “done” cards
belonging to different iteration and
release card trees

Programmed iteration burn-down
chart based on tasks’ effort left
estimates

Release burn-down chart based on
user story states and original
estimates

Iteration burn-down chart based on
the effort left estimates of tasks

Filterable list of all user stories,
containers and states

Filterable list of a developer’s
assigned tasks and the tasks’ effort
left estimates

Iteration burn-down chart based on
tasks’ effort left estimates

Table 6.7: Case company views and tool features

Agilefant

Mingle

Rally EE

Sprint burn-down based on tasks’
effort estimates

List with done flags of all backlog
items in all containers

Sprint burn-down chart based on
tasks’ effort left estimates

ScrumWorks Pro

1 Daily work of developer view
1 List of assigned tasks

1 List of tasks to review

1 List of current and previous
weeks’ effort spent entries

1 Effort spent calendar

2 Effort left per iteration

I Work division view
1 Status meeting view

1 Ongoing projects’ status view

Daily work of developer view
List of assigned backlog items

Effort left per day

Saved card filter pages

List of assigned task cards

List of task cards to review

List of effort spent cards of the
selected time period

List of effort spent cards with the
selected date

Sum of effort left values of task
cards in the selected iteration
List of effort spent cards for the
selected person and time period
Table of projects, spent hours,
sold hours and estimated hours

My Tasks widget
List of assigned tasks

Filterable list of tasks and the
tasks’ effort left sums

My Tasks view
List of assigned tasks

68

Required report

Table 6.8: Case company work-hour reporting requirements and the tool features

Agilefant

Mingle

Rally EE

ScrumWorks Pro

THours in an iteration or project
T Hour totals in iterations if a
project

T Total hours

T Non billable hours

T Billable hours

T Hours of a person in time
period

T Selected person

T Selected time period

T Hours per iteration or project

T Hours of a person per work
type

Hours in an iteration or project
Hour totals in iterations if a project

Total hours

Hours of a person in time period

Selected person
Selected time period
Hours per iteration or project

Hours in an iteration or project
Hour totals in iterations of the
selected project card

Total hours

Hours in an iteration or project
Sum of selected iteration’s tasks’
effort spent

Total hours

Hours of a person in time period

Selected person

Sum of tasks’ effort spent values in
the selected iteration

Hours in a sprint

Total hours

Chapter 7

Discussion

This chapter contains discussion on the results of the thesis. The features the tools have and
their compliance with the requirements is discussed in Section 7.1. The different conceptual
models of the tools and their weaknesses are discussed in Section 7.2. The validity of the
results is discussed in Section 7.3.

7.1 Discussion on the tool features and the requirements

This section contains discussion on the tools’ features and how well the features fulfill the
requirements from the book review and case company. Each individual tool is first discussed
separately: Section 7.1.1 contains discussion on Agilefant, Section 7.1.2 on Mingle, Section
7.1.3 on Rally Enterprise Edition and Section 7.1.4 on ScrumWorks Pro. Section 7.1.5 then
discusses the requirements and the features of the tools in general.

7.1.1 Agilefant and the requirements

Agilefant fails to fill a crucial part of the requirements from the book review. It differs
notably from the requirements on a conceptual level regarding the backlog item and task
pieces of work. In the book review requirements, the backlog items are long-term planning
pieces used to plan complete iterations and tasks are used for short-term planning of itera-
tions. Agilefant’s backlog item fills both roles. Tasks in Agilefant serve only the role of a
to-do list of a backlog item. These backlog items and tasks both lack many of the properties
identified in the book review. The most important missing properties are the effort-left es-
timate and the responsible of a task. The lack of these properties precludes forming a task
list for a person or an iteration burn-down chart, which both are very important tools for
managing the agile software development work.

The project time horizon in Agilefant corresponds to the release time horizon in the
book review requirements and the project time horizon presented in the book review re-
quirements does not exist in Agilefant. Unlike the time horizons in the book review re-
quirements, the time horizons in Agilefant must form a hierarchy; a lower-level time hori-
zon cannot exist without a higher-level time horizon. Agilefant does not offer a hierarchy
of goals from project to release to iteration, as it only supports iteration goals. The purpose
of the hierarchy of goals in the combined requirements of the book review is to give high

90

abstraction-level guidelines for the more concrete planning, which uses backlog items and
tasks. The lack of higher-level goals diminishes the usefulness of the iteration goals, as
higher-level goals cannot be used as guidelines for them.

The different role of tasks in Agilefant compared to the book review requirements is
the most severe conceptual deficiency. Instead of being the main way to plan and manage
work in iterations, as in Scrum and Extreme Programming, the tasks in Agilefant are to-
do lists of individual backlog items. The difference prevents using Agilefant for planning
iterations and managing work during iterations. This deficiency alone is severe enough so
that Agilefant cannot be considered to have sufficient features to be used in agile software
development management as presented in the book review requirements. The lack of a
hierarchy of goals and the missing project time horizon, which alone would not have been
sufficient to consider Agilefant unfit, strengthen this conclusion.

Mapping both the task and the backlog item of the book review requirements to the
backlog item in Agilefant could have been an alternative way to do the conceptual mapping.
Many-to-one mappings without explicit support in a tool were avoided in the conceptual
mappings of all tools, as such mappings may result in serious problems when a tool is
actually used. The same information may need to be saved in several places, which can
cause synchronization problems. The two concepts mapped into the same concept must be
differentiated by an explicit naming scheme or in some other way. Without the support from
a tool, small errors quickly cause problems in referential integrity. Searching and sorting
functionalities in tools become less useful, as a tool may not be able to easily differentiate
between the two concept types mapped into the one concept type in the tool. The impact
of these issues on the usefulness of a tool are very hard to measure without extensive real
world usage and such trade-offs should be done by an adopter of a tool instead of the author
of this thesis.

Agilefant fails to fill some of the priority one requirements from the case company. The
most crucial deficiency is the lack of properties matching the requirement piece of work
from the case company requirements. While Agilefant’s iteration goal can be matched
with the requirement piece of work, iteration goals lack such high-priority requirement
properties as the responsible person and priority.

Agilefant’s release time horizon can be matched with the project time horizon in the
case company requirements. However, the release time horizon lacks many priority one
properties the case company project time horizon has. In addition to the conceptual defi-
ciencies, Agilefant also lacks most of the priority one views required in the case company.
Because of the lack of matching properties for the requirement and the lacking views (see
Section 6.1.7), the features of Agilefant cannot be considered sufficient for managing the
daily work of the software development in the case company.

7.1.2 Mingle and the requirements

Mingle’s flexible conceptual model of configurable card types and card type trees allows
creation of card types and trees which match the conceptual models of the book review
and case company. This is very different from Agilefant, in which the only available cus-
tomization option is turning work-hour reporting on or off. However, Mingle has several
notable weaknesses. Properties of card types cannot contain several values regardless of
the property type, which prevents assigning multiple people to the case company’s task or

91

project or creating effort spent entry cards with multiple work performers. Using several
card type trees enables modeling any relationship between concepts in the book review and
case company requirements.

Cards and card trees must also be used when entering work hours and generating work-
hour reports, and this is the first major weakness in Mingle. The aggregate card property
model in Mingle allows only creation of very simple work-hour reports which are limited to
sums of all work-hour reports under selected task, requirement or iteration. More complex
reporting for a certain person, work type, or time period is not possible.

The second major weakness in Mingle is the programming language that is used to gen-
erate dynamic content in wiki pages. While the need to learn new programming language
to generate burn-down charts and other content is an issue in itself, the programming lan-
guage can only use one card type as data source for each piece of generated content. In
addition, card type trees cannot be used as data sources. This prevents generation of con-
tent which requires combining data from several card types or requires data from card type
tree relationships.

Mingle does fulfill the requirements from the book review quite well. Nearly all con-
cepts and relationships can be modeled in it, and simple burn-down graphs can be created
using the dynamic content generation language. Based on research done in this thesis, Min-
gle does have sufficient features for managing the daily work of agile software development
organization according to the requirements from the book review.

While the case company requirements concerning generation of work-hour reports are
considered less reliable than the other requirements, Mingle’s failure to fill most of these
requirements clearly indicates that the tool is not suitable for an environment where record-
ing workhours and creating advanced work-hour reports is important. This also means that
Mingle does not sufficiently fulfill the requirements from the case company.

7.1.3 Rally Enterprise Edition and the requirements

Rally software claims to be designed for generic agile software development. Comparing
the book review requirements and Rally EE’s features indicates that this indeed is the case.
Many features of Rally EE are very close matches to book review requirements. The most
significant difference is the lack of a separate container for tasks. Every task in Rally
EE must belong to a user story, but tasks in the book review requirements have their own
container and may be related to many backlog items or none at all.

Rally EE’s custom properties feature allows some customization, although not nearly
as much as Mingle’s card model. The problem in Rally EE, considering the book review
requirements, is that custom properties given to user stories do not show in any of the
list views. Custom properties value class and risk class are mostly used during iteration
planning. Viewing them from the individual user story view is not a huge problem, but the
urgency flag custom property is an important indicator and should be visible in every list
view.

Rally EE also contains some minor conceptual differences to the book review require-
ments. Tasks and user stories have only one effort left value instead of one for each day
for tasks and one for each iteration for backlog items, the user story effort left value is
calculated from stories effort left values and cannot be edited, and iterations’ actual work
accomplished values are automatically calculated from tasks’ actuals fields and cannot be

92

edited. In addition, Rally EE lacks hierarchy of goals for time horizons.

While Rally EE shares some of Agilefant’s deficiencies, the major difference is that
in Rally EE, tasks do have the properties that are required for using them for planning
and managing iteration-level development work. The mandatory connection of task and
user stories in Rally EE is a major weakness, but it can be circumvented, for example, by
creating one “general” user story which contains all tasks that are not related to other user
stories. However, this does not remove the problem that a task can only be related to one
user story. Regardless, Rally EE does support most of the requirements from the book
review and, based on this study, it has sufficient features for managing the daily work of
agile software development according to the book review.

The lack of a separate container for tasks in Rally EE is a much bigger problem when
compared to the case company requirement than when compared to the book review re-
quirement. Tasks in the case company requirements are much more independent from
requirements than tasks in the book review requirements are from backlog items. Tasks
in Rally EE lack many second priority properties from the case company requirements.
However, this is not considered a serious deficiency. Tasks also lack two first-priority re-
quirements, which are many responsible persons with weights and reviewable status. User
stories in Rally EE are quite good match to requirements in the case company.

Deadline is the only case company requirement that has a match in Rally EE time hori-
zons’ properties. Rally EE’s project and iteration time horizons lack all other required
properties. This is serious deficiency, as planned hour and sold hours properties of case
company’s projects are an important aspect in the project management. However, the most
severe deficiency in Rally EE is the complete lack of effort spent entry concept of the case
company. Effort spent can be only recorded in the single actuals field in tasks and no ad-
ditional information, such as work type or date, can be given. The spent effort is only
reported as sums of tasks’ actuals field in user stories and iterations. This fails most of the
requirements concerning work-hour reporting and many requirements concerning views.
The lack of proper work-hour entering and reporting functionality is the main reason Rally
EE does not sufficiently fulfill the requirements the case company has for a agile software
development management tool.

7.1.4 ScrumWorks Pro and the requirements

ScrumWorks Pro is developed by Danube Technologies, a company that also provides
Scrum training. ScrumWork Pro’s very bare-bones feature set could be a result of de-
veloping only features that match the Scrum method as taught by the company. Comparing
ScrumWorks Pro’s features to the Scrum requirements, which were presented in Chapter 4,
reveals that ScrumWorks Pro does not even completely fill the requirements Scrum has for a
tool according to the book review. This indicates that if ScrumWorks is based on Danube’s
Scrum method, the method differs from the Scrum method described in the books used as
source in the book review (see Section 3.2).

The largest difference between ScrumWorks Pro and the book review requirements is
the way tasks are used. As in Agilefant and Rally EE, tasks do not have their own container
and they always belong to a higher-level piece of work. Tasks also lack many of the prop-
erties of the book review requirements and most of these lacking properties come from the
XP side of the book review results, which indicates that ScrumWorks Pro is indeed meant

93

to be used only with the Scrum process.

ScrumWorks Pro also has many other deficiencies. The tool lacks the hierarchy of goals
as only sprints have a field for themes. There is no way to create a time horizon that would
correspond to the project time horizon in the book review requirements. ScrumWorks Pro
also lacks about half of the views of the book review requirements.

While ScrumWorks Pro does have deficiencies in features compared to the book review
requirements, the most critical deficiency concerning tasks can be worked around in a sim-
ilar manner as in Rally EE. A “general” backlog item, which contains all tasks that are not
related to any real backlog item, can be created. However, the lack of customization, views,
and properties are major problems. Based on this research, ScrumWorks Pro does not have
sufficient features for managing the daily work of agile software development according to
the book review.

Compared to the case company requirements, ScrumWorks Pro has very few matching
features. The project and iteration time horizons exist, but lack most of the properties as do
the requirement and task pieces of work. Work hours in ScrumWorks Pro are only recorded
to tasks and none of the advanced work-hour reports can be created. The only case company
view requirement that is implemented in ScrumWorks Pro is the list of assigned tasks.

Based on the very weak match of ScrumWorks Pro’s features to the case company
requirements, the tool clearly does not have sufficient features for managing the daily work
of agile software development according to the case company requirements.

7.1.5 The tools in general and the requirements

All of the commercial tools have severe deficiencies in work-hour recording and reporting
functionality compared to the case company requirements. In Mingle, the problem arises
from the relatively complex functionality required to create the work-hour reports. Such
functionality could be difficult to implement because of the great level of customization the
tool offers. Consequently, the problem is somewhat inherent to the tool.

The other two commercial tools do not have such an inherent problem and the lack
of advanced work-hour recording and reporting functionality might be a design decision.
These design decisions may stem from the agile methods upon which the tools are based.
Recording work hours is not a part of the Scrum process and in XP, work hours are only
recorded on the task level and for the purpose of improving future effort estimates. Both
of these practices ignore work-hour recording and reporting requirements stemming from
business needs in real world organizations. The actual requirements vary between organiza-
tions, but two examples of work-hour recording and reporting needs from the case company
of this thesis are work-hour reporting for workers who are paid by the hour and work-hour
reporting that is required by a project client. A separate system for recording and reporting
work hours could arguably be used for these purposes, but using many systems which con-
tain parts of the same information creates other problems, such as keeping the information
synchronized between the systems and generating reports that require input from several
systems.

Every tool lacked some of the properties which were presented in the requirements. The
reasons for the missing properties varied among the tools. Rally EE simply lacked some of
the properties. Some of the missing properties could be created as custom properties, but
the custom properties lacked important functionality. Mingle’s biggest property-related de-

94

ficiency was that multiple values could not be given to one property. Agilefant’s conceptual
model is quite different from the conceptual models presented in the requirements and the
deficiencies in properties stem mostly from that. ScrumWorks Pro has a very bare-bones
Scrum-style approach to backlog management and combined with the lack of configuration
options, this results in many missing properties.

7.2 Discussion on tool conceptual model categories and weak-
nesses

The tools included in this research can be divided into two conceptual model categories.
The first category is the tools which have mostly fixed conceptual models. Agilefant, Rally
and ScrumWorks belong to this type. The tools of this type offer very limited customization
options and work best with a process which reflects the conceptual model in the tool. The
problem with this tool type is that the usefulness of the tool is significantly reduced if
the organization’s process or conceptual model is not compatible with the tool. In this
situation, the organization has three options. It can change its processes to fit the tool,
workarounds for the differences can be created, or the tool can be discarded. Disregarding
problems that are related to process change, the first option might cause the organization
to work less efficiently. The second option results in extra work, as the workarounds must
be institutionalized and enforced. If third option is chosen and the incompatible tool is
discarded, the organization must locate a new tool with better conformance or avoid using
a tool altogether.

The second category is tools that have no fixed conceptual model. The tool fitting this
category in this research is Mingle. While Mingle has some shortcomings in its concept
customization options, the biggest problem in this category tools is the difficulty of using
complex relationships between concepts and properties. As demonstrated by Mingle, the
generation of relatively simple aggregate reports in tools that belong to this category may be
difficult or completely impossible. If an organization has needs that require these function-
alities, it has three options. If implementing the functionality is not completely impossible,
the organization may spend enough resources to customize the tool to fit its needs. Another
option might be that the organization uses the tool only on a basic level or the tool may be
discarded and another tool selected instead. Each of these options may cause significant
amount of extra work for the organization.

7.3 Discussion on threats to validity of results

This section contains discussion on the threats of validity of the results presented in this
thesis. This section is divided into subsection that follow the structure of the thesis: Section
7.3.1 discusses threats to the validity of agile method, book and tool selection, Section
7.3.2 discusses threats to the validity of requirements from the book review, Section 7.3.3
discusses threats to the validity of requirements elicited from the case company and Section
7.3.4 discusses threats to the validity of the tool review results.

95

7.3.1 Agile method, book and tool selection validity

The prime threat to the real world relevancy of this thesis is the possibility that the selected
agile methods are not the most prominent agile methods. This could a be result of bias in the
popular article sources that were used in the method selection. To the author’s knowledge,
no peer-reviewed scientific study on distribution of agile software development methods in
software industry has been published. A survey on the topic [,] was
conducted and published by VersionOne, the developer of the VersionOne tool. According
to the survey, Scrum was the most followed agile method with 49.1%, Scum/XP hybrid
was the second most followed with 22.3%, and XP the third most followed with 8.0%. The
survey was not published in a peer reviewed venue and subsequently cannot be considered
completely reliable. A systematic research literature review on agile software development
was conducted by []. Of the 33 publications reviewed in the paper,
25 publications discuss XP and 3 publications discuss Scrum. The results of these two pub-
lications reaffirm the conclusion that Scrum and XP are the most prominent agile software
development methods and, consequently, the risk that wrong agile methods were selected
for this research is very small.

Another related problem is the relative youth of agile software development methods.
The books selected for the book review represent only the state of the respective methods at
the times of writing of the books. It is possible that the methods have significantly changed
since the writing of the books and, consequently, the requirements elicited from the books
might not represent the current state of the methods. There had been some changes between
the two included books in both methods, but most of the changes had made the two methods
more similar to each other and it is quite likely that this direction is intentional. In practice
this means that XP has adopted some Scrum aspects and Scrum has taken on some XP
aspects. Since these are the two methods included in this research, further changes in those
directions do not notably affect the validity of the results of this thesis. Other major changes
in the methods are a threat to the validity of the results, but considering the nature of the
previous changes in the methods, such changes are quite unlikely.

The selection of books that were used as the source of requirements is also a risk consid-
ering the validity of the results in this thesis. If the books that were selected do not correctly
portray the agile methods that were selected, the resulting requirements are irrelevant. The
four books that were selected as the sources for book review requirements are all written
by authors who are considered to be the original authors of their respective agile methods
[,]. Considering that the goal was to find out the requirements that the agile
methods present when done by-the-book, the risk that the requirements are invalid because
the wrong books were selected is not significant.

The probability that some relevant tools were not included in the big list of agile soft-
ware development tools is quite high. However, the goal of this thesis was not to prove that
no tool with sufficient functionality exist, but to determine if a tool with sufficient func-
tionality could be identified with reasonable effort. The tools which were selected should
present a good sample of the tools that are publicly available and the inclusion and exclu-
sion criteria for tools are clearly presented. Hence, the selection of tools that were reviewed
is not a significant risk to the validity of this research.

96

7.3.2 Book review requirements validity

Incorrect requirements or the omission of requirements in the book review are significant
risks to the validity of the results in this research. A book review protocol was created
and followed when the book review was performed. However, the protocol has several
weaknesses. The most significant weakness is that only one person performed the review.
Using multiple reviewers is a well-established and recommended method for data analysis
because it reduces the effects of protocol breaches and omissions. Another weakness in the
book review protocol is the lack of coding of the findings of the review. The lack of coding
restricted the analysis of the results to only qualitative analysis and no quantitative analysis
of requirement validity or importance was possible. Based on these weaknesses in the book
review protocol, it is quite likely that there are some errors in the book review requirements.

The related work introduced in Section 1.1 and described in detail in Appendix A pro-
vides a point of comparison for the validity of the book review requirements. The existing
research concentrates on Extreme Programming practices and therefore can only be com-
pared to the Extreme Programming part of requirements described in Chapter 4. In addi-
tion, most of the referenced papers give only a brief description of the methods used to
elicit the requirements and the purpose of some of the papers is to enhance the XP way of
requirements management with methods and information that comes from outside the agile
software development methodology. Because of these two issues, the requirements from
related literature cannot reliably be used to find requirements that are missing from the set
of XP requirements presented in this research. However, the commonalities between the
requirements in the related literature and the Extreme Programming results can be used to
fortify the correctness of the requirements. The commonalities between the requirements
presented in the related work and the XP requirements presented in this thesis are described
in the next paragraphs. Some discussion on discrepancies is also included for the sake of
completeness.

The scenario framework presented by [] mostly con-
tains properties that are not elicited from the XP method. The framework includes two
properties taken directly from XP. These are priority and risk, which both are also included
in the Extreme Programming requirements in this thesis.

[] lists information that a user story card contains in XP according to the
paper’s author. The properties shared by the XP requirements in this thesis and the list in
the paper are the title, estimated implementation time, risk level and description. The list
also includes information that, according to this thesis’ results, belongs to tasks instead of
user stories.

The two papers describing XPSWiki [, ,b] contain requirements cov-
ering the whole XP process. Both the release and the iteration XP time horizons described
in this thesis are described in the paper. Iterations in the paper have project velocity, which
matches Extreme Programming’s actual work accomplished in an iteration property that is
described in this thesis. In addition to the two time horizons, the papers describe XP project
time horizon. The reason for excluding the project time horizon from the XP requirements
in this thesis are described in Section 4.2.2. Commonalities in user story properties between
the papers and this thesis’ results are the description, estimate and priority. XP tasks are
also described in the paper, but the only common property is the task’s responsible person.

[] describe the XP process and the resulting requirements only

97

on a quite high abstraction level and do not systematically describe what properties the
individual time horizons or pieces of work have. However, some commonalities between
the paper and the results for XP in this thesis can be found. The release and iteration time
horizons are included as are the user story and task pieces of work. In the paper user stories
have a priority and an estimate and tasks have an estimate. These three properties also exist
in the XP requirements in this thesis.

The related work described above includes most of the XP concepts described in Chap-
ter 4. While some of the concepts were not mentioned in any related work, it is important to
keep in mind that the related work concentrates on describing requirements for a new tool
being developed. This is an important distinction to the requirements analysis that was con-
ducted for this thesis. Most of the related work papers describe only those XP aspects that
are ultimately included in their tool and the authors may have knowingly omitted describing
aspects of XP they considered unnecessary in their tools.

The requirements as a whole can be considered valid for the purposes of this research.
The final book review requirements were constructed from four different sources with a
notable overlap of requirements. This mitigates the risk of requirements omission in one
source. While every book review requirement is considered to be equally important, re-
gardless of the number of sources that mention it, the results of a tool’s conformity to the
requirements will give a learned reader a good idea of the usefulness of the tool for his or
her purposes.

7.3.3 Case company requirements validity

The possible problems in the validity of the case company requirements are quite small.
Interviews were conducted by two researchers who independently produced the notes that
were used in the requirements analysis. This reduces the probability of omissions and
errors in the requirements resulting from errors and omissions in the interview notes. In
addition, each interview tape was listened in its entirety during the requirement analysis.
The biggest risk is omission in the requirements resulting from the relatively small number
of interviewees. As only three persons were interviewed, it is possible that some of the case
company’s requirements did not come up in the interviews. However, the requirements that
were found can be considered to be highly valid, as they were validated in separate meetings
which included a notable number of case company’s employees.

The case company requirements considering work-hour reports are more risky than the
other requirements, as they were created according to discussions in a single meeting with
two case company employees. In addition, they were not validated in a larger meeting.
The possible problems in the validity of these requirements are taken into account when the
results considering case company requirements are discussed and these requirements are
not used as the sole basis for any conclusions in this thesis.

A big threat to the validity of the case company results generalization is the case com-
pany’s possible lack of representativeness. The interview results from the case company
suggest that the software development process used in the case company is not actually
very agile. As the purpose of the case company study was not to evaluate the agility of
the software development process in the company, no concrete conclusions can be made
on the level of agility in or the representativeness of the case company. Consequently, the
requirements from the case company cannot reliably be generalized to other agile software

98

development organizations.

7.3.4 Tool review validity

The tools reviewed in this research differed notably in their conceptual models, configu-
ration capabilities, and user interfaces. For this reason, it was not feasible to create an
exact protocol for the tool review. As a result, the tool reviews were executed in a rela-
tively informal manner, which is the biggest threat to the validity of the tool review results.
The matching of the conceptual requirements and the concepts in the tools was attempted
in a such way that maximized the conformance of the tool’s features to the requirements.
However, the existence of a better way to match the concepts is not unfeasible.

It is very unlikely that a better way to match the concepts would invalidate the conclu-
sions of this research regarding the tools, as the most serious deficiencies concerned work-
hour recording and reporting functionality. It is possible that the tools that were found to
have deficiencies in this area had the related functionality hidden in a such way that it was
not found in the review. However, this is quite unlikely since information in the tools’
websites gave no indication of additional work-hour reporting functionality. One exception
to this was Agilefant, which had a significant portion of the required work-hour reporting
functionality, but was considered insufficient because of conceptual deficiencies.

Another weakness in the tool review was the treatment of all book review requirements
as equally important. While making such prioritization decisions was not considered to be
viable because only the books were used as sources, it is possible that there are significant
differences in the real importance of the different requirements. However, some decisions
on the importance of the different requirements had to be made when the final conclusions
were drawn. A different interpretor might well come into different conclusions based on
the same data.

99

Chapter 8

Conclusions

This chapter concludes the thesis. Section 8.1 provides conclusions on the results. Section
8.2 summarizes the contributions of this thesis. Section 8.3 provides directions for further
research.

8.1 Conclusions on the results

The high-level research goal of this research is as stated: “Does any tool available for free
evaluation have sufficient functionality for managing the daily work of an agile software
development organization?” Based on the results of this thesis, tools for managing agile
software development by-the-book do exist, but real world organizations have additional
requirements that are not filled by the tools included in this research.

The requirements for an agile software development tool were gathered from practi-
tioner guidebooks of Extreme Programming and Scrum, and a case company. Two of the
four analyzed tools, Mingle and Rally Enterprise Edition, did sufficiently fulfill the re-
quirements from the practitioner guidebooks. However, they did not sufficiently fulfill the
requirements from the case company. The two other tools, Agilefant and ScrumWorks Pro,
did not fulfill the requirements from either source sufficiently well. These results show
that tools for managing agile software development done by-the-book do exist, but the real
world agile software development organization had additional requirements which were not
filled by the tools included in the review.

The tool review results in this research reveal that there is variance in the conceptual
models of the available tools. Mingle has an extremely flexible conceptual model, but
effort is required to configure the tool before it can be used. Agilefant and ScrumWorks
Pro both have a rigid conceptual model based on the software development processes the
tools are aimed to be used with. This mostly limits their usefulness to those development
processes. Rally Enterprise Edition has a somewhat configurable conceptual model which
reflects Extreme Programming and Scrum development processes. The differences in the
conceptual models reveal that care must be taken when a tool is chosen to find the tool that
is best fit to the process which is used in the software development.

The research conducted in this thesis shows that the conceptual models behind Extreme
Programming and Scrum agile software development methods have much in common. A
concise set of requirements for a tool can be created by combining the requirements from

100

the two methods and the set of requirements can be used in the evaluation of tools. Simi-
larly, a set of requirements can be elicited from an agile software development organization
and this set can be used in the evaluation of tools for that organization.

8.2 Summary of contributions

The results of this thesis show that tools for managing agile software development done by-
the-book do currently exist, but real world development organizations may have additional
requirements that may not be filled by the tools that are publicly available at the present
time. This information can be used by organizations searching for a tool for managing
software development and by organizations developing agile software development tools
to create tools that better match the actual needs of real world agile software development
organizations.

The approach taken in this research is novel in two ways: previous work on the subject
has concentrated solely on Extreme Programming practices and on building new tools. This
research compares the requirements of Extreme Programming, Scrum, and a case company
to the features of several publicly available agile software development management tools
instead of proposing the creation of a new tool. In this thesis, the requirements for the two
agile software development methods were extracted in a rigorous and systematic fashion.
Most of the previous work is very light on details of how the requirements were created and
what sources were used.

Organizations that are searching for a tool for agile software development management
can use the results of the tool review as a baseline for their search. Even if none of the tools
analyzed in this thesis fit the needs of the organization, the results can provide guidance on
what types of deficiencies and problems the other tools might contain. The lists of all found
open-source and commercial tools also provides a starting point for the search.

The requirements presented in this research can be used in the development of new or
existing tools. The requirements can be extracted and implemented in a straightforward
fashion. The descriptions of the deficiencies and weaknesses in the tools reviewed in this
thesis help to avoid recreating the same problems when developing other tools.

While the goals of this thesis did not include the creation of a framework for analyzing
agile methods, software development organizations, and tools, a such framework was cre-
ated as a by-product of the research. While this thesis does not include explicit instructions
on how to use the framework to evaluate tools, the description of the research process should
provide enough information for a successful use of the framework by other researchers.

8.3 Further research

This thesis presents the requirements of one real world agile software development organi-
zation. The needs of an agile software development organization depend on many factors,
such as the software development process, the size of the organization, and the type of the
software being developed. The needs of a small development team developing a computer
game are very different from the needs of a large organization developing safety-critical
software. Further research in the requirements of different real world software develop-
ment organizations is required to form generalizations on what kind of requirements differ-

101

ent kinds of organizations typically have. Creation of a such generalized framework would
help software development organizations in the selection of tools by removing the need to
perform rigorous analysis of the organization’s requirements. Such a framework would also
help tool developers to include functionality that better fits the selected organization type.

The commercial tools that were chosen for review in this research were selected accord-
ing to their different conceptual models. Several other commercial tools exist. Review of
the other tools would allow broader generalizations on the main deficiencies and problems
in the current publicly available agile software development tools. It is also possible that
one of the other commercial tools would have sufficiently fulfilled the requirements from
both sources.

As described in this thesis, Extreme Programming and Scrum are currently the most
prominent agile methods by a clear margin. However, the current agile software develop-
ment methodology is far from stable and mature. New methods, such as Unified Process-
based AgileUP and OpenUP, have been proposed while older agile methods, such as Feature
Driven Development and Dynamic Systems Development Methodology, are still in use. In
the event that a method other than XP or Scrum gains popularity, further research will be
in order to determine the requirements of the method and the availability of tools for the
method.

102

Bibliography

M. Angioni, D. Carboni, S. Pinna, R. Sanna, N. Serra, and A. Soro. Integrating XP project
management in development environments. Journal of Systems Architecture, 52(11):
619-626, 2006.

Kent Beck. Extreme Programming explained: embrace change. Addison-Wesley, Reading
MA, 2000.

Kent Beck. Embracing change with Extreme Programming. Computer, 32(10):70, 1999.

Kent Beck and Cynthia Andres. Extreme Programming explained: embrace change.
Addison-Wesley, Boston, MA, 2004.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cocburn, Ward Cunningham, Martin
Fowler, James Grenning, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Maric, Robert C.
Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto for
agile software development, Oct 2008. URL http://agilemanifesto.org/.

Karin K. Breitman and Julio Cesar Sampaio do Prado Leite. Managing user stories. In Pro-
ceedings of the International Workshop on Time-Constrained Requirements Engineering,

2002.

Tore Dyba and Torgeir Dingsgyr. Empirical studies of agile software development: A
systematic review. Information and Software Technology,, 50(9-10):833-859, 2008.

Fedorenko. Devplanner homepage, Oct 2008. URL http://www.devplanner.
com/.

Helsinki University of Technology. Agilefant homepage, Oct 2008. URL http://www.
agilefant.org/wiki/display/AEF/Agilefant+Home.

James A. Highsmith. Agile software development ecosystems. Addison-Wesley, Boston,
MA, 2002.

J. Kéiridinen, J. Koskela, J. Takalo, P. Abrahamsson, and K. Kolehmainen. Supporting
requirements engineering in Extreme Programming: Managing user stories. In Proceed-
ings of the 16th International Conference on Software & Systems Engineering and their
Applications, 2003.

J. Kédiridinen, J. Koskela, P. Abrahamsson, and J. Takalo. Improving requirements manage-
ment in Extreme Programming with tool support - an improvement attempt that failed.
In Proceedings of the 30th Euromicro Conference, pages 342-351, 2004.

103

http://agilemanifesto.org/
http://www.devplanner.com/
http://www.devplanner.com/
http://www.agilefant.org/wiki/display/AEF/Agilefant+Home
http://www.agilefant.org/wiki/display/AEF/Agilefant+Home

Craig Larman. Agile and iterative development: a manager’s guide. Addison-Wesley,
Boston, MA, 2004.

Marco Melis, Walter Ambu, Sandro Pinna, and Katiuscia Mannaro. Requirements of an ISO
compliant XP tool. In Proceedings of the Extreme Programming and Agile Processes in
Software Engineering, 5th International Conference, pages 266-269, 2004.

Merriam-Webster. Merriam-webster online dictionary, Oct 2008. URL http://www.
merriam-webster.com/dictionary/backlog.

Mozilla Organization. Status counts for firefox, Jul 2008a. URL https://bugzilla.
mozilla.org/.

Mozilla Organization. Bugzilla, Jul 2008b. URL http://www.bugzilla.org/.

Stephen R. Palmer and John M. Felsing. A practical guide to feature-driven development.
Prentice Hall, Upper Saddle River, NJ, 2002.

Sandro Pinna, Paolo Lorrai, Michele Marchesi, and Nicola Serra. Developing a tool sup-
porting xp process. In Proceedings of the 2003 Extreme Programming and Agile Methods
Conference, pages 151-160, 2003a.

Sandro Pinna, Simone Mauri, Paolo Lorrai, Michele Marchesi, and Nicola Serra. XPSwiki:
An agile tool supporting the planning game. In Proceedings of the 2003 Extreme Pro-
gramming and Agile Processes in Software Engineering Conference, pages 1014-1014,
2003b.

Mary Poppendieck. Lean software development. In Proceedings of the 29th International
Conference on Software Engineering, page 165, Long Beach, CA, 2007. IEEE Computer
Society.

Mary Poppendieck and Tom Poppendieck. Lean software development: an agile toolkit.
Addison Wesley, Boston, MA, 2003.

Rally Software Development. Rally software development homepage, Oct 2008. URL
http://www.rallydev.com/.

M. J. Rees. A feasible user story tool for agile software development? In Proceedings of
the Ninth Asia-Pacific Software Engineering Conference, page 22, 2002.

L. Rising and NS Janoff. The scrum software development process for small teams. IEEE
software, 17(4):26, 2000.

Outi Salo and Pekka Abrahamsson. Agile methods in European embedded software devel-

opment organisations: A survey on the actual use and usefulness of Extreme Program-
ming and Scrum. /ET Software, 2(1):58-64, 2008.

Stephen R. Schach. Object-oriented and classical software engineering. McGraw-Hill,
Boston, 2001.

Ken Schwaber. The enterprise and Scrum. Microsoft Press, Redmond, WA, 2007.

104

http://www.merriam-webster.com/dictionary/backlog
http://www.merriam-webster.com/dictionary/backlog
https://bugzilla.mozilla.org/
https://bugzilla.mozilla.org/
http://www.bugzilla.org/
http://www.rallydev.com/

Ken Schwaber and Mike Beedle. Agile software development with Scrum. Prentice-Hall,
Upper Saddle River, NJ, 2002.

Nicolas Serrano. Bugzilla, ITracker, and other bug trackers. IEEE software, 22(2):11, 2005.

Danube Technologies. ScrumWorks Pro homepage, Oct 2008. URL http://danube.
com/scrumworks/pro.

ThoughtWorks. Mingle homepage, Oct 2008. URL http://studios.
thoughtworks.com/mingle-project—-intelligence.

VersionOne, inc. 3rd Annual "State of Agile Development" Survey. Technical report, 2008.

105

http://danube.com/scrumworks/pro
http://danube.com/scrumworks/pro
http://studios.thoughtworks.com/mingle-project-intelligence
http://studios.thoughtworks.com/mingle-project-intelligence

Appendix A

Related literature

This appendix presents literature that is related to tools for agile software development.
Some research concerning tools for management of requirements in agile context is pre-
sented, but all included literature discusses tools that are either geared toward Extreme
Programming or more specifically managing user stories in a XP context.

Some of the existing literature on tools for agile software development discuss tool
support for aspects that are not directly related to work management. Two examples of
this are pair programming' and continuous integration’. As these aspects are not intimately
related to managing work, this literature is not examined here.

Breitman and do Prado Leite® propose that user stories should be recorded with a sce-
nario notation and describe a scenario framework which divides the information of sce-
narios into a core and extra mechanism classes, each containing one or several attributes.
Additional information is also derived from the relationships between classes. Some of
the attributes in the core scenario class are derived from Beck®, while the the rest of the
proposed attributes and extra mechanism classes are based on the authors’ experiences on
requirements management. The paper also describes an XML structure for storing the sce-
nario framework information.

Rees’ presents requirements and implementation of DotStories tool for managing user
stories. The paper professes that the data model requirements for the DotStories tool are
adapted quite directly from Beck* with some additions the author has deemed necessary.
In addition to the data model, the user interface of the tool is described in detail. The
DotStories tool concentrates on providing an electronic alternative for index cards more
traditionally used for recording user stories and covers only the iteration level requirements
management part of agile software development.

I'Satoshi Atsuta. Extreme Programming support tool in distributed environment. In Proceedings of the
28th International Computer Software and Applications Conference, volume 2, page 32, New York, NY,
2004. IEEE.

2Martin Lippert, Stefan Roock, Robert Tunkel, and Henning Wolf. Stabilizing the XP process using spe-
cialized tools. In Proceedings of the 8th International Conference on Agile Processes in Software Engineering
and eXtreme Programming, 2001.

3Karin K. Breitman and Julio Cesar Sampaio do Prado Leite. Managing user stories. In Proceedings of
the International Workshop on Time-Constrained Requirements Engineering, 2002.

“Kent Beck. Extreme Programming explained: embrace change. Addison-Wesley, Reading MA, 2000.

SM. J. Rees. A feasible user story tool for agile software development? In Proceedings of the Ninth
Asia-Pacific Software Engineering Conference, page 22, 2002.

106

Two papers written by Pinna et al.°” describe XPSwiki tool which according to the
papers supports XP requirements gathering and planning game. XPSwiki is based on wiki
technology; it is an editable web site with additional support for obligatory structure for in-
dividual pages. High level non-functional requirements for the tool are described in addition
to functional and data structure requirements. The user interface and the usage of the tool
is also described. The requirements described in the paper cover such aspects as teamwork,
project planning and project management using user stories and tasks. The process of the
tool’s development is also described. The requirements for the tool stem from the authors’
experiences with XP and from the experiences they had using the development versions of
the tool. Plans for the future development are also presented. The plans include support for
other agile methods and integration with other tools used in software development.

Angioni et al.® have written another XPSwiki-related article, which presents XPSuite
tool suite consisting of XPSwiki and XP4IDE tools. XP4IDE integrates the process data
contained in XPSwiki to an integrated development environment (IDE). In addition to en-
abling access to the data from the IDE, the XP4IDE tool allows automatic recording of the
effort spent on code artifacts and tasks based on how long editor windows are open.

Kiiridinen et al.” report a failed attempt to improve requirements management in Ex-
treme Programming with a computerized StoryManager tool. The report concentrates on
describing the research project around the tool and does not describe the exact features of
the tool. The case reported is also relatively small, covering only 6 releases over 8.4 weeks
with total of 19 user stories and 92 tasks. Another paper by Kiéridinen et al.'’ describes
StoryManager more extensively. The tool is implemented as a plug-in to the Eclipse IDE.
The tool is used to manage both stories and tasks, which in the tool form a hierarchy where
each story can have many tasks attached to it. Each story and task has an equal set of
mandatory attributes. In addition, stories and tasks can have optional attributes that are
defined at project level and can differ between tasks and stories.

®Sandro Pinna, Paolo Lorrai, Michele Marchesi, and Nicola Serra. Developing a tool supporting XP
process. In Proceedings of the 2003 Extreme Programming and Agile Methods Conference, pages 151-160,
2003.

7Sandro Pinna, Simone Mauri, Paolo Lorrai, Michele Marchesi, and Nicola Serra. XPSwiki: An agile
tool supporting the planning game. In Proceedings of the 2003 Extreme Programming and Agile Processes in
Software Engineering Conference, pages 1014-1014, 2003.

8M. Angioni, D. Carboni, S. Pinna, R. Sanna, N. Serra, and A. Soro. Integrating XP project management
in development environments. Journal of Systems Architecture, 52(11): 619-626, 2006.

°]. Kdiridinen, J. Koskela, P. Abrahamsson, and J. Takalo. Improving requirements management in Ex-
treme Programming with tool support - an improvement attempt that failed. In Proceedings of the 30th
Euromicro Conference, pages 342-351, 2004.

10y Kiiridinen, J. Koskela, J. Takalo, P. Abrahamsson, and K. Kolehmainen. Supporting requirements
engineering in Extreme Programming: Managing user stories. In Proceedings of the 16th International Con-
ference on Software & Systems Engineering and their Applications, 2003.

107

Appendix B

Interview introduction and questions

This appendix presents introduction for the interviewees for the interview and the inter-
view questions used. The introduction in Section B.1 was given to each of the interviewees
before the interview was started. The next two sections present the outlines of the inter-
view question structures used in the interviews for the requirements of a tool for managing
agile software development. As the interviews were carried out in Finnish, the interview
questions are also in Finnish. Section B.2 contains the outline of questions for software
developers. Section B.3 contains the outline of questions for managers.

B.1 Introduction for the subjects in Finnish

Seuraavat asiat kerrotaan jokaiselle haastateltavalle ennen varsinaisen haastattelun alkua:

e Haastattelun tarkoitus on tutkia mitd vaatimuksia teiddn yrityksenne toimintatavat
ohjelmistokehittdjin paivittdisen tyon hallintaan ja seurantaan tarkoitetulle ohjelmal-
le tai tyokalulle. Tarkoitus ei ole arvostella sinun tyotapojasi, mitata sinun tyotehok-
kuuttasi tai millddn muullakaan tavalla kohdistua erityisesti sinun henkilokohtasiin
ominaisuuksiisi. Kysymyksissi voi olla hieman toistoa johtuen siitd, ettd samaa asi-
aa saatetaan ldhestyi eri ndkokannalta. Tarkoitus ei ole testata, ettd muistatko mitd
vastasit aikaisemmin.

e Haastattelusta syntynyttd tallennetta kisitelldéin luottamuksellisesti eikd niitd tulla
luovuttamaan kenellekédédn tutkimusryhmidmme ulkopuoliselle. Tallenne tuhotaan sen
jalkeen, kun sen sdilyttiminen tukimuksen kannalta ei ole enéd tarpeellista. Haastatte-
lunaikaiset muistiinpanot tullaan késitteleméédn myos luottamuksellisesti. Jos haastat-
telunaikaiset muistiinpanot julkaistaan, ne kisitelldén siten, ettei haastateltavan hen-
kilollisyy selvid niistd. Haastattelusta syntyvésti julkaistavasta analyysimateriaalista
ei myoskddn tule selvidméin haastateltavien henkilollisyys.

e Syystd riippumatta voit jittdd vastaamatta mihin tahansa haastatelukysymykseen. Si-
nun ei tarvitse kertoa, miksi et halua vastata kysymykseen. Haastattelu voidaan kes-
keyttdd milloin tahansa, jos niin haluat.

108

B.2 Questions for developers

1 Kerro eilisestd tyopdivastési.

1.1 Oliko se mielestési tyypillinen tyopdiva?

1.1.1 Ei

1.1.1.1 Milloin sinulla mielestisi oli viimeksi tyypillinen tyopdiva?
1.1.1.1.1 Kerro siitd pdivista.

2 Miti tyotehtdviisi kuuluu?

2.1 Onko olemassa jokin ryhm4, johon sind kuulut?

2.1.1 Miké tdmén ryhmén tehtdvd on?

2.1.2 Onko olemassa tyotehtivii, jotka kuuluvat ryhmélle kokonaisuudessaan?
2.1.2.1 Kylla

2.1.2.1.1 Mihin ryhmille kuuluvat tyot kirjataan ylos?

2.1.2.1.1.1 Liittyyko tyon kirjaamiseen virallinen prosessi?
2.1.2.1.1.1.1 Kylla

2.1.2.1.1.1.1.1 Mité askeleita prosessissa on?

2.1.2.1.1.1.1.1.1 Mité informaatio prosessin k.o. askeleessa kéytetddn?
2.1.2.1.1.1.1.1.2 Keti osallistuu prosessin k.o. askeleen suorittamiseen?
2.1.2.1.1.1.2 Ei

2.1.2.1.1.1.2.1 Pitdisiko siihen liittyd mielestisi jokin prosessi?
2.1.2.1.1.1.2.1.1 Kylla

2.1.2.1.1.1.2.1.1.1 Miksi?

2.1.2.1.1.1.2.1.1.2 Millainen prosessi?

2.1.2.1.1.1.2.1.2 Ei

2.1.2.1.1.1.2.1.2.1 Miksi?

2.1.2.1.1.1.2.2 Kuka tyot kirjaa?

2.1.2.1.1.2 Mitd informaatiota tyosté kirjataan ylos?

2.1.2.1.1.3 Muuttuuko kirjattu informaatio?

2.1.2.1.1.3.1 Kylla

2.1.2.1.1.3.1.1 Mistd muutokset johtuvat?

2.1.2.1.1.3.1.2 Kuka ne kirjaa?

2.1.2.1.1.3.1.2.1 Miksi?

2.1.2.1.1.3.2 Ei

2.1.2.1.1.3.2.1 Pitiisiko sen muuttua?

2.1.2.1.1.3.2.1.1 Miksi?

2.1.2.1.1.4 Onko tdmai ainut tapa, jolla tehtdvéid tyotd kirjataan?
2.1.2.1.1.4.1 Ei

2.1.2.1.1.4.1.1 Miten muuten tehtivai tyotd kirjataan?
2.1.2.1.1.4.1.1.1 Liittyyko tyon kirjaamiseen virallinen prosessi?
2.1.2.1.1.4.1.1.1.1 Kyll4

2.1.2.1.1.4.1.1.1.1.1 Kuvaile prosessia?

2.1.2.1.1.4.1.1.1.2 Ei

2.1.2.1.1.4.1.1.1.2.1 Pitdisiko siihen liittyd mielestési jokin prosessi?
2.1.2.1.1.4.1.1.1.2.1.1 Kyll4

2.1.2.1.1.4.1.1.1.2.1.1.1 Miksi?

2.1.2.1.1.4.1.1.1.2.1.1.2 Millainen prosessi?

2.1.2.1.1.4.1.1.1.2.1.2 Ei

2.1.2.1.1.4.1.1.1.2.1.2.1 Miksi?

2.1.2.1.1.4.1.1.2 Kuka ty6t kirjaa?

2.1.2.1.1.4.1.1.3 Mitid informaatiota tyosti kirjataan ylos?
2.1.2.1.1.4.1.1.4 Muuttuuko kirjattu informaatio?

2.1.2.1.1.4.1.1.4.1 Kylla

2.1.2.1.1.4.1.1.4.1.1 Mistd muutokset johtuvat?

2.1.2.1.1.4.1.1.4.1.2 Kuka ne kirjaa?

2.1.2.1.1.4.1.1.4.1.2.1 Miksi?

2.1.2.1.1.4.1.1.42 Ei

2.1.2.1.1.4.1.1.4.2.1 Pitiisik6 sen muuttua?

2.1.2.1.1.4.1.1.4.2.1.1 Miksi?

2.1.2.2 Ei

2.1.2.2.1 Pitéisiko sellaisia olla?

2.1.2.2.1.1 Miksi?

3 Kun tulit tyopaikalle, milld perusteella valitsit mitéd rupeat tekemdén?
3.1 Kaytitko tietokoneohjelmaa, josta ilmeni mitd sinun seuraavaksi kannattaisi tehdd?
3.1.1 Kylla

3.1.1.1 Miten tyokalusta ilmenee se, mitd sinun seuraavaksi kannattaisi tehdd?
3.1.1.2 Voitko itse vaikuttaa sithen, miké tyokalun mukaan on seuraava tehtivé joka sinun kannattaisi tehdd?

109

3.1.1.2.1Ei

3.1.1.2.1.1 Haluaisitko kuitenkin vaikuttaa siihen?

3.1.1.2.1.1.1 Miksi?

3.1.1.3 Teitko niinkuin tyokalu ehdotti?

3.1.1.3.1 Kylla

3.1.1.3.1.1 Oliko tyokalun tekemi valinta mielestési oikea?
3.1.1.3.1.1.1 Miksi?

3.1.1.3.2 Ei

3.1.1.3.2.1 Miksi?

3.1.2 Ei

3.1.2.1 Olisiko sinulla kuitenkin mahdollisuus kayttdi jotain tyokalua, joka kertoisi sinulle mitd sinun seuraavaksi kannattaisi tehdd?
3.1.2.1.1 Kylla

3.1.2.1.1.1 Miksi et kéytd k.o. tyokalua?

3.1.2.1.2 Ei

3.1.2.1.2.1 Olisiko mielestisi sellaiselle tyokalulle tarvetta?
3.1.2.1.2.1.1 Miksi?

4 Onko sinulla tilld hetkelld sopiva médra tyotehtavia?

4.1 Kylla

4.1.1 Miksi sinulla on sopiva mééri tydtehtdvid?

4.2 Ei

4.2.1 Miksi sinulle ei ole sopivaa miérda tyotehtdvia?

4.3 Onko se normaali tilanne?

4.3.1 Kylla

432Ei

4.3.2.1 Misté tilanne johtuu?

4.3.2.2 Mikd on normaali tilanne?

4.4 Kuka valitsee sinulle kuuluvat tytehtdvit?

4.5 Millé perusteella sinulle asetetut tyStehtidvit on valittu?

4.6 Milloin sinulle kuuluvat tyotehtédvit on valittu?

5 Millaisella aikajédnteelld suunnittelet tulevaa tyotéisi?

5.1 Mitd informaatiota timén suunnitelman tekoon kéytetdan?
5.1.1 Mihin kysetd informaatiota kdytetdan?

5.2 Onko olemassa pidemmin aikajénteen suunnitelma?

5.2.1 Mitd informaatiota timén suunnitelman tekoon kiytetddn?
5.2.1.1 Mihin kysetd informaatiota kiytetdan?

5.2.2 Onko olemassa vield pidemmin aikajdnteen suunnitelma?
5.2.2.1 Mitd informaatiota tdmén suunnitelman tekoon kéytetddn?
5.2.2.1.1 Mihin kysetd informaatiota kéytetdén?

5.3 Onko olemassa lyhyemmaén aikajénteen suunnitelma?

5.3.1 Mitd informaatiota tdmén suunnitelman tekoon kiytetddn?
5.3.1.1 Mihin kysetd informaatiota kdytetdidn?

5.3.2 Onko olemassa vield lyhyemmin aikajdnteen suunnitelma?
5.3.2.1 Mitd informaatiota tdmén suunnitelman tekoon kiytetddn?
5.3.2.1.1 Mihin kyseti informaatiota kiytetdan?

6 Mihin sinulle kuuluvat tyo6t kirjataan ylos?

6.1 Liittyyko tyon kirjaamiseen virallinen prosessi?

6.1.1 Kylld

6.1.1.1 Miti askeleita prosessissa on?

6.1.1.1.1 Mitd informaatio prosessin k.o. askeleessa kdytetddn?
6.1.1.1.2 Keti osallistuu prosessin k.o. askeleen suorittamiseen?
6.1.2 Ei

6.1.2.1 Pitdisiko siihen liittyd mielestdsi jokin prosessi?
6.1.2.1.1 Kylld

6.1.2.1.1.1 Miksi?

6.1.2.1.1.2 Millainen prosessi?

6.1.2.1.2 Ei

6.1.2.1.2.1 Miksi?

6.1.2.2 Kuka ty6t kirjaa?

6.2 Mitd informaatiota tyostd kirjataan ylos?

6.3 Muuttuuko kirjattu informaatio?

6.3.1 Kylld

6.3.1.1 Mistd muutokset johtuvat?

6.3.1.2 Kuka ne kirjaa?

6.3.1.2.1 Miksi?

6.3.2 Ei

6.3.2.1 Pitdisik6 sen muuttua?

110

6.3.2.1.1 Miksi?

6.4 Onko tdmd ainut tapa, jolla tehtdvai tyoté kirjataan?
6.4.1 Ei

6.4.1.1 Miten muuten tehtdvai tyoté kirjataan?
6.4.1.1.1 Liittyyko tyon kirjaamiseen virallinen prosessi?
6.4.1.1.1.1 Kylla

6.4.1.1.1.1.1 Kuvaile prosessia?

6.4.1.1.1.2 Ei

6.4.1.1.1.2.1 Pitdisiko siihen liittyd mielestdsi jokin prosessi?
6.4.1.1.1.2.1.1 Kylla

6.4.1.1.1.2.1.1.1 Miksi?

6.4.1.1.1.2.1.1.2 Millainen prosessi?
6.4.1.1.1.2.1.2 Ei

6.4.1.1.1.2.1.2.1 Miksi?

6.4.1.1.2 Kuka tyot kirjaa?

6.4.1.1.3 Mitid informaatiota tyosti kirjataan ylos?
6.4.1.1.4 Muuttuuko kirjattu informaatio?
6.4.1.1.4.1 Kylla

6.4.1.1.4.1.1 Mistd muutokset johtuvat?
6.4.1.1.4.1.2 Kuka ne kirjaa?

6.4.1.1.4.1.2.1 Miksi?

6.4.1.1.4.2 Ei

6.4.1.1.4.2.1 Pitdisik6 sen muuttua?
6.4.1.1.4.2.1.1 Miksi?

7 Seurataanko tyosi edistymistd?

7.1 Kylla

7.1.1 Miten ty0si edistymistd seurataan?

7.1.1.1 Onko seurantaan olemassa virallinen prosessi?
7.1.1.1.1 Kylla

7.1.1.1.1.1 Miki tdmai prosessi on?

7.1.1.1.1.1.1 Onko timé prosessi tarpeellinen?
7.1.1.1.1.1.1.1 Miksi?

7.1.1.1.2 Ei

7.1.1.1.2.1 Pitiisiko siihen olla prosessi?
7.1.1.1.2.1.1 Miksi?

7.2 EI

7.2.1 Pitdisiko sitd seurata?

7.2.1.1 Kylla

7.2.1.1.1 Miksi?

7.2.1.1.2 Miten siti pitdisi seurata?

7.2.1.1.2.1 Miksi?

7.2.1.2 Ei

7.2.1.2.1 Miksi

8 Onko tyotehtdvillesi asetettu aikarajoja?

8.1 Kylla

8.1.1 Millaisella tarkkuudella aikaraja asetetaan?
8.1.2 Kuka aikarajan asettaa?

8.1.3 Milla perusteella aikaraja asetetaan?

8.1.4 Ylittyyko aikaraja koskaan?

8.1.4.1 Kylla

8.1.4.1.1 Miti siitd seuraa?

8.14.2Ei

8.1.4.2.1 Miksi?

8.2 Ei

8.2.1 Pitiisiko aikaraja olla?

8.2.1.1 Miksi?

8.3 Miten térkeitd akarajat mieletési ovat?

8.3.1 Miksi?

9 Pidétko kirjaa tyotunneistasi?

9.1 Kylla

9.1.1 Milld tarkkuuella ty6tunnit kirjataan?

9.1.2 Kohdennetaanko ty6tunnit jotenkin?
9.1.2.1 Kylla

9.1.2.1.1 Mihin ty6tunnit kohdennetaan?
9.1.2.1.2 Milld tarkkuudella ty6tunnit kohdennetaan?
9.1.2.2 Ei

111

9.1.2.2.1 Pitdisiko ne sinun mielestisi kohdentaa jotenkin?
9.1.2.2.1.1 Kylla

9.1.2.2.1.1.1 Miten?

9.1.2.2.1.1.1.1 Miksi?

9.1.2.2.1.2 Ei

9.1.2.2.1.2.1 Miksi?

9.1.3 Miten tdrkednd pidit tyotuntien kirjaamista?

9.1.3.1 Miksi?

9.2 Ei

9.2.1 Pitdisiko tyotunneista mielestési pitdé jotenkin kirjaa?

9.2.1.1 Ei

9.2.1.1.1 Miksi?

9.2.1.2 Kylla

9.2.1.2.1 Miten?

9.2.1.2.1.1 Miksi?

10 Keskeytyyko tyosi koskaan sen takia, ettd saat jonkin tirkedammaén uuden tehtidvéin?
10.1 Kylla

10.1.1 Milld tavalla tdimi uusi tehtdvd kommunikoidaan sinulle?
10.1.1.1 Jos uusia tehtdvia kerrotaan suullisesti, miten muistat ne?
10.1.2 Millé perusteella tiedét, ettd uusi tehtdvi on tirkedampi kuin kesken jéttdmaési tyo?
10.2 Ei

10.2.1 Osaatko kertoa miksi ndin on?

11 Kerroit kiyttavisi tydkalua X. Onko tyokalussa mielestési puutteita?
11.1 Kylld

11.1.1 Mité puutteita?

12 Kaytatko tyosi hallintaan tai ohjaamiseen vield jotain tyokalua, joka ei tullut aikaisemmin ilmi?
12.1 Kylla

12.1.1 Mité tyokalua?

12.1.1.1 Mihin sitéd kédytetdan?

12.1.1.1.1 Onko tyokalu hyvi sithen mihin te sitd kéytitte?
12.1.1.2 Puuttuuko siité joitain ominaisuuksia?

12.1.1.2.1 Kylld

12.1.1.2.1.1 Mitd?

12.2 Ei

12.2.1 Pitiisiko jokin tyokalu vield olla?

12.2.1.1 Kylld

12.2.1.1.1 Millainen tyokalu?

12.2.1.1.1.1 Miksi?

12.2.1.2 Ei

12.2.1.2.1 Miksi?

13 Toimiiko se, miten tyotehtdvid jaetaan ja seurataan teilld hyvin?
13.1 MItd hyvid siind on?

13.2 Mltd huonoa siind on?

13.3 Onko sinulla parannnusehdotuksia?

B.3 Questions for managers

1 Mité tyotehtiviisi kuuluu?

1.1 Kuulutko johonkin tiettyyn ryhmién tai ryhmiin?
1.1.1 Miké tdmén ryhmién tehtdvd on?

1.1.2 Miké on roolisi tdssd ryhméssid?

2 Misté ohjelmistolle tulevat vaatimukset ovat 1ahtoisin?
2.1 Mihin ndmé vaatimukset kirjataan?

2.1.1 Miksi?

2.2 Missd muodossa ndmé vaatimukset kirjataan?

2.2.1 Kuka ne kirjaa?

2.2.2 Mitid informaatiota vaatimukset sisiltaviit?

2.2.2.1 Miksi kukin informaatio kirjataan?

2.3 Mitd vaatimuksille tdmén jdlkeen tapahtuu?

2.3.1 Onko titd varten médritelty tietty prosessi?

2.3.1.1 Miti askeleita téssd prosessissa on?

2.3.1.1.1 Kuka suorittaa kunkin askeleen?

2.3.1.1.1.1 Miksi?

3 Milli perusteella seuraava kehitettdvi vaatimus valitaan?

112

3.1 Kuka valinnan tekee?

3.1.1 Miksi?

3.2 Otetaanko muut olemassaolevat vaatimukset huomioon vaatimusta valittaessa?
3.2.1 Kylld

3.2.1.1 Onko vaatimusten vililla tietty tirkeysjérjestys?
3.2.1.1.1 Kylla

3.2.1.1.1.1 Kuka tirkeysjdrjestyksen asettaa?

3.2.1.1.1.1.1 Miksi?

32.1.1.2 Ei

3.2.1.1.2.1 Pitdisiko niilld olla térkeysjérjestys?
3.2.1.1.2.1.1 Miksi?

3.2.1.2 Otetaanko vaatimusten viliset riippuvuudet jotenkin huomioon?
3.2.1.2.1 Kylla

3.2.1.2.1.1 Miten?

3.2.1.2.2 Ei

3.2.1.2.2.1 Miksi?

3.2.2Ei

3.2.2.1 Pitdisik6 ne ottaa huomioon?

3.2.2.1.1 Miksi?

4 Miten yksittdinen kehittdjd saa tietdéd, mitd hdnen pitdd tehdd?
4.1 Missd muodossa ndma tyotehtdviit kerrotaan?

4.1.1 Kuka timin tekee?

4.1.1.1 Miksi?

4.1.2 Mité informaatiota ndmai tyotehtadvit sisaltavit?
4.1.2.1 Miksi juuri timi informaatio?

4.1.2.2 Missé titd informaatiota sdilytetddn?

4.1.3 Missd nditd tyotehtdvid sdilytetdan?

4.2 Kadytetddnko tdhin jotain tiettyd tyokalua?

4.2.1 Kylla

4.2.1.1 Mitéd tyokalua?

4.2.1.2 Mité informaatiota se kertoo?

422Ei

4.2.2.1 Tarvitsisitko tyokalua?

4.2.2.1.1 Miksi?

5 Miten seuraat tyon edistymistd?

5.1 Milli tasoilla seuraat tyon edistymistd?

5.1.1 Miten seuraat yksittdisen kehittdjian tyon edistymistd?
5.1.2 Miten seuraat ryhmin tyon edistymistd?

5.1.3 Miten seuraat yksittdisen vaatimuksen kehityksen edistymisti?
5.1.4 Miten seuraat tyon edistymistd kokonaisuudessaan?
5.2 Kéytetddnko tdhén jotain tiettyd tyokalua?

5.2.1 Kylld

5.2.1.1 Miti tyokalua?

5.2.1.2 Mitd informaatiota se kertoo?

5.2.2Ei

5.2.2.1 Tarvitsisitko tyokalua?

5.2.2.1.1 Miksi?

5.3 Mistid havaitset, jos tyo ei etene ajallaan?

5.4 Miten reagoit, jos ty0 ei etene ajallaan?

5.4.1 Miten kommunikoit kehittijille tilanteen?

5.4.2 Miten tilanne korjataan?

5.4.2.1 Kuka osallistuu tdhidn?

5.4.2.1.1 Miksi?

5.5 Seurataanko ajankiyttod jotenkin?

5.5.1 Kylla

5.5.1.1 Miten sité seurataan?

5.5.1.2 Miksi sitd seurataan?

5.5.2Ei

5.5.2.1 Pitdisiko sitd seurata?

5.5.2.1.1 Miksi

6 Kaytitko joitain tyokaluja, jotka eivit vield tulleet esille?
6.1 Mitd?

6.1.1 Mihin tarkoitukseen kéytit k.o. tyokalua?

7 Millainen mielestisi olisi tdydellinen tyon ohjaukseen ja hallintaan kdytettdvi tyokalu?
8 Toimiiko tyon ohjaus ja hallinta mielestési?

8.1 Mitd huonoa siind on?

113

8.2 Mitid hyvéi siind on?
8.3 Kehitysehdotuksia?

114

Appendix C

List of the identified tools

This appendix presents all tools identified in the search of agile software development man-
agement tools. The tools are divided into two tables. The first table (Table C.1) contains
open source tools. The second table (Table C.2) contains commercial closed-source tools.
The tools are presented in alphabetical order. Tools that did not fit any exclusion criteria are
boldfaced in the list.

The first column contains the name of the tool, the second column contains the author.
The subsequent columns contain the exclusion criteria of the tools, which are described in
the list bellow. The numbers on the list correspond to the numbers in the column headers.
Note that the evaluation of the tools was done in a “lazy” way; After one of exclusion crite-
rion matched with a tool, no further exclusion criteria were evaluated. Matching exclusion
criterion is marked with “X” in the cell.

Identifying an individual author especially in open source projects cannot always be
done. In such cases one of the contributors of the project was selected and augmented with
“et al.” Some authors don’t reveal their reals name but use aliases instead. In such cases the
alias is used as the author’s name.

1. The tool is not in a mature development stage.

2. The development of the tool is not alive (no more than 1 active developer, no new
release in year 2008).

3. The tool is not primarily directed toward managing daily work of agile software de-
velopment.

4. The tool is not available for evaluation.

115

Table C.1: Identified open-source tools

2

L =
ESZ
Z Z z z

Tool Author — & q

Agile! Arnaud Prost X

Agilefant TKK / SoberIT

AgilePlanner Frank Maurer et al.

AgileTrack x10gimli X

Agilo for Scrum agile42 X

Bagl.ock Eckhart Képpen X

CollabScrum Reuben J. Ravago X

Digital User Stories Pl4gue X

EclipseXP Peter Hagg X

eXtreme Management Tool Zest Software

FireScrum Diogo Verissimo et al. X

FreeProjectTracker Stefan Roock X

Gamma Development Adam Blinkinsop X

Tracker

GoSprint Gulsharan Gorayaetal. | X

IceScrum Stéphane Maldini et al. X

jscrum Pavel Konnikov et al. X

LESA Brian O’Neill X

Neutrino Bil Simser et al. X

NXPlanner Stephen Starkey X

nPlanner Dave Sanders et al. X

OpenEPM Ben Floyd et al. X

OpenERP Tiny company X

Open workbench Openworkbench.org X

PHPScrum EACOMM Corporation | X

PrjPlanner Quentin Crain X

Project Dune Gerard Toonstra et al.

Project Planning and Erik Bos et al. X

Tracking System

Really Simple Story Queue Don Kelly X

richPlanner j2ee711 X

Rugby Pieter X

116

Table C.1: Identified open-source tools continued

2

L =
Es D E
Z 2 2z =z

Tool Author — & q

SCManager Mark French X

Scrinch Julien Piaser et al. X

SCRUM Francesco Mondora et al. | X

Scrumaster Agustin J. Lopez X

ScrumWare Andrew Romanenco X

scrum-rabbit Angelo J. R. Pereiraetal | X

Scrum Project Scheduler Mikel Alcon X

Scrum Vision Laurent Carbonnaux X

Scrum Zen pmartins_ X

Story Server Mathias Kolehmainen X

TaskJuggler Chris Schlager X

TWiki XP Tracker Plugin Peter Thoeny X X

User Story. NET Jason Pettys X

UserStory-FeatureTracker Jason Don Stracner X

XPCGI Joi Ellis X

XPlanner Jacques Morel et al. X

XPstorm Juergen Ebert X

XPSwiki Sandro Pinna et al. X!

XPTracker Andy Korth et al. X

XPWeb Olivier Chirouze et al. X

XP4IDE Manuela Angioni et al. X

XP Roadmap Arlo Belshee X

XP Studio Remon Sinnema X

'The XPSwiki project web page did not respond to requests, and all other information found regarding
XPSwiki was outdated

117

Table C.2: Identified commercial closed-source tools

2
BE 2 B
zZ z z Z
Tool Author — & on <
Agileplan Agilecor X
Accept Accept Software X
CA Clarity CA X
ClariZen Clarizen X
DevPlanner Fedorenko
DevSuite TechExcel X
Electric Cloud Electric Cloud X
Focal Point Telelogic X
Mingle ThoughtWorks
OnTime Axosoft
Product Pathfinder Nihito Technologies X
Project Microsoft X
Qpack Orcanos X
Rally Rally Software Development
ReqDB Requirements Management X
Tracker Dotner X
Scope Manager Select X
ScrumDesk ScrumDesk
ScrumWorks Pro Danube Technologies
StoryManager StoryManager X
VersionOne VersionOne
VisionProject Visionera
Visual Studio Team System Microsoft X
2008 Team Suite
XP Plan-it IT Works Solutions X

118

	Introduction
	Motivation
	Research goal and questions

	Research process
	Selection of the included agile methods
	Agile software development book requirements extraction
	Selection of the case company
	Selection of the interviewees in the case company
	Case company requirements elicitation
	Selection of the agile software development tools
	Agile software development tool reviews

	Materials
	Agile software development methods
	Agile software development textbooks
	Agile software development management tools

	Requirements for a tool according to the book review
	Identified concept types
	Identified time horizons
	Identified containers of work
	Identified pieces of work
	Concept maps of the identified concepts
	Selection of work
	Monitoring progress
	Summary of the requirements from the book review

	Requirements for a tool for the case company
	Identified concept types
	Time horizons identified in the case company
	Containers of work identified in the case company
	Pieces of work identified in the case company
	Concept map of the identified concepts in the case company
	Selection of work in the case company
	Monitoring progress in the case company
	Requirements for views in the case company
	Work-hour reports in the case company
	Summary of the requirements for the case company

	Results of the tool review
	Results for Agilefant
	Results for Mingle
	Results for Rally Enterprise Edition
	Results for ScrumWorks Pro
	Summary of the tool requirements and features

	Discussion
	Discussion on the tool features and the requirements
	Discussion on tool conceptual model categories and weaknesses
	Discussion on threats to validity of results

	Conclusions
	Conclusions on the results
	Summary of contributions
	Further research

	Related literature
	Interview introduction and questions
	Introduction for the subjects in Finnish
	Questions for developers
	Questions for managers

	List of the identified tools

