

A publication of the Software Process Research Group (SPRG),
Software Business and Engineering Laboratory (SoberIT)

Towards Agile Product and
Portfolio Management

Jarno Vähäniitty, Kristian Rautiainen
Ville Heikkilä & Kevin Vlaanderen

i

Distribution:

Aalto University

School of Science and Technology

Software Business and Engineering Laboratory (SoberIT)

P.O. Box 19210

FI – 00076 Aalto

FINLAND

URL: http://www.soberit.hut.fi/sprg

Tel. +358 9 470 24851

E-mail: sprg@soberit.hut.fi

© 2010 Jarno Vähäniitty, Kristian Rautiainen, Ville Heikkilä & Kevin

Vlaanderen

ISBN 978-952-60-3498-0

Written by

Jarno Vähäniitty, Kristian Rautiainen, Ville Heikkilä & Kevin Vlaanderen

(see page v for details)

Edited by

Ville Heikkilä, Kristian Rautiainen & Jarno Vähäniitty

Cover art by Ville Heikkilä

ii

FOREWORD

by Sjaak Brinkkemper and Slinger Jansen

The software industry is going through radical changes. From new development

technologies to changing delivery paradigms, the field has shown tremendous

improvements to aid developers in achieving their goals and dynamically facili-

tating ever increasing requirements from a demanding market. Agile methods,

such as Scrum, XP, and DSDM, have been introduced with the developer at the

focal point, leaving behind those who manage the endless supply of require-

ments from the market.

The managers in charge of products are still holding on to ancient product man-

agement techniques, supplied by experts in the field of physical product man-

agement. These product management techniques do not sufficiently support

software products, due to the extensive differences between physical and soft-

ware products. Some examples of these differences are the fact that software is

malleable, variable, can be released in rapid successive versions, and can be

duplicated at no costs. Furthermore, there exists only a small range of physical

products with such specific applications and such a wide range of stakeholders

in its development and use as software products.

Software product managers are in need for supportive, modern, dynamic, ad-

justable, and transparent management methods and tools that are compatible

with modern agile software development practices. This book is one of the first

that actually provides concrete product management tools based on sound

scientific principles, with the specific focus of improving a software product

manager's practices in the fields of agile requirements management and portfo-

lio management. The principles are not only timely but also comply with mod-

ern agile principles and in some cases even existing development practices and

tools, without becoming too technical or academic.

The book that lies in front of you will provide product managers with the in-

sights they need today to grow in an ever changing environment. It will help

software product managers with expert knowledge and support tools for re-

quirements and backlog management, release planning, and portfolio manage-

ment. All based on extensive academic research and industrial experience. Fur-

thermore, academics can, by reading this book, gain a quick overview of the

state of the art in software product management. We applaud the authors with

this wonderful result and hope this book will become a desk reference for all

modern software product managers.

— Prof. Dr. Sjaak Brinkkemper and Dr. Slinger Jansen, Utrecht University

iii

WHY SHOULD YOU CARE

ABOUT AGILE PRODUCT AND

PORTFOLIO MANAGEMENT?
Success in today‘s software industry requires integrating long-term product and

business planning with technology development, juggling the scarce develop-

ment resources so that those activities that from a business perspective are the

most important get attended to, as well as combining flexibility and control pro-

vided by modern, agile approaches to software development, such as Scrum.

However, this is not easy, and to be compatible with agile software develop-

ment, the enterprise level processes of product and portfolio management have

to be understood in a new way.

While there are plenty of books on product management, new product devel-

opment portfolio management, as well as on agile software development, few

authors so far deal with how product and portfolio management should be or-

ganized or even understood together with agile software development methods.

Thus, as far as these books ignore the other side of the equation, they are actual-

ly a part of the problem.

While doing agile ―right‖ is in principle simple, it is also extremely difficult. The

cultural implications of a lean/agile transformation are immense, and require a

lot of unlearning to take place for both individuals as well as organizations. As

understanding how product and portfolio management can be made agile-

compatible is not common knowledge, or even that well described in the latest

literature, it is not a surprise that ―adopting agile‖ can be a long and winding

road.

In this book we provide a synthesis of guidelines from those relatively few au-

thors out there that deal with the reconciliation of long-term product and busi-

ness planning, portfolio management and agile software development. Combin-

ing these with our own findings from a decade of research collaboration with the

top Finnish Software Companies, we hope you find this book a part of the solu-

tion.

iv

HOW TO READ THIS BOOK
This book is divided into three parts. For a quick start, read this page, see the

table of contents (page x) and then, the introductions of each part (pages 1, 52

and 114). After that, you can skip back and forth as you feel like, for much of the

book has been written so that the different chapters can be read relatively inde-

pendently. For this reason, you may encounter some repetition – as well as a

heavy degree of cross-referencing between the chapters.

Part I provides an introduction to this book by recollecting our earlier work on

time pacing, as well as explaining the difficulties in fitting product and portfolio

management together with modern, agile/lean approaches to software devel-

opment.

Part II presents the Portfolio Management Health Barometer – a method for

assessing whether your company needs to improve on its quest towards enter-

prise agility – as well as the theoretical underpinnings of the method. We also

describe in detail how to use the method and its accompanying open source sur-

vey tool to conduct a health barometer assessment for your company – or for

another company, should you be in the consulting business.

Part III presents our framework for agile product and portfolio management

and selected practices regarding areas of agile product and portfolio manage-

ment that have proved challenging in practice. Part III also summarizes key re-

quirements for backlog management tool support for linking daily work with

product and portfolio management.

Throughout the book we have used two kinds of boxes to highlight helpful in-

formation for those doing a quick skimming through the pages:

The boxes with a light bulb symbol provide additional helpful tips on the subject mat-

ter of the text.

The boxes with a warning sign symbol inform you about common pitfalls and dangers

related to the subject matter of the text.

v

WHO WROTE THIS BOOK
This book summarizes findings from two research projects: First, ATMAN (Ap-

proach and Tool support for development portfolio MANagement), a research

project funded by Tekes and the participating companies and conducted by

members of the Software Process Research Group (SPRG) of the Software Busi-

ness and Engineering Institute (SoberIT) at the School of Science and Technol-

ogy of the Aalto University, Finland. Second, the writing of Chapters 11, 12 and

partly 13 has been funded by the Cloud Software research program conducted in

collaboration with Finnish universities and software companies.

The contributions in this book are indicated in the table below chapter by chap-

ter.

Chapter 1: Using Time Pacing to Manage Software

Development

Kristian Rautiainen &

Jarno Vähäniitty

Chapter 2: Agile Product and Portfolio

Management – Crucial for Competitiveness

Jarno Vähäniitty

Chapter 3: The Gap in the Literature Jarno Vähäniitty

Chapter 4: The Portfolio Management Health

Barometer

Jarno Vähäniitty

Chapter 5: Performing a Portfolio Management

Health Barometer Study

Ville Heikkilä & Kristian

Rautiainen

Chapter 6: The Health Barometer Tool Kristian Rautiainen

Chapter 7: Agile Product Management Jarno Vähäniitty

Chapter 8: Portfolio Management and Agile

Software Development

Jarno Vähäniitty

Chapter 9: Agile Development Portfolio

Management

Jarno Vähäniitty & Ville

Heikkilä

Chapter 10: The Agile Requirements Refinery Kevin Vlaanderen, Slinger

Jansen, Sjaak Brinkkemper

& Erik Jaspers

Chapter 11: Scaling Up Agile Release Planning Ville Heikkilä

Chapter 12: Kanban for Software Development Kristian Rautiainen

Chapter 13: Requirements for a Backlog

Management Support Tool for Agile Product and

Portfolio Management

Jarno Vähäniitty & Ville

Heikkilä

vi

HOW TO CITE THIS BOOK
This is an edited book with chapters written by different authors. When you cite

this book, we encourage you to cite per chapter to give the authors the credit

they deserve. The citations per chapter are as follows:

Rautiainen, K. & Vähäniitty, J. 2010, "Chapter 1: Using Time Pacing to Manage
Software Development" in Towards Agile Product and Portfolio Management,
eds. V. Heikkilä, K. Rautiainen & J. Vähäniitty, Espoo: Aalto University, pp. 2-
30.

Vähäniitty, J. 2010, "Chapter 2: Agile Product and Portfolio Management –
Crucial for Competitiveness" in Towards Agile Product and Portfolio
Management, eds. V. Heikkilä, K. Rautiainen & J. Vähäniitty, Espoo: Aalto
University, pp. 31-37.

Vähäniitty, J. 2010, "Chapter 3: The Gap in the Literature" in Towards Agile
Product and Portfolio Management, eds. V. Heikkilä, K. Rautiainen & J.
Vähäniitty, Espoo: Aalto University, pp. 38-51.

Vähäniitty, J. 2010, "Chapter 4: The Portfolio Management Health Barometer"
in Towards Agile Product and Portfolio Management, eds. V. Heikkilä, K.
Rautiainen & J. Vähäniitty, Espoo: Aalto University, pp. 53-71.

Heikkilä, V. & Rautiainen, K. 2010, "Chapter 5: Performing a Portfolio
Management Health Barometer Study" in Towards Agile Product and Portfolio
Management, eds. V. Heikkilä, K. Rautiainen & J. Vähäniitty, Espoo: Aalto
University, pp. 72-85.

Rautiainen, K. 2010, "Chapter 6: The Health Barometer Tool" in Towards Agile
Product and Portfolio Management, eds. V. Heikkilä, K. Rautiainen & J.
Vähäniitty, Espoo: Aalto University, pp. 86-101.

Vähäniitty, J. 2010, "Chapter 7: Agile Product Management" in Towards Agile
Product and Portfolio Management, eds. V. Heikkilä, K. Rautiainen & J.
Vähäniitty, Espoo: Aalto University, pp. 115-125.

Vähäniitty, J. 2010, "Chapter 8: Portfolio Management and Agile Software
Development" in Towards Agile Product and Portfolio Management, eds. V.
Heikkilä, K. Rautiainen & J. Vähäniitty, Espoo: Aalto University, pp. 126-148.

Vähäniitty, J. & Heikkilä, V. 2010, "Chapter 9: Agile Development Portfolio
Management" in Towards Agile Product and Portfolio Management, eds. V.
Heikkilä, K. Rautiainen & J. Vähäniitty, Espoo: Aalto University, pp. 149-156.

vii

Vlaanderen, K., Jansen, S., Brinkkemper, S. & Jaspers, E. 2010, "Chapter 10:
The Agile Requirements Refinery" in Towards Agile Product and Portfolio
Management, eds. V. Heikkilä, K. Rautiainen & J. Vähäniitty, Espoo: Aalto
University, pp. 157-169.

Heikkilä, V. 2010, "Chapter 11: Scaling Up Agile Release Planning" in Towards
Agile Product and Portfolio Management, eds. V. Heikkilä, K. Rautiainen & J.
Vähäniitty, Espoo: Aalto University, pp. 170-183.

Rautiainen, K. 2010, "Chapter 12: Kanban for Software Development" in
Towards Agile Product and Portfolio Management, eds. V. Heikkilä, K.
Rautiainen & J. Vähäniitty, Espoo: Aalto University, pp. 184-192.

Vähäniitty, J. & Heikkilä, V. 2010, "Chapter 13: Requirements for a Backlog
Management Support Tool for Agile Product and Portfolio Management" in
Towards Agile Product and Portfolio Management, eds. V. Heikkilä, K.
Rautiainen & J. Vähäniitty, Espoo: Aalto University, pp. 193-210.

viii

ACKNOWLEDGEMENTS
The authors would like to thank Tekes – the Finnish Funding Agency for Tech-

nology and Innovation and the Cloud Software program for funding this work.

The ATMAN research project was a part of Tekes‘ Verso (Vertical Software Solu-

tions) program. Without the funding provided by Tekes this book – as well as a

number of international research publications, theses, as well as Agilefant –

would not have been possible. Especially we would like to thank Matti Sihto and

Kari Ryynänen. Matti represented Tekes in ATMAN‘s steering group. In addi-

tion to occasionally helping us to get back to the ground from the clouds re-

searchers sometimes must live in, he also understood that sometimes research

must come before everything else. Kari Ryynänen was invaluable in preparing

the ATMAN project proposal in the phases preceding the funding decision.

We would like to extend our gratitude to the companies that participated and

funded the ATMAN research project: F-Secure for being the first and most likely

the most important partner company, EGET/PAF for full partnership for the

first two years and follow-up partnership for the third year, IPSS for full part-

nership for the second year and follow-up partnership for the first and third

year, and eCraft, Napa, Mipro and Tekla for follow-up partnerships. Whatever

wisdom these pages might hold, it would not have been possible without the

strong industrial connection we enjoyed during ATMAN.

Especially we would like to thank the following persons from the ATMAN part-

ner companies: Janne Järvinen, Pirkka Palomäki, Mikael Albrecht, Kati Laine,

Pasi Takala, Mikko Parkkola, Gabor Gunyho, Towo Toivola, Markku Kutvonen,

Mika Lehtinen and Erkki Lepre from F-Secure; Joachim von Schantz, Andreas

Perjus and Mikko Rusama from EGET/PAF; Terho Norja from IPSS (as well as

the entire IPSS staff for patiently putting up with early versions of Agilefant and

the accompanying enthusiastic Agilefant consultants), Nicklas Andersson from

eCraft; Tom Sundell and Klaus Ihlberg from Napa; Suvi Hyyryläinen and Merja

Koponen from Mipro; and Jari Sundqvist and Ritva Keinonen from Tekla.

We are deeply grateful for the contributions of the people who have during the

project been a part of the ATMAN research project staff. Over the two first AT-

MAN years, Ilkka Lehto contributed significantly to the project both in terms of

findings as well as by steering the development of Agilefant. Thanks goes also to

Pasi Pekkanen and Reko Jokelainen who were able to turn Agilefant from a

lumbering behemoth into the lean and mean war animal it currently is; Antti

Haapala – an excellent ―catch‖ by Prof. Pekka Kess of the Industrial Engineering

and Management department of Oulu University – came all the way to Espoo to

help us develop Agilefant‘s Daily Work functionality.

ix

Five teams (2Rox, Maranello, Spider, Testarossa and Fiorano) took Agilefant

further and further during their completion of the software project course at

TKK. For a complete list of contributors to Agilefant, see www.agilefant.org.

We also owe thanks to Casper Lassenius, the responsible leader of the ATMAN

research project for understanding, supporting and mostly tolerating our some-

times unconventional ideas and ways of working.

We would like to thank Maria Paasivaara for being the manager of the Solakka

project during the year 2010. We would also like thank all the industry people

and researchers we have met in Cloud Software program events for the many

thought-provoking discussions.

In terms of international research collaboration, we have been very lucky. Prof.

Dr. Sjaak Brinkkemper‘s group at Utrecht University performs world-class re-

search in the area of software products and we are grateful we could participate

in his group‘s work. In addition to Prof. Brinkkemper, we would like to also

thank Kevin Vlaanderen, Slinger Jansen, Inge van de Weerd and Sandra Ver-

donk. The support, community and facilities they provided us during 2010 were

invaluable for conceiving this book. Our trips to Utrecht have not only been a

great learning and working experience, but at the same time, fun of epic propor-

tions.

We are grateful for Prof. Dr. Günther Ruhe from the University of Calgary for

his participation in ATMAN project. Ville Heikkilä is especially thankful for

Prof. Ruhe for providing an excellent environment for the three months he

spent in Calgary and for supporting Ville in writing of his first international re-

search publication.

As always, our co-workers in the Software Process Research Group (SPRG) have

been a great help in our research and they have provided invaluable commen-

tary and guidance in their specialized areas as well as otherwise. SoberIT‘s sup-

port team has enabled us to work on our research and this book; we thank Jo-

hanna Lehtola, Miihkali Euro, Ritva Parvela and Jyrki Airola for their efforts.

Finally, last but definitely not least; our families and friends– you know who you

are – thanks for allowing us go out to the frontiers of science, perform great

deeds, and reminding us that also the most important activities need our atten-

tion every now and then.

x

CONTENTS
PART I: INTRODUCTION TO TIME PACING AND AGILE PRODUCT AND PORTFOLIO

MANAGEMENT .. 1

CHAPTER 1 : USING TIME PACING TO MANAGE SOFTWARE DEVELOPMENT 2

1.1 MOTIVATION .. 2

1.2 DEFINITION OF TIME PACING ... 6

1.3 OVERVIEW OF TIME PACING ON DIFFERENT TIME HORIZONS ... 7

1.4 IMPLEMENTING TIME PACING.. 16

1.5 COMPANY EXPERIENCES .. 27

CHAPTER 2 : AGILE PRODUCT AND PORTFOLIO MANAGEMENT – CRUCIAL FOR

COMPETITIVENESS ... 31

2.1 WHAT IS AGILE SOFTWARE DEVELOPMENT? .. 31

2.2 WHAT IS PRODUCT MANAGEMENT? .. 32

2.3 WHAT IS PORTFOLIO MANAGEMENT? ... 32

2.4 SO, WHAT IS THE PROBLEM? .. 33

2.5 HOW THIS BOOK HELPS YOU ... 37

CHAPTER 3 : THE GAP IN THE LITERATURE .. 38

3.1 SOFTWARE PRODUCT MANAGEMENT .. 39

3.2 KEY PROCESSES FOR AGILE PRODUCT MANAGEMENT: PRODUCT AND RELEASE PLANNING 41

3.3 PORTFOLIO MANAGEMENT .. 46

PART II: ASSESSING THE HEALTH OF YOUR PORTFOLIO MANAGEMENT 52

CHAPTER 4 : THE PORTFOLIO MANAGEMENT HEALTH BAROMETER 53

4.1 EXAMINE YOUR DEVELOPMENT PORTFOLIO MANAGEMENT TO FIND OUT WHERE YOU STAND 53

4.2 HEREDITARY FACTORS ... 57

4.3 LIFESTYLE ... 61

4.4 SYMPTOMS .. 64

CHAPTER 5 : PERFORMING A PORTFOLIO MANAGEMENT HEALTH BAROMETER

STUDY .. 72

5.1 PREPARING FOR A HEALTH BAROMETER STUDY ROUND ... 72

5.2 GATHERING HEALTH BAROMETER DATA .. 75

5.3 ANALYZING THE HEALTH BAROMETER DATA ... 77

5.4 ANALYZING THE INTERVIEWS .. 80

xi

5.5 PRESENTING THE RESULTS .. 81

CHAPTER 6 : THE HEALTH BAROMETER TOOL ... 86

6.1 WHERE TO FIND THE HB TOOL ... 86

6.2 ADMINISTRATION TASKS ... 86

6.3 USER TASKS .. 99

APPENDIX A : INSTRUCTIONS FOR THE HEALTH BAROMETER 102

APPENDIX B : ATMAN DEFAULT QUESTIONNAIRE IN ENGLISH 105

APPENDIX C : ATMAN DEFAULT QUESTIONNAIRE IN FINNISH .. 110

PART III: FRAMEWORK AND PRACTICES FOR AGILE PRODUCT AND PORTFOLIO

MANAGEMENT .. 114

CHAPTER 7 : AGILE PRODUCT MANAGEMENT .. 115

7.1 WHAT IS RELEASE PLANNING? .. 115

7.2 WHAT IS ROADMAPPING? .. 116

7.3 LINKING AGILE WITH LONG-TERM PRODUCT AND RELEASE PLANNING ... 118

CHAPTER 8 : PORTFOLIO MANAGEMENT AND AGILE SOFTWARE DEVELOPMENT 126

8.1 LEVELS OF PORTFOLIO MANAGEMENT IN AN AGILE ENTERPRISE ... 126

8.2 SETTING UP AGILE-COMPATIBLE PORTFOLIO MANAGEMENT .. 134

CHAPTER 9 : AGILE DEVELOPMENT PORTFOLIO MANAGEMENT 149

9.1 WHY HAVE TEAMS WORK CONCURRENTLY ON MULTIPLE PROJECTS? ... 149

9.2 CONTROLLED MULTI-TASKING WITH FLOATING BACKLOGS .. 151

9.3 TOWARDS A FEASIBLE LEVEL OF MULTIPLE CONCURRENT ASSIGNMENTS 155

CHAPTER 10 : THE AGILE REQUIREMENTS REFINERY .. 157

10.1 AN APPROACH TO AGILE SOFTWARE PRODUCT MANAGEMENT ... 158

10.2 AGILE SPM IN PRACTICE ... 165

10.3 LESSONS LEARNED ... 168

CHAPTER 11 : SCALING UP AGILE RELEASE PLANNING .. 170

11.1 INTRODUCTION .. 170

11.2 BACKGROUND ... 171

11.3 THE JOINT RELEASE PLANNING METHOD .. 172

11.4 MOTIVATION .. 182

xii

CHAPTER 12 : KANBAN FOR SOFTWARE DEVELOPMENT .. 184

12.1 DEFINITION OF KANBAN .. 184

12.2 KANBAN FOR SOFTWARE DEVELOPMENT ... 185

12.3 REVISITING CONTROLLED MULTITASKING WITH KANBAN BOARD ... 188

CHAPTER 13 : REQUIREMENTS FOR A BACKLOG MANAGEMENT SUPPORT TOOL FOR

AGILE PRODUCT AND PORTFOLIO MANAGEMENT .. 193

13.1 SCOPE OF THE DISCUSSION ... 193

13.2 PRODUCT MANAGEMENT .. 194

13.3 DEVELOPMENT PORTFOLIO MANAGEMENT ... 201

13.4 DAILY WORK .. 208

REFERENCES ... 211

1

PART I: INTRODUCTION TO TIME

PACING AND AGILE PRODUCT

AND PORTFOLIO MANAGEMENT
Part I of this book serves as an introduction to the topics of the

book. Chapter 1 recollects our early work on time pacing that

led our research to the topics of agile product and portfolio

management. These topics are shortly explained in Chapter 2

and Chapter 3. Chapter 2 describes the problem setting that

warrants the study and improvement of agile product and port-

folio management. Chapter 3 discusses the gap in current lite-

rature between agile software development and the broader

topics of software product management and portfolio manage-

ment.

Chapter 1: Using Time Pacing to Manage Software Development

2

Chapter 1: Using Time Pacing to
Manage Software Development

Kristian Rautiainen & Jarno Vähäniitty

We start this book by recollecting the background of our re-

search, which has led us to the topics of agile product and port-

folio management. This chapter explains the concept of time

pacing and how it can be used in managing software develop-

ment. Time pacing is in the heart of most agile software devel-

opment processes and helps structure the work and collect fast

feedback of the work and the working practices. The idea is to

be both flexible and controlled. Flexibility is gained by doing

things in short iterations, allowing for the possibility to react to

changing circumstances in the marketplace or in the organiza-

tion. Control is gained by not changing everything all the time,

only at the beginning or end of a timebox, in a controlled way.

Finding the right level of flexibility and control is a balancing

game, where many stakeholders need to participate.

In this chapter we first provide motivation to why this topic is

important (Section 1.1), then define time pacing (Section 1.2)

and give an overview of time pacing on different so-called plan-

ning time horizons (Section 1.3). Implementing time pacing in

your organization can be challenging, and therefore we provide

a short introduction to organizational change management and

software process improvement and give some time pacing im-

plementation tips in Section 1.4. The chapter is rounded up with

experiences from case companies that have implemented time

pacing (Section 1.5).

1.1 Motivation

Managing software product development is challenging but doing it well can be

extremely rewarding. Profits from duplicating a product to thousands or mil-

lions of customers can be both luring and elusive. Success in the product busi-

ness demands more than just succeeding in individual development projects.

Shipping products at the right time, hitting market windows of opportunity with

Chapter 1: Using Time Pacing to Manage Software Development

3

the right set of features over and over again is at least as important. However, in

the software product industry, time-to-market is constantly shrinking and tech-

nologies evolve at a furious pace. If a company tries to keep up with this pace

and react to every change in its environment, it does not have time to do any-

thing else. The developers quickly go crazy with the indecision of the managers

and the constantly changing product requirements. The key lies in striking the

right balance between flexibility and control that serves both business and de-

velopment needs.

Achieving this balance, however, is no easy task. For small companies (with less

than 50 employees) which constitute the majority of software product business-

es, it is particularly challenging. Many of these try to succeed in the product

business, while at the same time doing customer projects to maintain cash flow.

This leads to internal chaos, with people trying to do too many things at once.

Projects exceed their budgets and schedules and only heroic efforts from indi-

viduals keep the projects going. Understanding the software process and using

good practices might help, but everyone is too busy to stop and figure out what

and how things could be done better. It is like a running man carrying his bi-

cycle who is too busy to stop to mount the bike and pedal away.

The man carrying the bike has it easy compared to most small software product

companies. At least, he has only two simple choices of action. For software com-

panies a myriad of process models, methods and practices exist that could help

improve development performance. However, as Frederick Brooks Jr. (1995)

puts it, there is no silver bullet, no magic methodology that can solve all your

problems. Choosing and tailoring processes and practices is difficult, especially

since most processes and practices have been developed for and tested in large

companies. For small software product companies that operate in turbulent en-

vironments, so called agile processes might be a good starting point. They have

been designed for small teams and projects facing a lot of uncertainty. They

provide a set of values, principles and practices that enhance flexibility and help

you embrace change. If you understand these values and principles and are able

to adopt the practices, you gain flexibility and retain control despite being flexi-

ble. However, real life has shown that it is easy to be too flexible and thus lose

the control, as the following fictional anecdote demonstrates.

Two weeks ago Jack, a senior developer, handled the installation for cus-

tomer company Snoot Ltd. He is now working on a must-have requirement

for an upcoming product release at the end of the development iteration. As

he is taking a short break to stretch his muscles after an intensive pro-

gramming session, a phone rings on Jane‘s table. Jane‘s tasks include,

among other things, customer support. Unfortunately, she is at the grocery

store downstairs to buy doughnuts for the company-wide Wednesday after-

noon coffee break. Taking a brief look at Jane‘s ringing phone, Jack notices

that the caller is Tom from Snoot Ltd. Tom was responsible for last week‘s

Chapter 1: Using Time Pacing to Manage Software Development

4

installation on the customer‘s behalf. Naturally, Jack is curious about how

the company is doing with the delivered product, and answers the call on

Jane‘s behalf. Tom thinks he has reached the helpdesk, and he tells Jack

some improvement suggestions to some of the features he has had in mind

and reports two suspicious phenomena he considers bugs. Jack listens and

scribbles down Tom‘s observations on a post-it note he found on Jane‘s ta-

ble. After the phone call, Jack returns to his computer and spends the rest

of the day and a good half of the next enthusiastically programming two of

Tom‘s improvement suggestions that he considers relevant. He also tries to

reproduce and fix the bugs Tom had told about. On Thursday afternoon,

Jack succeeds in fixing the second bug Tom mentioned and sends him an

update. He then resumes programming the ‗must-have‘ feature for the up-

coming release. On Friday afternoon, in the weekly development team

meeting, product manager Jeremy reviews what everyone has done during

the week. He eventually finds out about the call Jack had intercepted on

Wednesday. Jeremy is partly glad that Snoot Ltd. had an experience of an

instant reaction to their needs, but he is mostly frustrated because the

‗must-have‘ feature got delayed by modifications that are of questionable

significance to the majority of customers. Jeremy asks Jack to provide Jane

the details of those improvement suggestions he had not yet realized, so she

can put them into the feature and idea database. Unfortunately, Jack does

not remember the suggestions anymore. While the post-it note with the

specs is still somewhere, it is likely that nobody (including Jack!) is able to

decrypt Jack‘s scribbling.

A few weeks later Jeff, the CEO of the company, gets a brilliant idea to im-

prove a certain feature in the product when making a sales pitch at prospect

Boot Ltd. Returning to the office in the afternoon, he immediately tells his

idea to a junior developer Joe, and asks whether Joe thinks the idea would

be possible to be realized. After the conversation, Joe stops testing the fea-

ture Jeremy instructed him to test, and starts working on a prototype to

find out if Jeff‘s idea could work. Two days later, Joe succeeds in demon-

strating the validity of the idea. He runs to show the demo to Jeff, who is in

the middle of a meeting with Jeremy about the status of the upcoming re-

lease. After refreshing Jeff‘s memory and receiving his commendation, the

poor junior developer also gets scolded by Jeremy for his actions. Although

Jeff‘s idea has now be demonstrated to work, one important feature re-

mains untested. Furthermore, a more experienced developer could have

demonstrated the feasibility of Jeff‘s idea in a couple of hours.

While the company in the anecdote displayed great flexibility, control was miss-

ing. The people might not have been aware of their roles and responsibilities,

and they thought they were doing the company a favor with very fast reaction to

customer needs. They also did not realize that they jeopardized the resource al-

location of the development project thus risking future product releases and

cash flow. The CEO and the management team had probably not created an ex-

plicit product strategy or roadmap for all to follow and thus there was no base-

Chapter 1: Using Time Pacing to Manage Software Development

5

line or vision to consider trade-offs against. While flexibility is good, too much

flexibility can lead to chaos and therefore a certain degree of control is needed.

Control should not stifle the flexibility and creativity needed in a software com-

pany operating in a turbulent environment. Instead, it should set the necessary

constraints to prevent total chaos.

Time pacing is a key to flexible and controlled development and lies at the heart

of agile software process models. Even before agile software development was

introduced, time pacing had been proposed as a way to combine flexibility and

control in reaction to changing circumstances. Time pacing means creating a

pace for software development by dividing time into segments of temporal mi-

lestones at which part the functionality of the final software product is made

ready1. In other words, the schedule is fixed and the scope is varied depending

on the progress of the development team. The progress of the development work

can be reviewed by all relevant stakeholders at these temporal milestones and

decisions about future plans for the product can be made based on visible

progress. This provides flexibility in changing the plans regarding the final

product as we know more about the product and the market needs for the prod-

uct, but also control since we cannot change plans all the time, only at the tem-

poral milestones.

Brown and Eisenhardt‘s (1997) findings bring forth three key properties of suc-

cessful organizations that need to change continuously in face of uncertainties

in their business: (1) semi structures with clear responsibilities and priorities

coupled with extensive communication, (2) links in time that direct attention

simultaneously to different time horizons, and (3) sequenced, well-organized

steps of transition from present to future projects.

Semi structures refer to organizations in which some details are prescribed and

others are not. Among the prescribed details can be, e.g., project priorities, dif-

ferent roles and responsibilities, and agreed time intervals between product re-

leases and iterations. Some structure is needed to facilitate coordinating change,

but too much structure stifles the organization making it hard to react when

needed. Links in time refer to organizational practices that handle past, present

and future time horizons and the transitions between them. This could be, e.g.,

creating roadmaps to help envision a long-term product strategy and using

these roadmaps to make prioritization and trade-off decisions for projects and

iterations when planning them at the same time using history data to help esti-

mate future workloads. Smooth transitioning between projects (and iterations)

is vital to keeping the pace going. Time pacing already helps in providing regular

and predictable time intervals of transition, but well planned and executed steps

of transition are also needed. This could mean, e.g., a prescribed procedure for

1
 The term ready here implies that the system is in a stable and tested state.

Chapter 1: Using Time Pacing to Manage Software Development

6

iteration and project planning, so that the transition between iterations and

projects goes as smoothly as possible.

Next we take a closer look at how we see time pacing. We have taken a lot of in-

spiration from the principles of the agile alliance2 and different agile process

models, especially Scrum and XP (Beck 2000, Schwaber & Beedle 2002).

1.2 Definition of time pacing

Time pacing means dividing time to be expended to achieving a goal into seg-

ments of temporal milestones at which progress is evaluated and possible ad-

justments are made to the plans. Changes are only made at these milestones, so

persistence is accomplished at the same time establishing the flexibility to

change plans and adapt to changes in the environment at the specific time in-

tervals (Gersick 1994). These time intervals, or time horizons from a planning

perspective, create a pace for product development. Time pacing also refers to

creating new products or services, entering new markets, or launching new

businesses according to a fixed schedule (Eisenhardt & Brown 1998). In con-

trast, event pacing refers to following a plan until something forces to deviate

from that plan, e.g., moves by the competition or weakened performance.

Time pacing is not to be confused with the practice of scheduling regular meet-

ings or milestones. The key to time pacing is in the adaptive behavior, which, if

lacking reduces the meetings to mechanical cyclical events that can blind the

managers from the need of change. Gersick (1994) uses the term ―temporal

maintenance‖ to describe these kinds of cyclical activities, as she sees their func-

tion as preserving the status quo instead of changing it.

Time boxing (Martin 1991, McConnell 1996, Highsmith 2000) has been used as

a term in software engineering referring to doing time pacing on a project and

iteration time horizon. Time boxing means that the end date of each iteration is

fixed and the end date of the project is also fixed. Fixing the end date means that

if you cannot finish all requested features by that date, the scope is reduced so

that the system is ready at the fixed date. The requirements must be prioritized

so that the team can make scope adjustments by themselves. This is important,

because otherwise you could inappropriately force the team to work overtime in

order to meet both the deadline and the scope. An important part of time boxing

is freezing the requirements for the duration of an iteration. New features can-

not be introduced in the middle of an iteration, except if an existing feature

needs to be redefined because of, e.g., unexpected technical problems or misin-

terpreted user needs.

2
 http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-

software/

Chapter 1: Using Time Pacing to Manage Software Development

7

1.3 Overview of time pacing on different time

horizons

Figure 1.1 shows an overview of different time horizons we have identified for

time pacing. The most central part of time pacing is splitting development work

into iterations. In each iteration functionality is added to the software so that

we have a stable new version of the software at the end of the iteration. A num-

ber of iterations form a release project (3 iterations in the picture). The result of

a release project is an internal or external release of the software. An internal

release could be, e.g., an interim release to effort-intensive system testing. An

external release could be, e.g., the final release to customers. The daily work

within the iterations is coordinated and progress is monitored with heartbeats.

These three levels of time pacing form the process for the development team.

The longest time horizon is long-term planning and portfolio management,

which spans two or more projects into the future. It deals with the long-term

plans for the product and project portfolios of the company (the subject of the

rest of this book), provides an interface between business management and

product development, decides what release projects are launched and com-

pleted or killed, and prioritizes features for project and iteration planning.

Figure 1.1: The different time horizons of time pacing

1.3.1 Iteration

The most central part of time pacing is splitting the development work into time

boxed iterations during which incremental functionality is developed and inte-

grated into the product. This forces you to divide the work into smaller pieces

thus reducing the complexity of the work at hand. Also, it helps you to focus on

what is essential to develop at that moment in time, forcing often quite hard

trade-off decisions that might not normally get done.

Long term planning and portfolio management

Release project

Iteration

Heartbeats

Time

Chapter 1: Using Time Pacing to Manage Software Development

8

When splitting the work and planning the tasks for the iteration you risk losing sight

of ‖the big picture‖ of what the end product should be. Keep the product vision in

mind when planning and performing tasks. Let the vision guide your work and any

possible trade-offs. Without a product vision you might get lost in all the details.

Table 1.1 shows an overview of a typical iteration. The iteration starts with itera-

tion planning where the work to be done during the iteration is planned in co-

operation between business representative(s) and the development team. Both

are needed since iteration planning entails communicating the business and

technical concerns to relevant stakeholders. The simplest possible outcome of

iteration planning is an iteration backlog (used e.g. in the Scrum process model

(Schwaber & Beedle 2002)) containing the vision, goals and tasks for the itera-

tion.

Table 1.1: Overview of a generic iteration

Activity Goal(s) Participants Result(s)

Iteration

planning

Set goal(s) for the itera-

tion

Plan work to be done dur-

ing the iteration (incl.

testing!)

Communicate business-

and technical concerns to

relevant stakeholders

Business & De-

velopment

Iteration Back-

log

Iteration man-

agement

Monitor work progress

Adjust scope, if necessary

(Abort iteration)

Development (&

Business)

Burndown

graph

Updated itera-

tion backlog

Iteration re-

view

Show iteration results

(e.g. working software) to

relevant stakeholders

Get feedback for further

development of the prod-

uct

Business & De-

velopment

Working soft-

ware

Ideas for im-

proving the

product

Reflection Reflect and improve on

the ways of working

Development Improved prac-

tices and

processes

Chapter 1: Using Time Pacing to Manage Software Development

9

If all planning is left to the iteration planning meeting, the meeting will be very ineffi-

cient. A team‘s product owner should keep track of and continuously update a priori-

tized product backlog (containing features and ideas for the product with rough work

effort estimates). The lead developer(s) could help the product owner by providing

updated work effort estimates based on the latest development progress and so on.

Here is an example of a fairly rigorous iteration planning procedure that takes

about a day to complete:

1. Defining the iteration backlog is done in an iteration board meeting. The ite-

ration board consists of stakeholder representatives for different viewpoints

of the product, e.g. the development team leader, the product owner, the

chief of customer services, and a sales and marketing person. Inputs are cus-

tomer and other commitments, the product roadmap/backlog and unfi-

nished tasks from the previous iteration(s). The output is a list of desirable

issues to be tackled in the following iteration.

2. Designing tasks for the iteration backlog from the issue list is done as group

work by the development team, where the developers define the tasks that

need to be done to complete the issues in the issue list. If any issue is un-

clear, it is immediately discussed with the iteration board members for clari-

fication.

3. Estimating work effort for the tasks and checking availability of resources is

done as group work by the development team, based on earlier experiences

and existing and known commitments.

4. Prioritizing issues to complete or postpone is done by the iteration board

based on the given work estimates and the available resources. The list of is-

sues is typically longer than can be accomplished in an iteration. Choices

must be made of what to include in the iteration backlog and what to leave to

future iterations.

5. Committing to the iteration backlog is done by the development team. It re-

views the choices made by the iteration board and decides on accepting the

tasks or continuing the discussion if something seems unacceptable. If the

development team accepts the iteration backlog it should next form a high

level iteration goal for the iteration based on the iteration backlog.

In a turbulent environment the length of an iteration should not exceed one

month, during which a stable new increment is developed and integrated into

the product. During an iteration the requirements and resources should be fro-

zen. Therefore, if it is possible to split work into shorter iterations without ex-

cessive overhead, it is advisable to do so to guarantee the availability of the allo-

cated resources. The shorter the iteration, the fewer the possible interruptions

are. The developers should be allowed to concentrate on the work planned for

Chapter 1: Using Time Pacing to Manage Software Development

10

the iteration. This should increase the efficiency and enjoyability of work. The

key lies in including all known commitments that need attention from the de-

velopers into the resource allocation plan in the beginning of the iteration. For

example, if Jack needs to help in integrating the system at a customer‘s site, the

time needed for this should be subtracted from Jack‘s product development

time, and so on. Even for a month-long iteration there should not be any big

surprises, except for bugs found by the customers, and for this you might con-

sider dedicating one person or allocating buffer time.

Do not integrate your increment into the existing product only at the end of an itera-

tion in a so-called big-bang integration. Instead, try to integrate as often as you can.

For more information on positive effects of integrating often and on implementing

continuous integration, see e.g. Agile Software Development - Best Practices for Large

Software Development Projects by Stober and Hansmann (2010).

Work progress is monitored at least in pace with the heartbeats during an itera-

tion. This entails at a minimum updating estimated work effort left, possibly

using a burndown graph. If the burndown graph shows that there is more effort

left than there is time allocated for development, some corrective actions, such

as reducing the scope of the iteration must be done3. For this to work, the priori-

tized list of tasks and goals in the iteration backlog must be constructed in a way

that allows scope to be reduced by the development team. For example, the

tasks for the accomplishment of goals should include ‗must have‘ and ‗nice to

have‘ items, so that the scoping can remove some or all of the ‗nice to have‘ tasks

and still fulfill the iteration goal. If the iteration goal, however, is compromised,

a meeting should be arranged between the development team and business

stakeholders to decide how the iteration is to be scoped down. In case a shows-

topper problem (e.g. a major bug) appears in an already released product and

requires lots of resources to handle, you should also consider aborting the itera-

tion and starting a new one when the new resource allocation is clear. In any

case the iteration management decisions and actions should be made clearly

visible by updating the iteration backlog accordingly.

The iteration ends in a review meeting. The idea is to gather all relevant stake-

holders and show what was accomplished during the iteration. A typical itera-

tion review could contain a comparison of the plans to what was done and dem-

onstration of working software. In this way development becomes visible to the

stakeholders and comments and feedback can be gathered to help improve the

product further in the upcoming iterations. The product can also be handed

over to more time consuming system testing at the end of an iteration. Note that

3
 There are typically two other options. You could try to add more developers, but adding re-

sources to already late project rarely works (Brooks 1995). Or you could extend the length of the
iteration.

Chapter 1: Using Time Pacing to Manage Software Development

11

this does not imply that all system testing should be performed after the itera-

tion!

The end of an iteration provides a good point in time to reflect on the ways of

working for the development team. It is recommendable to have a reflection

meeting and discuss what practices worked well during the iteration and what

could have been done better. At this point it is also possible to introduce new or

improved practices to try out for the next few iterations.

1.3.2 Release project

Time pacing on a project level is not necessarily always meaningful, but when

strict deadlines are involved, e.g. hitting certain market windows, it is advisable.

However, if you do not time box your projects, you have to place more emphasis

on finishing the product at the end of each iteration. Besides helping in hitting

market windows, time boxed projects force you to express and communicate

your strategic intent regarding the product under work. Your resource allocation

plans are an indication of your priorities, which should reflect your strategic

intent. Project planning shows your resource needs and when many simultane-

ous projects are involved you are forced to make trade-offs in resource alloca-

tion between the projects, because there simply never are enough resources for

everything.

Trying to get as many things as possible done at the same time is never a good idea.

With many things going on at the same time your personnel is forced to almost conti-

nuously make context switches, which considerably slows down work. When planning

projects and managing your project portfolio, try to advance a minimum set of impor-

tant projects per iteration, so that you can get the most out of your scarce experts. In

this way you actually get more done during a given time period than by trying to ad-

vance everything at once.

Table 1.2 shows an overview of a typical release project. Project plans in time

paced projects are on a more coarse level than in more traditional, plan-driven

projects. Detailed planning is left to be done during iteration planning. Howev-

er, it is important to agree at least on project or release goals, including e.g.

quality criteria. These should be based on a roadmap or a long-term release plan

and then help guide the decision making and trade-offs when the actual work is

done during the iterations and also when making the more detailed plans for

each iteration. Depending on whether the release is internal or external, the

quality criteria and release goals should differ, and they should be expressed

explicitly. An internal release means that the release is only used within the

company for e.g. resource- and time-demanding testing. An external release is

what the customers get, for example, it could be a beta release for selected part-

ners or a full-scale commercial release.

Chapter 1: Using Time Pacing to Manage Software Development

12

Table 1.2 Overview of a generic release project

Activity Goal(s) Participants Result(s)

Project plan-

ning

Set project/release

goals and vision

Plan work to be

done during the

project (incl. test-

ing)

Initially allocate

work into iterations

Allocate resources

Communicate

business- and tech-

nical concerns to

relevant stakehold-

ers

Business & Develop-

ment, Key Custom-

ers/Partners

Project/Release

Backlog

Initial resource

allocation plan

Project man-

agement

Monitor work

progress

Adjust scope, if ne-

cessary

(Abort project, if

necessary)

Development (& Busi-

ness)

Burndown graph

Updated

project/release

backlog

Project re-

view

Show project re-

sults (e.g. working

software) to rele-

vant stakeholders

Get feedback for

further develop-

ment of the product

Business & Develop-

ment

Working soft-

ware, released

product

Ideas for improv-

ing the product

Reflection Reflect and im-

prove on the ways

of working

Development (& Busi-

ness)

Improved prac-

tices and

processes

Chapter 1: Using Time Pacing to Manage Software Development

13

When planning a project (or an iteration), you might want to try planning from a test-

ing viewpoint. First consider what you need to do to get something ready for (integra-

tion or system) testing as early as possible. Then consider what that means in form of

tasks to be completed and possible regarding any interdependencies between the

tasks. This way you might be able to find new ways and ideas for planning and work-

ing.

The time horizon for a release project could be 3-4 months, although the fre-

quency of commercial releases might be wise keep around 1-2 times per year. If

you have not decided on a generic iteration pace for your company then you

should decide the pace of the iterations for the project. When you do this, you

should at least consider how often you need concrete and visible feedback

(working software), and how long it takes to develop a meaningful and valuable

increment to the product. The point is to strive for uninterrupted work during

each iteration by freezing the requirements and resources for the duration of the

iteration. However, for portfolio management purposes it is recommendable to

define synchronization points for the iterations of different projects so that eve-

rything does not start and end at completely different times. Otherwise chang-

ing resource allocations in the middle of projects may be very difficult. More on

this subject follows in Section 1.3.4 and in the rest of this book.

In project planning you might consider setting themes for the iterations which

help you envision the initial goals for the iterations. Also, you need explicitly

allocate time and resources for testing the product, so that you can make sure

that the quality of the released version is sufficient to make releasing the prod-

uct possible. This includes allocating necessary rework time in the end of the

project to fix any defects that rise in alpha and beta testing. The theme for the

last iteration could be ―stabilization of the product‖, and no new features should

be added during that iteration. Figure 1.2 shows an example of possible iteration

themes.

Figure 1.2 An example of iteration themes

Release Project2nd & 3rd Middle:

• Ensure that critical release goals are

reached

• Minimize interrupts

4th Late:

• Don’t break it

• Postpone all early activities

• Close all open tasks

• Stabilize

1st Early:

• Design and redesign

• Reduce technical debt

• High risk activities

Chapter 1: Using Time Pacing to Manage Software Development

14

Time-paced projects are managed by splitting them into iterations and manag-

ing the iterations. After each iteration you have a visible result that shows your

progress. You can compare this to your expected progress and then make

project-level decisions about corrective actions, for example, reducing the scope.

If the project goal is endangered, then you might look at the portfolio level for

resources that can be reallocated from other projects, or decide to dramatically

reduce the scope and redefine the goals of the project.

Adding resources to an already late project might only make it more late, and at the

same time compromise other projects! You should therefore be very careful when real-

locating resources. (Brooks 1995)

As with iterations, a project ends with a review of project results and reflection

on what went well, what did not go so well, and what could be improved.

1.3.3 Heartbeat

Iterations are paced with heartbeats in order to gain more insight of develop-

ment progress. A heartbeat (or daily scrum meeting) is typically a status check

that creates links in time from past to present to future in the form of three

questions: What have you done? What problems are you facing? What are you

going to do next? Such status check should not take more than 10-15 minutes

per day.

Be careful not to start discussing revealed problems in the heartbeat meeting. Identify

the problems, identify who can help solve the problems and move on, so as not to take

up unnecessary time from the whole development team.

The time horizon of a heartbeat should be one day, but sometimes longer time

horizons can be motivated. During a heartbeat the actual development is per-

formed and at the end of the heartbeat the status is checked. In this way there is

up-to-date information at regular, short intervals about project/iteration

progress. This helps in identifying early warning signs of things that might com-

promise development goals. For example, if Joe has not been able to use his

time as planned to developing the product, this is revealed in time for corrective

actions to be taken, instead of being revealed at the end of the iteration when it

is too late to react. Or if Joe reports that he is still working on the same task as

three days ago when the original effort estimate was 5 hours, somebody else will

notice a potential problem and it can be addressed. If the effort left estimates of

tasks are not updated continuously, they should be updated at least once a

heartbeat cycle. A part of synchronizing the work might be making daily builds

and running automated smoke tests against them. This gives an indication of

Chapter 1: Using Time Pacing to Manage Software Development

15

system status from a technical perspective. Also, if you have separate testers or a

separate testing team, heartbeat meetings are a good place to follow up the de-

velopment progress, helping testers to plan and synchronize their own work

with the work of the developers.

1.3.4 Long-term planning and portfolio management

Long-term planning and portfolio management sets the direction for product

development by aligning the product development efforts with the business and

technology strategy of the company. This means considering the overall strateg-

ic ambitions of the company together with the competences and availability of

people that do the actual work in conjunction with planning future releases of

products. You may wonder if there is any point in making long-term plans in a

very turbulent environment, since the plans keep changing anyway. These

coarse plans force you to explicate your current understanding of where the

company and its product are moving and thus provide you a point of compari-

son for trade-off decisions which might need to be made. For example, when

you face a decision for allocating your resources either to ―quick cash‖ from a

newly emerged customer project X or continuing to develop the next ―killer app‖

according to your long-term plans, you actually can make an informed decision

as long as the long-term plans are available. Even if you desperately need addi-

tional cash you may be able to steer customer project X into a direction that also

supports your long-term plans.

For the upcoming 2-6 product releases you should plan the release projects on a

high level of abstraction (e.g., product vision, major new features and technolo-

gy, quality goals, release schedule, coarse resource allocation) and document

them, for example, in the form of an aggregated release plan or a product and

technology roadmap. In this way you can create a baseline against which to you

can make trade-off decisions. For example, if a customer makes a request for

something that is already in the roadmap, you can ask if the customer can wait

until the planned release in 4 months, instead of immediately altering existing

plans and disrupting the work already in progress. If the customer still insists

on speedy delivery of the requested feature, you may at least be able to negotiate

a premium to the price.

Christensen and Raynor (2003) pointed out the crucial role of the resource allo-

cation process in putting a company‘s strategic intention into action: “...a com-

pany’s strategy is what comes out of the resource allocation process, not what

goes into it.” This means that besides being time paced with, for example, major

roadmap revisions every 6-12 months, long-term planning and portfolio man-

agement should be represented in resource allocation decisions at least on the

time horizon of an iteration, since the outcome of iterations is what the compa-

ny actually does. Since there are other activities possibly demanding product

development resources, such as maintenance work and assisting in customer

Chapter 1: Using Time Pacing to Manage Software Development

16

deliveries and integration, resource allocation decisions can be difficult trade-

offs. In a way, portfolio management can be understood as the work of constant-

ly monitoring what happens inside and outside of the company so that neces-

sary adjustments to the release plans and resource allocation can be made.

1.4 Implementing Time Pacing

Implementing time pacing in your organization means changing your processes

and the way you work, which is always challenging. You need to know the basic

principles of software process improvement (SPI) to successfully execute such

an initiative. SPI is also about organizational change. In this chapter we shortly

present some important aspects of organizational change and the basic prin-

ciples of SPI. After that we give hints on how you could approach your own im-

plementation of time pacing.

1.4.1 Organizational change

Organizations are complex systems and therefore it is logical that organizational

change is complex too. At least four organizational elements can be found in

each organization according to organizational change research. These are shown

in Table 1.3.

Table 1.3: Elements of an organization

Task Structure People Technology

Practices

Procedures

Decision making

Role responsibilities

Coordination

Communication

Management

Work flow

Skills

Knowledge

Needs

Motivation

Tools

Techniques

Infrastructure

The task is ultimately producing the products and services, including practices

and procedures needed to perform the task. Structure is how the work is coor-

dinated, how decisions are made and by whom, communication systems, or how

the work is managed. People (or actors) refers to the ones performing the tasks

and technology refers to the tools and techniques used, including the needed

technological infrastructure for everything. The list of things under each ele-

ment in Table 1.3 is by no means exhaustive, but rather serves as an example.

The four organizational elements are highly interdependent, which means that a

change in one results in compensatory or retaliatory changes in the others.

Chapter 1: Using Time Pacing to Manage Software Development

17

Compensatory change means, for example, that the other elements change into

something new, probably unexpected, to compensate for the change in one ele-

ment. Retaliatory change means that the other elements try to prevent the

change and force a status quo or even a negative effect to the changed situation.

Therefore one should address all four elements in order to achieve permanent

change. These four organizational elements are useful when you are planning a

change initiative, such as software process improvement. They are also useful

when performing a retrospective analysis of why things did not go as planned.

For example, when you are implementing time pacing you are primarily ad-

dressing the structure element. If you simply say ‖hey let‘s start doing time pac-

ing‖ without defining the needed structural elements such as role responsibili-

ties, decision making hierarchies, and communication patterns, you probably

will not get very far. However, even after perfectly addressing the structural

element you may fail because your existing practices and procedures may not

work well in a time-paced process, or because your personnel might not possess

the right skills or motivation for time pacing or the needed new practices and

procedures, or your existing technology might not support any of the above. On

the other hand, if you try to get all the elements right the first time around, you

might never get out of the planning phase of your change initiative.

1.4.2 Basic principles of software process improvement

Commitment must start from the top

A key success factor for a SPI initiative is management commitment. If the top

management is not 110 % committed to the SPI initiative, their actions easily

hinder all efforts by others. By 110 % commitment we mean that just deciding

that an SPI initiative is something that the organization should undertake is not

enough. Management must also participate in every possible way in the initia-

tive itself, for example, by planning their own management processes and prac-

tices simultaneously with the development processes. We have experienced that

otherwise the organization‘s processes do not necessarily work, as the following

example illustrates.

At HardSoft Ltd the developers were fed up with the way things worked.

Almost every day Joanna (Sales Director for Gadget) called Jill (the Devel-

opment Team Leader) and told her about the latest changes to the release

plans, because she had sold a new feature to a customer. The developers

never got anything ready by the release deadline, and planning was becom-

ing more or less impossible. Jill had just had lunch with Jeeves (a Process

Consultant) that she knew from when she studied at the University, and he

had told her about time pacing. Jill got really excited and she convinced Jeff

(the CEO of HardSoft) that HardSoft needed to improve their processes by

implementing time pacing. A meeting was arranged between Jeff, Jill, and

Jeeves to discuss it further, and after the meeting Jeff agreed that this was

Chapter 1: Using Time Pacing to Manage Software Development

18

definitely the thing to do. ―I support you 100 %, go ahead with the SPI initi-

ative‖, said Jeff and the meeting ended.

Jill was very excited and so were the developers when she told them. During

the next month they all participated in specifying the processes for Hard-

Soft‘s product development. Some design and implementation practices

were adopted from eXtreme Programming for the heartbeat time horizon

activities, the iteration length was specified to be one month, and a strict

requirements and resource freeze for the iteration time horizon was decided

and agreed with upper management. The roles and responsibilities of dif-

ferent stakeholders were also specified for each time horizon. A couple of

training sessions were arranged to communicate and train the new way of

working to all, including upper management.

The following month the new process was piloted in one of the release

projects. To Jill‘s disappointment, Joanna still kept calling her almost daily,

insisting on changing the iteration plans, even though she had agreed to the

new process with requirements freeze for the iterations and she had parti-

cipated in the iteration planning meetings. Jill complained to Jeff, who was

very sympathetic and promised her his support. However, during the fol-

lowing 6 months the situation did not get much better, not until John (the

Visionary and vice CEO) was appointed as the head of the newly formed

Product Management Board (PMB). The PMB was responsible for all the

products of the company, including that the releases were successful and re-

flected the strategic ambitions of HardSoft. John used a couple of weeks to

define the management processes for the PMB, and ended up with exactly

the same processes as defined by Jill, the developers, and Jeeves, with the

exception of some refinements and choices of words that he used from a

management perspective. When these processes were applied in the follow-

ing iteration, things started to work out, improving in each subsequent ite-

ration, as the organization learned and adapted its processes. Jill and the

developers were finally satisfied.

Improvement requires practitioner buy-in

Although management commitment is crucial, because of the resourcing issues

involved, practitioner buy-in is at least as important. If the developers are not

motivated to change their current way of working, they resist change causing

inertia to the SPI initiative. Buy-in of the most respected and influential people

are a definite must, since the others can be expected to look up to them and fol-

low their example. One good way to ensure buy-in is to involve the developers in

designing their own processes.

SPI must have a champion

Unless someone steps up as the leader and champion of SPI, other tasks easily

take precedence over SPI. The champion needs to be in a powerful position to be

able to hold his own in arguments with senior management and needs to have

the respect of the developers or they will ignore him/her. That is why you should

Chapter 1: Using Time Pacing to Manage Software Development

19

not appoint a junior developer or manager as the SPI officer. The champion is

often the most vigilant person to reinforce the process, which can easily be ob-

served as decay in process conformance when he/she is absent. Different new

practices, tools, or technologies that are introduced might also each have their

own champion. The champion is the person from your organization who intro-

duces the practice and trains and inspires the others in using the practice. These

champions are nearly as important as the overall process improvement cham-

pion.

Improvement requires investment

Any improvement or change is going to cost you, both directly and indirectly.

The direct costs stem from the effort used to, e.g., planning, training and docu-

menting the improvement, or buying new tools. Indirect costs stem from the

performance downfall that is typical to any improvement or change. When the

people learn new ways of working, their performance is at first impeded, but

when they learn the new (and hopefully) better way of working, the rewards in

performance increases should cover the costs. There is no guarantee, however,

that this will happen, so there are always risks involved in improvement. But in

our opinion, the risks of not improving far outweigh the risks of improving in

most cases. One way to minimize the risks is to pilot the improvements in a

smaller scale, for example, only one development team could try out a new prac-

tice like pair programming. If the piloting proves successful, the new practice

can be rolled out to the whole development organization.

First understand the current process

A common mistake in SPI is to specify an ideal process for the organization

without considering the existing process. This might discourage the practition-

ers from even trying to reach it since it seems so different from the current

process. The key is to start by characterizing the current process and identifying

needs for improvement. One good framework for SPI, which includes this idea,

is the Quality Improvement Paradigm (QIP), originally developed by Basili, Cal-

diera, and Rombach (1994) and shown in Figure 1.3.

Chapter 1: Using Time Pacing to Manage Software Development

20

Figure 1.3: The QIP framework

The steps of the QIP seen in Figure 1.3 can be translated for SPI as follows:

1. Characterize and understand the current process(es) based upon available

models, data, intuition, etc. Create a baseline for improvement using this

characterization.

2. Set goals for the improvement initiative based on the characterization and

understanding you have formed in Step 1. Remember to consider what has

strategic relevance to your organization. The goals should be quantified (i.e.

can be measured), so that you can assess the success of the SPI initiative

based on how well the goals are reached. Do not set the goals too high or

they might discourage your personnel. The idea is to improve the processes

incrementally, so you should explicate short-term goals. A good idea is to in-

clude a long-term vision to help you in setting the short-term goals.

3. Choose processes, methods, techniques and tools for improvement on the

basis of the characterization and goals you set. It is advisable to choose

smaller parts for improvement instead of trying to improve everything at

once, but still try to consider all four organizational elements to increase the

likelihood of success in the improvement initiative.

4. Execute the project with the chosen improved processes, collect feedback,

and analyze the feedback after each iteration to make further improvements.

5. Analyze the results of the improvement efforts when the project is finished.

Use the data to evaluate the success of current practices and to determine

problems, and document the findings and make recommendations for fur-

ther improvement.

Chapter 1: Using Time Pacing to Manage Software Development

21

6. Package and store experiences in the form of new or updated models, check-

lists, instructions or other forms of structured information. The QIP suggests

using an Experience Factory (EF) repository for this, but you can use what-

ever way of storing the information you are comfortable with. The main

point is that the information is available to all stakeholders and that they are

aware of its existence. Therefore a short training session for the improved

parts of the process might be in order after each release project.

After this the QIP cycle starts from the beginning with new areas of improve-

ment.

Sometimes you need to set your improvement goals extremely high to force thinking

‖outside of the box‖. This may be the only way to make significant improvements.

However, keep an eye on the feelings of people to ensure that the effect is positive in-

stead of discouraging.

Do not underestimate the importance of feedback for motivation

One of the best motivators for SPI is giving and receiving feedback. Feedback is

especially appreciated by the developers. You should, for example, reward de-

velopers for a job well done and for process conformance. As in using QIP, you

should create measurable goals for improvement and collect data during the

improvement to see if it works. The results should then be presented to the de-

velopers and the implications discussed, for example, in reflection meetings.

Change must become a way of life

Processes that are not constantly improved die or decay. That is why change and

SPI must become a way of life. The QIP presented above is good also in this re-

spect, since it promotes cyclical, continuous SPI. A good way to complement the

QIP is to have regular reflection meetings, where different stakeholders gather

to discuss what has been working and what has not. In this way new ideas for

potential process improvement can be gathered and everyone is kept involved

with SPI, which also helps in creating better buy-in and increases motivation.

Institutionalizing improvement requires periodic enforcement

The principle of periodically enforcing the improved process to make it part of

the organizational culture – institutionalizing it – is very close to the principle of

change becoming a way of life. The main difference is that institutionalization is

needed to make the changes more permanent, and too much change can pre-

vent this. The best way to enforce the processes is peer pressure. Everybody is

responsible for pointing out lapses in process conformance, and if there is a

need to change the process, it should be addressed at the reflection meetings. As

with freezing the requirements for iterations, the process should be frozen for

iterations as well.

Chapter 1: Using Time Pacing to Manage Software Development

22

1.4.3 Finding a suitable pace

Figure 1.1 shows the different time horizons for time pacing that set the pace for

product development, and that can be used as a starting point for planning and

mapping different practices and activities to that pace. If a practice or activity

belongs to a certain time horizon it means that it is planned and tracked with

that pace. If necessary, a practice or activity can be split into parts to be tracked

on a faster pace. To give you an example, let us consider how requirements can

be managed using backlogs, an idea presented in the Scrum (Schwaber & Beedle

2002) process model.

A bunch of product stakeholder representatives participate in the April

roadmapping session to plan future releases of the products of HardSoft.

Jeff (the CEO) represents the company strategy and wants to secure that

the products reflect this strategy. John (the Visionary) provides some ―out

there‖ visions about the future development of the markets and technology,

supported on the technology front by Jenny (the Chief Architect), who also

is responsible for more ―down to earth‖ assessments on the viability of us-

ing new technologies. Jermaine and Joanna (the Sales Directors) represent

the customer viewpoint and bring the latest information from the markets.

Jeremy and Jay (the Product Managers) are responsible for one product

each and also represent the viewpoint of customer support (Help Desk and

Product Delivery). Jericho (the Marketing Director) wants to secure sexy

features to future product releases, so he can market the product success-

fully.

The meeting starts with Jeremy (Product Manager of Widget) presenting

the up-to-date product backlog of Widget, the older of the two products of

the company. A product backlog is a prioritized list of product requirements

and features of varying scope. All the ideas for the product have been ga-

thered into the product backlog and Jeremy is responsible for keeping it up-

to-date. Jeremy presents his preliminary suggestion for the release backlogs

of the two following releases of Widget. A release backlog contains the re-

quirements and features to be included in a product release and is a priori-

tized list, like the product backlog, only a bit more detailed. At the end of

August a minor release of Widget is scheduled, containing some bug fixes

and new features. The next major release for Widget is scheduled just be-

fore Christmas and contains support for new databases that are needed to

penetrate new markets and a bunch of other new features.

Jeff (the CEO) is pleased with the release backlogs, especially since the stra-

tegic intent of the company is to move to new markets to generate new cash

flow. Jenny (the Chief Architect) expresses concern for the tight schedule,

because Jack (the Senior Developer) has been very busy with rewriting

Gadget (the second product of the company) for .NET, and the progress has

not been as good as expected, as everybody could see in the last iteration

demo of Gadget. Since Jack is the database expert of the company, a deci-

sion must be made on which is more important, getting .NET Gadget out in

Chapter 1: Using Time Pacing to Manage Software Development

23

time or extending database support for Widget. Jermaine (Sales Director of

Widget) and Joanna (Sales Director of Gadget) argue that both are very im-

portant for their customers and Jericho (the Marketing Director) shows

that market research results support an aggressive strategy to move into the

new markets immediately. Before the meeting breaks into on open fight,

Jay (the Product Manager of Gadget) proposes that he shows the release

plans for Gadget, so that the possible trade-offs are clear to everybody.

When Jay has shown his suggestions for release backlogs for Gadget, the

lively debate continues until lunch. Everything seems important, and no

trade-offs can be made.

After lunch, when things have cooled down a little bit, Jenny suggests that

Jack continues working on porting Gadget to .NET. But, instead of doing it

alone, he pair programs with Jo (a Junior Developer). Pair programming

has been used earlier with some positive results in different tasks, so Jack

and Jo already have some experience in doing it. This way Jo would learn

from Jack and in a couple of iterations Jo would be able to continue on her

own, if necessary, leaving Jack free to start working on the new database

support for Widget. The drawback is that some of the features in the release

backlog need to be reprioritized to lower priority, since Jo cannot work on

them, meaning that they probably cannot be finished in time for the release.

But at least the most important goals for the releases of both products have

a greater chance of being met. The meeting participants discuss Jenny‘s

suggestion for a while and agree that this is the best course of action. The

meeting then continues with more discussion and reprioritization of the re-

lease backlogs.

A week later Joanna, Jay and Jenny meet with Jill (the Development Team

Leader), Jack, Jo, Joe (another Junior Developer), and Jake (the Quality

Engineer) to plan the next iteration of Gadget. At the coffee table they have

already discussed some of the ideas from the roadmapping session, so there

are no big surprises for anyone. Joanna, Jay, Jenny and Jill have prepared

for the planning session by discussing the most important release backlog

items and what they mean in more detail, both from a business perspective

and from a technical perspective. The results from these discussions are

presented to the development team and questions about unclear things are

asked and answered. Then the team is left alone to plan how these release

backlog items can be broken down into tasks for the next iteration and the

effort to complete the tasks is estimated. When the planning is ready, the

development team presents the results to the others and also discuss the

budget of available development effort for the iteration. It is apparent that

not all tasks can be done within the available budget, so Joanna, Jay, Jenny

and Jill discuss and prioritize the scope of the iteration. They also create the

iteration backlog, which contains the iteration goal(s) and the features to be

done including the planned breakdown to tasks for developing those fea-

tures. When the iteration backlog is ready, the development team joins the

others and the backlog is shown and discussed. After that the team accepts

Chapter 1: Using Time Pacing to Manage Software Development

24

responsibility for realizing the iteration backlog at least to the extent that

the iteration goal is met.

A month later the same iteration planning procedure is repeated using what

was left in the release backlog as a starting point. At this time, new,

emerged requirements can be traded off with those in the release backlog to

reflect changed priorities. These should not, however, be in contradiction

with the release goals. Changing the release goals every month would prob-

ably be overreacting to changes in the market. Of course, if the initial analy-

sis of the markets was totally wrong, even the release goals should be

changed.

The example above includes many issues of software product development

management. To recap the main issue in the example, requirements can be ma-

naged using backlogs of different scopes as depicted in Figure 1.4. As we move to

shorter time spans in Figure 1.4 the backlogs get more detailed. Managing the

high-level requirements on a monthly pace gives us flexibility to change plans if

we have missed something earlier. Each month we also see how much has been

accomplished, giving us a measure of progress we can compare to the plans and

goals. This gives us control to make corrective actions based on real progress if

our original plans were too optimistic or pessimistic.

Figure 1.4 Managing requirements with backlogs

Finding a suitable pace entails understanding the rhythm of the markets and the

internal capabilities of the company. Releasing products to the markets should

be done with appropriate pace. For example, if a magazine publishes a product

review at a certain time of the year, you need to release your product in time for

that review. Or if a trade show is organized at a certain time, you need to have a

product release ready by that time. Another example could be seasonality, for

example, if you need to release a product for the Christmas market. Your prod-

uct‘s maintenance agreement may also contain promises of maintenance releas-

es with a defined pace. All releases of the product do not need to be external or

commercial releases. You can also make internal releases that can be used in

demos for potential customers or just used as intermediate versions for tho-

Product Backlog

Release Backlog

Iteration

Backlog

Release Backlog

planned scope for release allocated into roadmap as

Iteration

Backlog

Iteration

Backlog

parts chosen and allocated into

Chapter 1: Using Time Pacing to Manage Software Development

25

rough testing. This way you can get a better understanding of the product and

improve it before you make it widely available.

While the rhythm of the markets tells you when you would want to release your

product(s), the internal capabilities of the company constrain what is possible.

With the internal capabilities we mean, for example, how effective your

processes are, how skilled your employees are, how easy it is to develop and test

your product(s) iteratively and incrementally, and how much development ef-

fort different people can contribute considering all the other tasks at hand. One

way to find out the internal capabilities is to define and try some pace and see

how well it works. For example, if you decide to make one commercial release of

a product per year, you could make two additional internal releases per year. In

this case the time span of each release is 4 months. Then you could define 1-

month iterations for developing the product and use a daily heartbeat rhythm to

monitor progress. If the tasks start taking almost an iteration to complete (in-

stead of taking from one day to one week), you have not been able to plan and

split the backlog items into small enough tasks. This could mean that you have

selected too difficult and large features to be done in one iteration or that the

iteration and possibly the heartbeat is too short. If you think the iteration and

heartbeat pace is appropriate, you need to develop your skills in planning the

iterations and the tasks to be done in them. One of the problems may also be

that you do not yet understand what you are supposed to get done or how it can

be done using some new technology4. In that case you might need to reconsider

the release goals and iteration contents to reflect that you are learning a new

technology. Pacing helps you show progress or lack thereof, which in turn helps

you make informed decisions about continuing or discontinuing pursuing the

goals or turning to an alternative course of action in order to be able to make the

commercial release.

A more structured way of planning and defining the development pace based on

the internal capabilities is considering what needs to be accomplished by the

end of each time horizon and how long that will take. For example, when a

product is released to the market, there is much more involved than just coding

and testing the product. You may need product documentation, such as installa-

tion instructions and a user‘s manual. You may need marketing material con-

taining, for example, screen shots of the product, well in advance before the

product release. You may need sales material, such as brochures and demon-

strations of the product, for the sales people. Such things have lead times that

need to be considered when planning the iterations of the release. A good idea is

to dedicate at least the last iteration before a commercial product release to sta-

bilizing the product and finalizing all the necessary accessories. Stabilizing the

4
 Extreme Programming suggests using so-called technology or research spikes when you are

not sure how something should be done (see e.g. Extreme Programming Explained: Embrace
Change by Beck (2000)).

Chapter 1: Using Time Pacing to Manage Software Development

26

product means that we do not develop new features but rather make sure that

the existing ones work properly. For this we need to do some testing and bug

fixing, the amount of which depends on, for example, how much and what kind

of testing we have been able to do in the previous iterations. If we need to do

extensive testing that could take 2-4 weeks to complete, a 1-month iteration is

not long enough to accomplish both testing, bug fixing, and re-testing. Also, for

the screen shots for the marketing material, you may need to make a visual

freeze earlier than in the last iteration.

You might also consider different pacing for different types of projects or activi-

ties. From a portfolio management and resource allocation viewpoint it is then

important to try to synchronize the different paces. For example, if the iteration

time horizon of a major product release project is 1 month (or 4 weeks), other

iteration time horizons (e.g., for maintenance releases) should be 4 or 2 weeks,

or even 1 week. In this way they are all synchronized at least every 4 weeks,

which is then the pace for making major resource allocation decisions.

1.4.4 Adopting a practice

To give you an example on using the different time horizons in planning of a

software engineering practice adoption, we will use refactoring. Refactoring

means changing the internal structure of the code without changing the external

behavior of the software. Refactoring is one of the key practices in Extreme Pro-

gramming (XP) and you might be interested in trying it out. You could directly

try the XP way as described by Beck (2000) or you might want to consider other

approaches. Figure 1.5 shows three different approaches to refactoring that are

done on different time horizons: 1) refactoring heartbeat, 2) refactoring itera-

tion, and 3) refactoring release.

Figure 1.5 Different approaches to refactoring

1. Refactoring on a heartbeat time horizon could mean dedicating one day of

the week to refactoring the code, as shown in Figure 1.5. It could also mean

that refactoring is an integral part of the development work, as explained in

Refactoring release (3)

Refactoring

iteration (2)

Refactoring heartbeat (1)

Chapter 1: Using Time Pacing to Manage Software Development

27

XP. Each developer is responsible for refactoring code when it seems appro-

priate.

2. Refactoring on an iteration time horizon could mean that the first iteration

of a release project is dedicated to refactoring the existing codebase, which is

shown in Figure 1.5. Another option would be dedicating the beginning of

each iteration or several iterations to refactoring the code.

3. Refactoring on a release project time horizon means dedicating a whole re-

lease to refactoring the existing codebase. This option is probably the least

likely to be used, because if the code quality is so bad that a whole release

project is needed to fix it, you might as well rewrite the whole software.

The approaches above are by no means mutually exclusive. You could combine

them, for example, by doing major refactoring in the first iteration of a release

project and then in the rest of the iterations you do refactoring on a case-to-case

basis and decide in heartbeat meetings if and when refactoring is needed. As

described in this example, you have several options when you adopt a practice.

You should go through same kind of reasoning when deciding how to apply a

new practice.

1.5 Company experiences

We have worked with several companies helping them apply time pacing in

their software development. In this section we summarize some of the expe-

riences from these companies.

1.5.1 Resulting processes

All companies used elements from Scrum (Schwaber & Beedle 2002) in their

software development process. Software engineering practices were picked from

XP (Beck 2000) in some companies, while others picked practices from the Ra-

tional Unified Process (RUP) (Kruchten 2000). One company even included

elements from the StageGate™ model (Cooper 1994) for their management

process. The chosen time horizons varied a lot, as can be seen in Table 1.4.

Table 1.4 Time horizon length variation in companies

Long-term Project Iteration Heartbeat

2-12 months 3-4 months 2-4 weeks Daily-weekly

1.5.2 Elapsed calendar time to get the process up-and-running

It is fairly impossible to say exactly how long it takes for a process to be up-and-

running, because you normally deploy a process incrementally. As in any change

Chapter 1: Using Time Pacing to Manage Software Development

28

initiative, the point where the process actually works as intended is very hard to

pinpoint. Here we provide a few experiences.

In Company A, a small company where all 14 employees participated in plan-

ning and defining the process, it took one and a half months to start using the

new process with partial features. As a new test manager was being hired, sys-

tem testing details were left out from the first version of the process. Instead,

the first version concentrated on requirements management and communica-

tion between the different stakeholders in the product development process.

However, all practices from the first version were still in use 3 years later, which

means that the first version can be considered to have been very successful.

In Company B iterative development (without time pacing) had been introduced

by the new product development manager, who was the primary person to apply

time pacing. It took only 1 month to start piloting time pacing in iterations, but

it took more than 2 years for the process to stabilize. Even then there were still

problems with long-term planning and portfolio management. The reasons for

this are shortly discussed in Section 1.5.5.

In Company C it took one and a half months to get a defined iteration up-and-

running, but it took almost a year to get portfolio management included in the

process and even more time to get it really working. The project in which the

iteration was piloted had started before the change initiative, which made some

decisions in iteration planning harder, since an overall project plan to support

iteration planning was missing. However, the definitions for iterations and

projects remained in use after the pilot, which makes it somewhat successful.

All in all it can be said that it takes 1-2 months to plan and prepare for a pilot

implementation of a time paced process, after which it can be incrementally im-

proved. Sometimes it can take a long time to really get the process to work as

intended.

1.5.3 Overall impressions of practitioners

One of the most important aspects of process improvement is to actually get

people to use the new process. In all companies we have worked with the

processes were used and liked by the personnel approximately 3 years after the

process improvement started. The most common positive remark from the prac-

titioners was that the process had practical utility and helped them in their work

as well as helped them identify problem areas in the process. The time paced

process actually encouraged people to do something about problem areas in the

process, because they felt they could (and should) do things better when the

process had become more visual and concrete.

Flexibility and control had been achieved in the companies. Many commented

that their work was better planned and controlled than before. This was partly

due to the demanding pace that forced people to plan their work more often and

Chapter 1: Using Time Pacing to Manage Software Development

29

partly due to adopted practices to planning that facilitated communication be-

tween developers and business people. Also, freezing resources and require-

ments for the duration of an iteration pleased the developers giving them a

chance to concentrate on the tasks at hand.

1.5.4 Success factors

The companies that best succeeded in following the basic principles of SPI had

the best experiences of success. On top of the list of success factors we can find

management support, process/practice champions, and involvement of many

developers in planning the process to ensure buy-in.

Some interesting catalysts of success also deserve to be mentioned here. In one

company the process did not seem to work until one of the developers was in-

volved in developing a process support tool especially intended to support the

time pacing framework presented here5. This tool was then deployed in the

company and it ―forced‖ the people to use the process and made the process vis-

ible to all. The developer also emerged as a tool and process champion who

could help and support the others, which made using the process much easier.

In another company, portfolio management had not been successfully included

in the process until a new human resources manager was employed who was

genuinely into managing people instead of participating in the technical work. It

took him only a few weeks to kick portfolio management forward, at least from a

resource allocation perspective, by introducing a resource allocation procedure

where project managers had to ‖buy‖ their resources every two weeks. Although

this may sound harsh, it actually worked well for the company after an adjust-

ment period of a couple of months. In this way the company could refocus their

resources in a controlled way every two weeks, if necessary.

1.5.5 Factors impeding deployment

The most prominent factors impeding deployment of time pacing was lack of

time for process improvement and too few participating people, which both

show a lack of investment in process improvement. The common symptom of

this was that key personnel had too many other things to do and process im-

provement suffered from low priority and did not advance. This affected the

visibility of the process to all other personnel and the feeling of urgency in

adopting the new process.

In Company B, introduced in Section 1.5.2, especially long-term planning and

portfolio management was problematic. The company‘s mission and business

priorities were unclear and changed often, which was reflected as difficulties in

focusing development effort. Since it was hard to agree on development priori-

ties, there was no solid ground for portfolio management, which started to seem

5
http://www.agilefant.org

http://www.agilefant.org/

Chapter 1: Using Time Pacing to Manage Software Development

30

futile. However, when the project and iteration-level processes started working

there was an increasing demand from the developers for improved portfolio

management, because without clearer development priorities they had to con-

stantly re-plan their work, which felt as a waste of time.

In one company, management support was not whole-hearted, which mani-

fested itself as disturbances and new requirement demands in the middle of ite-

rations, even after everybody had agreed on the rules of freezing the require-

ments. The process started working as intended only after management de-

signed its own processes for iteration planning and portfolio management.

Chapter 2: Agile Product and Portfolio Management – Crucial for
Competitiveness

31

Chapter 2: Agile Product and
Portfolio Management – Crucial

for Competitiveness

Jarno Vähäniitty

Success in today’s software industry requires integrating long-

term product and business planning with technology develop-

ment, juggling the scarce development resources so that at

each moment those activities that from a business perspective

are the most important get attended to, as well as the combina-

tion of flexibility and control provided by modern, agile ap-

proaches to software development, such as Scrum. However,

this is not easy, and to be compatible with agile software devel-

opment, the enterprise level processes of product and portfolio

management have to be understood in a new way.

In this chapter, we start off by briefly introducing the concepts of

agile software development, product management and portfolio

management (Sections 2.1-2.3). Then, we describe why making

an agile software development process work together with the

product and portfolio management processes as a harmonious

whole is crucial for today’s software business but also wrought

with difficulties (Section 2.4). We round off the chapter in Section

2.5 by explaining how this book is meant to help you.

2.1 What is agile software development?

The term agile software development was coined in the year 2001 when the

Agile Manifesto6 was formulated (Hansson et al. 2006). Agile software devel-

opment emphasizes building releasable software in short, fixed time periods

and emphasizes flexibility, communication, collaboration and working software

over processes, tools, documentation and following a pre-defined plan (Rico,

Sayani & Sone 2009).

6
 http://agilemanifesto.org/

http://agilemanifesto.org/

Chapter 2: Agile Product and Portfolio Management – Crucial for
Competitiveness

32

While there is no universally accepted definition of what agile software devel-

opment entails (Kettunen & Laanti 2006), most approaches that are considered

agile possess the following characteristics (Smith 2008):

 The development proceeds iteratively in loops of two to six weeks

 Each iteration should deliver working software

 New functionality is not considered ‗done‘ until it has been integrated as part

of the whole

 Product requirements are re-assessed and re-prioritized at the end of each

iteration

 The (representative of the) customer is incorporated in the planning

 Small, close-knit cross-functional teams do the work

As the most common manifestation of agile software development, we have cho-

sen the Scrum process framework to serve as the basis for most of the examples

and guidelines presented in this book.

2.2 What is product management?

Product management deals with the planning, development and marketing of a

product or products at all stages of the product‘s lifecycle, spanning from stra-

tegic to tactical activities (Ebert 2009). While product management as a topic

originates from management literature, there is an emerging body of literature

in the field of software engineering that specifically deals with software prod-

uct management. This has been defined as the process that governs a prod-

uct/service offering from its inception to the market or customer delivery and

service (Ebert 2009).

The engineering aspects of software product management – on which we focus

in this book – consist of defining products, releases and managing requirements

in collaboration with many internal (such as sales & marketing and develop-

ment) and external (such as the customers and partner companies) stakeholders

(Ebert 2009, Kittlaus & Clough 2009). The related core engineering processes

are portfolio management, product planning, release planning and

requirements management (Bekkers et al. 2010).

These processes, and the problems of fitting them with agile methods such as

Scrum is returned to in more detail in Chapter 3.

2.3 What is portfolio management?

Portfolio management is a term that has many different meanings depending on

the context; for example, a financial portfolio, a product/service portfolio, a

portfolio of development projects, and so on.

Chapter 2: Agile Product and Portfolio Management – Crucial for
Competitiveness

33

In the literature on new product development, portfolio management (or port-

folio management for short) refers to the decision-making process for updating

and revising a business‘s product development portfolio, that is, the list of active

and planned development activities that require the development resources‘

attention. In portfolio management, new projects are evaluated, selected and

prioritized, existing projects may be accelerated, de-prioritized or killed, and

resources are allocated to and reallocated within active projects (Cooper 2009)7.

In this book we are mostly concerned with the software development portfolio

(or development portfolio, or simply portfolio for short). By this we refer to the

set of ongoing and upcoming development activities that require attention from

the product development and/or technical resources.

A more thorough explanation of the concepts of portfolio and portfolio man-

agement along with illustrations as well as shortcomings of the existing litera-

ture from the perspective of understanding how to link portfolio management

with agile methods follows in Chapter 3.

2.4 So, what is the problem?

―So really, what‘s the problem?‖ you may ask. For indeed, there are plenty of

books on product management, new product development portfolio manage-

ment, as well as on agile software development.

The problem is twofold:

First, based on a systematic review of the literature8 we conducted in the au-

tumn 2010, rather few authors so far deal with how product and portfolio man-

agement should be organized or even understood together with agile software

development methods. However, some do, and we have attempted to synthesize

those guidelines with our own findings in this book.

Second, while doing agile ―right‖ is in principle simple, it is also extremely diffi-

cult, and for some people (as well as organizations!) requires a lot of unlearning

to take place. As understanding how product and portfolio management can be

made agile-compatible is not common knowledge, or even that well described in

the latest literature, it is not a surprise that practitioners have a lot of problems

in getting everything to work together. This difficulty is quite evident in many –

if not most – organizations today that are striving towards adopting agile soft-

ware development methods.

7
 Being a pragmatist, Cooper‘s concept of portfolio management actually includes both product

portfolio management– as well as managing those activities that take up time from the devel-
opment people – whether the latter are actual development projects or not (Cooper, Edgett &
Kleinschmidt 2002)!
8
 As represented by both the Scopus database as well as the Amazon bookstore; for the review

method, keywords and similar details, contact the authors

Chapter 2: Agile Product and Portfolio Management – Crucial for
Competitiveness

34

But before venturing further, Sections 2.4.1-2.4.3 briefly explain in more detail

why solving the problem of linking agile with product and portfolio manage-

ment is of crucial importance for companies that intend to be successful.

2.4.1 Most companies are hybrids

The majority of the companies in the software business, especially when ex-

amined over time, employ a ‗hybrid‘ business model (Cusumano 2003). This

means that besides offering products and striving to productize the technologies

related to their key business idea(s), they on the side have to offer professional

services and custom development projects – which may or may not be related to

the company‘s products – to share risk and balance their cash flow (Artz et al.

2010, Cusumano 2004, Cusumano 2008).

This is especially true for small companies, most of which either do not wish or

simply are not able to acquire significant external funding (Rönkkö et al. 2009).

Indeed, out of the internally funded small companies, those who wish to grow

profitably are hybrids out of necessity (Miettinen, Mazhelis & Luoma 2010,

Wangenheim et al. 2006).

However, the processes, competencies and resources needed for effectively run-

ning product-based and project/service-based software businesses are intrinsi-

cally different (Artz et al. 2010, Nambisan 2001). The set of technical and orga-

nizational capabilities required to run a hybrid company has been referred to as

―daunting‖ and ―hard to master‖, and an improper balance between product

development and servicing efforts has been referred to as ―an easy way to ruin

an otherwise good business‖ (Cusumano 2004).

2.4.2 The hybrid business model needs agile product and portfolio

management

Hybrid software companies have to master software development and the en-

terprise level processes of product and portfolio management. This is illu-

strated in Figure 2.1 and further explained below.

Figure 2.1: Demands for software companies' internal processes in today's software in-
dustry

Chapter 2: Agile Product and Portfolio Management – Crucial for
Competitiveness

35

First, the business environment is getting increasingly challenging. While the

software industry is growing relatively rapidly (Wangenheim et al. 2006), it is

undergoing structural changes that challenge the traditional ways business has

been conducted (Koivisto 2010). Product-based software business, once re-

garded as the chance to gain a significant position in global markets, does no

longer provide opportunities for growth (Rönkkö et al. 2009). Instead, success

and growth today are perceived to be driven by business model innovation and

the ability to successfully navigate the ongoing convergence of product and ser-

vice business models (Cusumano 2008, Rönkkö et al. 2009, Johnson 2010).

This makes overcoming the challenge of integrating long-term business, product

and release planning with technology development (Berry & Taggart 1998) in-

creasingly crucial – even when the future and the available business opportuni-

ties seem to change so rapidly that long-term planning seems pointless (Doz &

Kosonen 2008).

Second, while long-term product and business goals should set the framework

for taking action, short-term cash flow and customer satisfaction cannot be neg-

lected. In order to perform both product development and servicing9, small

companies must be able to ―juggle‖ their scarce resources so that at each mo-

ment those activities that from a business perspective are the most important

get attended to (Miettinen, Mazhelis & Luoma 2010). Managing this kind of

―juggling‖ is traditionally referred to as portfolio management of new product

development projects, or simply portfolio management (Cooper, Edgett &

Kleinschmidt 2002).

Third, development must possess the capability to quickly respond to emerging

opportunities and market demand (Rönkkö et al. 2009, Cusumano et al. 2009).

To make this possible, the employed development processes must be flexible,

controlled and driven by customer needs (Takeuchi & Nonaka 1986, MacCor-

mack, Verganti & Iansiti 2001). Approaches to software development that are

claimed to possess these qualities have in the recent years been proposed by the

agile software development movement (Smith 2008). Agile software develop-

ment also seems to be increasingly popular among practitioners (Dybå &

Dingsøyr 2008). While some amazing results have been reported (Sutherland &

Altman 2010) – even in challenging, distributed settings (Sutherland, Schoon-

heim & Mauritz 2009) with outsourced development teams (Sutherland et al.

2007) – not many such impressive results have been presented to date. Overall,

current empirical evidence regarding agile methods‘ effectiveness is scarce and

largely anecdotal (Dybå & Dingsøyr 2008), but the little that exists can be con-

9
 Here, product development can refer to increasing the degree of productization of a software

offering, but also to a ‗productization‘ of a service (Cusumano 2008). Also, servicing may be
complementary to the current products the company is offering, but it can also be completely
independent from the product portfolio and may in turn create new opportunities for innovation
and needs for productization (Ruokonen 2008).

Chapter 2: Agile Product and Portfolio Management – Crucial for
Competitiveness

36

sidered encouraging (Cardozo et al. 2010, Syed-Abdullah, Holcombe & Gheorge

2006).

2.4.3 Agile is disconnected from product & portfolio management

Though some consultants may have a vision of it, in the existing literature the

relationship between the product and portfolio management processes and agile

software development is at best unclear. These challenges (see Figure 2.1) are

illustrated in Figure 2.2, briefly explained below as well as further discussed in

Chapter 3.

Figure 2.2: Literature on agile software development is disconnected from product and
portfolio management literature

Literature on agile software development has, along with the majority of soft-

ware engineering literature (Glass, Vessey & Ramesh 2002), focused on a sin-

gle-team-single-customer-single-product setting (Shalloway, Beaver & Trott

2009). How agile software development should link with product and release

planning (Valkenhoef et al. 2010) or portfolio management (Kettunen 2007), or

indeed, with the running of an entire company (Kettunen & Laanti 2006), has

not been discussed.

In recent research it has been specifically argued that agile methods should be

extended to better address product and release planning (Valkenhoef et al.

2010) and ―longer-term product evolution and portfolio management‖ (Kettu-

nen & Laanti 2006). Furthermore, from the perspective of small companies, it is

problematic that the approaches prescribed in the literature for long-term

product and business planning or portfolio management seem to originate from

a large company context (Jennings & Beaver 1996, Martinsuo 2001). Such ap-

proaches do little to utilize the strengths of small companies such as flexibility,

quick responsiveness and informal but direct communication structures (Wan-

genheim et al. 2006, Pino et al. 2010, Beattie & Fleck 2005).

Chapter 2: Agile Product and Portfolio Management – Crucial for
Competitiveness

37

2.5 How this book helps you

We have written this book with the intention of helping you tackle the challenge

you are bound to face during your quest towards enterprise-level agility: inte-

grating agile software development methods with product and portfolio man-

agement processes.

In the rest of Part I (Introduction to time pacing and agile product and portfo-

lio management) we examine the product and portfolio management processes

more closely and the gap in the literature regarding their linkage with agile

software development methods (Chapter 3). If you are not yet convinced that

there is a problem with the existing literature in describing the linkage – or, if

you are a researcher – then this chapter should prove interesting.

In Part II (Assessing the health of your portfolio management) we present the

Portfolio Management Health Barometer – a method for assessing

whether your company needs to improve on its quest towards enterprise agility

and how – as well as the theoretical underpinnings of the method. We also de-

scribe in detail how to use the method and its accompanying open source survey

tool to conduct a health barometer assessment for your company – or for

another company, should you be in the consulting business.

In Part III (Framework and practices for agile product and portfolio manage-

ment) of this book we present our framework of agile product and port-

folio management that describes how the key functions of the product and

portfolio management processes should be understood in the context of agile

development, along with practical examples from the companies we have

worked with. Many of the lessons learned originate from situations in which

only a part of the ongoing activities that require attention from the development

people are following an agile life cycle – or even conducted as explicit projects.

As we will see, such scenarios, though rarely addressed in the literature, may be

fairly common in practice. Part III also examines some more challenging as-

pects of linking agile software development with product and portfolio man-

agement more closely, and presents practices that have proven useful, such as

joint release planning for scaling up agile release planning (Chapter 10), the

agile requirements refinery for organizing product management (Chapter 11)

and using a Kanban board for managing a development portfolio (Chapter 12).

Part III closes with a summary of the requirements for backlog manage-

ment tool support (Chapter 13) as posed by our framework for agile product

and portfolio management. It also presents how some of these requirements

have in practice been implemented in Agilefant (www.agilefant.org) – the lead-

ing open source tool for backlog management whose development is coordi-

nated by the authors.

http://www.agilefant.org/

Chapter 3: The Gap in the Literature

38

Chapter 3: The Gap in the
Literature

Jarno Vähäniitty

This chapter examines the literature that can be considered as

related to the problem of linking product and portfolio manage-

ment with agile software development. When management as-

pects are concerned, the focus has in the software engineering

literature traditionally been that of individual projects, thus neg-

lecting much of the complexities in linking agile software devel-

opment, long-term product and release planning and portfolio

management. Literature on agile software development is no

exception, as it until very recently has largely swept much of the

complexities involved under the proverbial rug of the product

owner role. Likewise, literature on software product manage-

ment tends to view development as an activity that can be

planned in detail and then executed according to the plan,

which is very much in contrast with the mindset of agile soft-

ware development.

We start off with a closer examination of the concept of soft-

ware product management, and identify those core processes

that either make or break agile product management: product

planning, release planning and requirements management (Sec-

tion 3.1). Then we discuss these processes and the theoretical

and consequent practical difficulties of applying existing work

from the software product management literature to the context

of agile software development (Section 3.2). The final section

(3.3) of this chapter discusses portfolio management and ex-

plains why traditional phase-gate models used for implementing

portfolio management can are problematic in the context of

agile software development. We also explain the levels of port-

folio management crucial for agile portfolio management, and

define more closely the concept of development portfolio man-

agement as the most important of these levels.

Chapter 3: The Gap in the Literature

39

3.1 Software product management

Product management deals with the planning, development and marketing

of a product or products at all stages of the product lifecycle, spanning from

strategic to tactical activities (Kahn, Castellion & Griffin 2005). In line with this,

software product management has been defined as the process that go-

verns a product/service offering from its inception to the market or customer

delivery and service (Ebert 2009). It consists of defining products, releases and

managing requirements in collaboration with many internal (such as sales &

marketing and development) and external (such as the customers and partner

companies) stakeholders (Ebert 2009, Kittlaus & Clough 2009).

At least in Finnish software companies, product management can be a compli-

cated and somewhat confusing matter based on our experience as well as the

experience of others (Sahlman & Haapasalo 2009, Saastamoinen & Tukiainen

2004). For example, long-term business, product, and release planning are of-

ten carried out implicitly and without being properly integrated to day-to-day

operations. However, it is known that successful high-tech companies, even

small ones, do practice explicit planning to direct their development efforts

(Berry 1998), and the planning process and its link to development become

more sophisticated as the companies grow (Berry & Taggart 1998).

In this book we focus on the so-called core processes of software product man-

agement as defined by the software product management competence model

(Bekkers et al. 2010, Weerd et al. 2006). The framework is illustrated in Figure

3.1 below.

Figure 3.1: The Software Product Management Competence Model (Bekkers et al. 2010)

Chapter 3: The Gap in the Literature

40

The following excerpts describe the core processes:

Portfolio management concerns the strategic information gathering and

decision making across the entire product portfolio (Bekkers et al. 2010). It

entails making decisions about the set of existing and new products based on

the market trends and the product development strategy, and establishing

partnerships and contracts (Weerd et al. 2006). Its first focus area is Market

analysis, which gathers decision support information about the market needed

to make decisions about the product portfolio of an organization. Secondly,

Product lifecycle management concerns the information gathering and key de-

cision making about a product’s lifecycle and major product changes across

the entire product portfolio. Finally, Partnering & contracting focuses on estab-

lishing partnerships, pricing, and distribution aspects in which the product

manager is involved. (Bekkers et al. 2010)

Product planning is focused on the gathering of information for, and crea-

tion of a roadmap for a product or product line and its core assets. […] Road-

map intelligence gathers decision support information needed in the creation

of the product roadmap. Product roadmapping deals with the actual creation

of the product roadmap. Core asset roadmapping concerns the planning of the

development of core assets (components that are shared by multiple products).

(Bekkers et al. 2010)

Release planning covers the […] capabilities needed to successfully create

and launch a release. Requirements prioritization prioritizes the identified and

organized requirements. Release definition selects the requirements that will

be implemented in the next release, based on the prioritization they received in

the preceding process. It also creates a release definition based on the selec-

tion. Release definition validation is performed before the release is built by the

development department. It focuses on the validation of the release definition

by internal parties. Scope change management handles the different kinds of

scope changes that can occur during the development of a release. Build valida-

tion is performed after the release has been realized by the development de-

partment. It focuses on validating the built release before it is launched.

Launch preparation prepares the internal and external stakeholders for the

launch of the new release. Issues ranging from communication, to documenta-

tion, training, and the preparations for the implementation of the release itself

are addressed. (Bekkers et al. 2010)

Requirements management comprises the continuous management of re-

quirements that are not (yet) part of a release and consists of three focus

areas. Requirements gathering concerns the acquisition of requirements from

both internal and external stakeholders. Requirements identification identifies

the actual Product Requirements by rewriting the Market Requirements to

understandable Product Requirements, and connecting requirements that de-

Chapter 3: The Gap in the Literature

41

scribe similar functionality. Requirements organizing structures the require-

ments throughout their entire lifecycle based on shared aspects, and describes

the dependencies between Product Requirements. (Bekkers et al. 2010) Re-

quirements management is more or less a continuous activity, while product

and release plans are revised at discrete points in time (Kittlaus & Clough

2009).

Based on these definitions, we make two observations crucial for linking agile

software development with product and portfolio management:

First, the body of literature on software product management views portfolio

management as a very high-level activity dealing with coarse-grained allocation

of capital (Kittlaus & Clough 2009), in other words, as product portfolio man-

agement. This leaves out several perspectives that are essential for getting agile

software development to work, for example, that of managing multiple simulta-

neous activities such as ongoing development projects or other efforts that take

up the development personnel‘s time. We will delve into this in more detail in

Section 3.3 as well as return to it in Part III of this book.

Second, it is obvious that the way in which product planning, release planning

and requirements management are understood and organized determines

whether product management is ―agile compatible‖ or not – and thus, can be

the obstacle for achieving enterprise-level agility.

But, the problem is that existing literature on software product management, or

software engineering, does very little in the line of providing guidelines how this

should be done in practice in the context of agile software development. This is

discussed in Section 3.2.

3.2 Key processes for agile product management:

product and release planning

In this section we summarize existing literature and knowledge on long-term

product and release planning, in other words, those two core processes of the

software product management competence model called product planning and

release planning (Bekkers et al. 2010).

3.2.1 Product planning a.k.a. roadmapping

Product roadmapping (or simply roadmapping) is a common metaphor for

planning the use of resources, technology and their relationships over a period

of time (Kostoff & Schaller 2001). In this book we use it as a synonym for the

concept of product planning as defined in the software product management

competence model (Bekkers et al. 2010) discussed in Section 3.1.

The process of roadmapping should identify, evaluate and select strategic alter-

natives for achieving desired objectives (Kostoff & Schaller 2001). The resulting

Chapter 3: The Gap in the Literature

42

roadmaps summarize and communicate the results of key business decisions

(DeGregorio 2000). Thus, the roadmaps‘ implementability is at least as impor-

tant as their possible strategic value (Kostoff & Schaller 2001). The problem is,

that there is little research literature on software product roadmapping (Fleury

et al. 2006) – and none on how to do, view or even understand roadmapping in

the context of agile software development.

Some of the most relevant software (product) roadmapping research has been

conducted by Lehtola et al. (Lehtola et al. 2009, Lehtola & Kauppinen 2006,

Lehtola, Kauppinen & Vähäniitty 2007, Lehtola, Kauppinen & Kujala 2005),

although the focus taken is not specific to agile software development. In the

mentioned publications Lehtola et al. make several observations about the state

of practice of roadmapping in medium-sized software companies based on their

case studies. Project-wise requirements engineering seems ―insufficient to pro-

vide a holistic long-term view with different stakeholders‖. The preparation of

roadmaps seems to be disconnected from development and is the responsibility

of the product managers, who many times are relatively distant to the daily

work in the actual development projects. As a result, business goals and needs

are ―hard to trace to development‖ and there is ―no clear link between business

and development decisions‖. Also, allocating development resources according

to the plans made in the roadmapping phase is very difficult in practice, often

involving competition for shared resources – which in turn has been noted to

lead to local optimization (Larman & Vodde 2008).

To counter the found challenges, Lehtola et al. (2009) propose five practices to

help link development and business decision-making:

1. explicating the planning levels and time horizons,

2. separating the planning of products‘ business goals from R&D resource allo-

cation,

3. open-ended planning with a pre-defined cadence,

4. emphasizing whole-product thinking, and

5. making product planning visible.

Done properly, roadmapping would strengthen the link between product man-

agement and agile software development. However, current research indicates

that practices for roadmapping seem scarce and undeveloped both in practice as

well as in terms of research efforts. Thus, what we would need now is first, to

understand what roadmapping actually means in the context of agile software

development. Second, we need a practical example of a roadmapping approach

suitable for organizations developing software and related services that would

follow the above guidelines and practices – as well as the possible desire of an

organization to apply agile methods to manage at least some of their develop-

Chapter 3: The Gap in the Literature

43

ment activities. To respond to these needs, Part III of this book presents our

approach to agile roadmapping.

3.2.2 Release planning

Release planning (also known as ―product release planning‖ and ―strategic re-

lease planning‖) is concerned with selection and assignment of requirements in

one or several sequences of releases in a way in which important business, tech-

nical and resource constraints are fulfilled (Svahnberg et al. 2010). Release

planning has attracted attention among software engineering researchers. How-

ever, the existing models (Akker et al. 2008, Chatzipetrou et al. 2010, Ngo-The

& Ruhe 2009, Ruhe 2010) treat release planning essentially as an optimization

problem (Kittlaus & Clough 2009).

According to a recent review (Svahnberg et al. 2010), the existing models are

designed for a situation where there is a single product/service offering with a

set of possible features to be selected from. These features are assumed to have

been elaborated to the degree that their development cost and business value

can be reasonably estimated. Also, it is assumed that a group of relevant stake-

holders is readily available to familiarize themselves with the requirements and

vote on them.

Usually, one or more of the listed assumptions does not hold in practice

(Svahnberg et al. 2010, Lehtola 2006). For example, the degree of up-front re-

quirements elaboration needed by the approaches is often not feasible or even

desirable (Larman & Vodde 2010, Poppendieck & Poppendieck 2009). Also, in

practice requirements are not prioritized as a one-off activity, but in multiple

phases of development, with each phase involving different kinds of decision-

making (Lehtola 2006). Furthermore, there are often requirements from more

than a single product/service offering for the development staff to work on

(Rothman 2007, Dobson 1999, Rothman 2009).

Overall, existing systematic algorithmic approaches for planning the future de-

velopment steps of a particular product/service offering often seem to have un-

fortunately little applicability to the actual decision-making problem faced by

practitioners (Ivarsson & Gorschek 2009). Thus, it is hardly a surprise that most

approaches to release planning have not been validated in an industrial setting

(Svahnberg et al. 2010).

Rather than further devising models for ―optimizing‖ the contents of upcoming

releases, we argue that it should first be understood how the roadmapping and

release planning processes actually manifest themselves in agile software devel-

opment. This is further explored and explained in Part III of this book.

Chapter 3: The Gap in the Literature

44

3.2.3 Software Product Management literature is Disconnected from

Agile

Literature on software product management tends to view development as an

activity that can be planned for and then carried out according to the plan – al-

though it is sometimes recognized that ―slippages caused by the development‖

(Kittlaus & Clough 2009) are possible. For example, in Figure 3.1 (page 39) the

effects of scope changes from development extend to requirements manage-

ment, product roadmapping and portfolio management only indirectly. In this

section we present several excerpts that seem to support the notion that most of

the literature on software product management has been written with a sequen-

tial, waterfall-like software development life cycle in mind. Thus, it does little to

help link product management with agile software development.

In one of the earliest books on software product management (Condon 2002),

there are several pages dedicated to discussing Extreme Programming (Beck

2000). The following excerpt hints that the basic concepts behind agile software

development may be foreign to a software product management worldview:

There are many detractors of eXtreme Programming. [The reasons] stem pri-

marily from some of its unorthodox requirements, such as having people from

different disciplines sit together or incorporating QA tasks right back into en-

gineering. These aspects […] have created a fair amount of resistance [which

XP would not have met if the changes were isolated into the software devel-

opment process only]. Let’s look first at some of the problems XP may cause,

and then discuss ways it may still be adopted. (p. 84)

As another example, the following excerpts from Kittlaus & Clough (2009) con-

cerning the documentation of requirements seem to represent a plan-driven

approach to software development:

Requirements management is a documentation-intensive task. Each require-

ment must be individually documented. Then all requirements from all the di-

verse sources are combined into one document, the high-level specification of a

product (release). This is the main working document of product requirements

management. From this the technical specification document is derived. (p. 90)

When requirements management has documented the requirements in this

way, and the product manager has categorized, evaluated and packaged them

into a release, he will combine the release requirements in a high-level specifi-

cation. […] This high-level specification for a product (release) is the basis for

development and for the technical specification which has a technical perspec-

tive compared to the customer perspective of the high-level specification. (p.

91)

The described documents aim at a common understanding of all parties in-

volved. This must not result in a process that is too inflexible. The project re-

Chapter 3: The Gap in the Literature

45

quirements management must allow changes during the development process

in a tightly managed manner. (p. 92)

As another example, the following paragraph in (Kittlaus & Clough 2009) con-

tains the book‘s only discussion regarding agile software development:

Changes to requirements during the development process are a frequent

source of conflict. From a development perspective, it would be ideal if all re-

quirements were completely and precisely defined at the beginning of a project

without any subsequent changes during the project. […] Since the good old wa-

terfall model that assumes a strictly sequential process cannot cope well with

late changes, newer approaches like incremental models or Extreme Pro-

gramming that assume iterations are better suited to handling change. Their

disadvantage is that it is more difficult for the software product manager as

contract giver to evaluate the status of a project than with the waterfall model.

(p. 95)

The above excerpt seems to exhibit what Larman and Vodde (2010) refer to as a

competitive contract game that ―inhibits building the right thing and building

the thing right‖.

As the final example from the gray literature on software product management,

a recent book (Ferrari 2008) – which contains no discussion of agile methods –

has the following paragraph concerning requirement priority changes during

development. While the author recognizes the counter-productiveness of trash-

ing, the underlying assumption seems to be that the requirements are realized

in sub-projects that have detailed task-level plans:

Once priorities have been set and a product plan is in production, avoid priori-

ty changes. After the development organization has started working on some-

thing, making a change that stops that work will cause frustration and per-

formance losses due to the deceleration and re-acceleration people go through

in their tasks as they are moved from one project to another. (p. 131)

The above thinking seems in stark contrast to the continuous planning and just-

in-time elaboration (Shalloway, Beaver & Trott 2009) advocated by the agile

movement.

Based on the above examples, both grey as well as research literature on soft-

ware product management would seem to be disconnected from agile software

development. The following two excerpts from grey literature on agile software

development seem to address what may underlie this problem:

To those in the software product management community, the role of product

owner in agile methods looks like a new version of “barbarians at the gate” -

the development community attempting to extend their fingers into areas

where they lack distinctive competence, appropriate background, and train-

ing. To the software product management community, Scrum is a process,

Chapter 3: The Gap in the Literature

46

built by developers, for developers, but who says that processes and those new

roles will now be used to drive product and market policy? In their view, that’s

what product managers do now, and have always done, so why would they let

the software development types assume their responsibilities. (Leffingwell

forthcoming 2011, Chapter 11 Role of the product owner)

Officially, many product developers have phase-gate processes. Work is di-

vided into mutually exclusive phases separated by gates. One phase must be

complete before the next one can begin. For example, such processes typically

require that all product requirements [must] be defined before beginning de-

sign activities. The team appears to do this, and delivers complete product re-

quirements to management at the gate review. Then, they are given approval

to exit the requirement definition phase and to begin the product design phase.

On its surface, this procedure appears quite sensible, and it seems to work.

What really happens is quite different. When I survey managers in my product

development courses, 95 percent will admit that they begin design before they

know all requirements. In fact, the average product developers begin design

when 50 percent of requirements are known. They simply do not publicize this

to management. Instead, they engage in a time-honored ritual of asking for

permission to proceed. There is a tacit “don’t ask, don’t tell” policy. Managers

politely avoid asking if the next phase’s activities have already begun, and de-

velopers discreetly avoid mentioning that they have already moved on. In

practice, sensible behavior prevails, despite the presence of a dysfunctional

formal procedure. (Reinertsen 2009, pp. 1-2)

From this background, it is understandable that the work on connecting soft-

ware product management with agile software development is only at its very

beginning. Some steps are being taken(Vlaanderen et al. 2009, Mohan, Ramesh

& Sugumaran 2010), but the work on software product management has not on

the conceptual level yet been properly integrated with the recently proposed

approaches and frameworks in the gray literature (Shalloway, Beaver & Trott

2009, Larman & Vodde 2008, Rothman 2007, Rothman 2009, Leffingwell

forthcoming 2011, Schwaber 2007, Pichler 2010, Krebs 2008, Schiel 2009) that

attempt to extend agile into the domain of software product management. Also,

no experiences from adopting or applying such integrated frameworks have yet

been reported in the software product management literature. We will return to

both of these topics in Part III of this book.

3.3 Portfolio management

In the following subsections we describe why traditional phase-gate models

used for implementing portfolio management are easily seen as fundamentally

incompatible with agile principles (Section 3.3.1). Then, we describe the six le-

vels of portfolio management that are essential for a proper understanding of

Chapter 3: The Gap in the Literature

47

the concept in the context of agile software development (Section 3.3.2). We

continue by explaining perhaps the most crucial of these levels from the pers-

pective of getting portfolio management to work in an agile-compatible fashion:

development portfolio management (Section 3.3.3), and provide an example of

what a typical development portfolio looks like in a small organization that de-

velops software (Section 3.3.4).

3.3.1 Agile vs. phase-gated product development models

Portfolio management has been written about extensively in literature on man-

aging new product development, and potential for cross-domain knowledge is

said to exist (Nambisan & Wilemon 2000). The concept of portfolio manage-

ment originates from the context of large organizations, where activities are

primarily organized as projects, there is an explicit strategy, personnel dedicat-

ed to managing the portfolio exist, and there is manufacturing involved in get-

ting the products to the market (Martinsuo 2001). Setting up proper portfolio

management has been recognized as challenging even for the best of organiza-

tions (O'Connor 2004).

Portfolio management in the context of agile software development has not been

discussed. In large product development organizations, there is typically a port-

folio of concurrent product development projects to be managed (Kettunen

2007), and instead of abandoning traditional Phase-Gate models for product

and portfolio management, these should somehow be combined with agile soft-

ware development (Dybå & Dingsøyr 2008). While in small companies there is

typically only a single or at most few products to be developed, there is a strong

focus on servicing, support and maintenance (Wangenheim et al. 2006). This

leads to having a portfolio of activities that require attention from the develop-

ment people, and the end result is quite similar to that of larger companies.

Advocates of agile methods see much of the literature on managing new product

development as fundamentally incompatible with agile software development.

Perhaps this is because of the tendency of new product development literature

to view and define development as a separate ―phase‖ in the cycle of realizing an

idea into an actual working solution (Krebs 2008).

Also, the Stage-GateTM (Cooper 2009) – or at least how it is commonly unders-

tood – is by some seen as incompatible with the basic principles of agile devel-

opment (Larman & Vodde 2008). There have been case studies on integrating

phase-gate type models and software development life-cycle models (Wallin,

Ekdahl & Larsson 2002), even including agile methods (Karlström & Runeson

2006). The latter study found, among other things, problems in adapting corpo-

rate practices for project planning to accommodate for ―agile micro planning‖ in

combination with the ―normal‖ macro project planning. We see this as a sign of

disconnect between the ―normal‖ plans and the reality of the agile teams in

question.

Chapter 3: The Gap in the Literature

48

Overall, the work on software product management and portfolio management

seems so far to be largely disconnected from agile software development. In Part

III we combine our experience and findings with what literature on agile soft-

ware development has to offer in terms of product and portfolio management.

3.3.2 Levels of portfolio management

We have already mentioned in Chapter 1 that the term ‗portfolio management‘

has many meanings in different contexts. But this is true even within the context

of managing software development. Just as the software product management

competence model implicitly referred to product portfolio management as

‗portfolio management‘, different experts even within the agile community are

using the term to refer to different kinds of decision-making.

Using the Cycles of Control framework (Rautiainen et al. 2006) as a basis, man-

aging software development can be viewed as consisting of multiple nested

planning horizons. This idea and its link to portfolio management is illustrated

in Figure 3.2 and explained below.

Figure 3.2: Levels of portfolio management in agile software development

As depicted in Figure 3.2, there is a different kind of ―portfolio‖ to manage on

different planning horizons. In business management, decisions are made re-

garding the investments into the current and possibly new products and services

offered by the company, in other words, the product portfolio. As we have al-

ready discussed, this portfolio management is product portfolio management.

One planning horizon down, when managing a single product/service offering

(the product management cycle in Figure 3.2), decisions are made regarding the

epics and features to be developed in the current and upcoming releases. Going

further down the cycles, in managing a release project, there is a portfolio of

features that are planned to be in the release, as well as other work that needs to

be taken care of for a successful release. On the level of an individual team and

development iteration, the portfolio of work is made up from the committed

stories as well as possible other duties the team members may have. An individ-

Chapter 3: The Gap in the Literature

49

ual developer has to make decisions on what tasks (some of which may or may

not be related to the release he is working on) he will take up and when as part

of his personal portfolio.

The levels of agile portfolio management are further discussed in Part III in Sec-

tion 8.1. But next, we elaborate on development portfolio management, as get-

ting it to work is in the heart of linking product and portfolio management with

agile software development.

3.3.3 Development portfolio management

By the software development portfolio (or development portfolio, or simply

portfolio for short) we refer to the set of ongoing and upcoming development

activities that require attention from the product development and/or technical

resources; see Figure 3.3 below.

Figure 3.3: Software Development Portfolio

Examples of different types of development activities – or just activities for

short – are release-based development, customer-specific development, main-

tenance, deliveries, customer service and consulting (see Figure 3.4 below).

Figure 3.4: Development activities

Software development portfolio management (or portfolio management for

short) is the decision-making process for updating and revising a business‘s de-

velopment portfolio, that is, the list of active and planned development activities

Chapter 3: The Gap in the Literature

50

that require the development resources‘ attention (see Figure 3.5). In portfolio

management, new projects are evaluated, selected and prioritized, existing

projects may be accelerated, de-prioritized or killed, and resources are allocated

to and reallocated within active projects (Cooper 2009).

Figure 3.5: Development portfolio management

3.3.4 An example development portfolio

Figure 3.6 below illustrates an example development portfolio from HardSoft.

Figure 3.6: A snapshot of the development portfolio at HardSoft

Chapter 3: The Gap in the Literature

51

At HardSoft (see Figure 3.6 above) there currently are two ongoing release-

based product development projects (activities #1-MgmtTool 2.0 and #2-

HyperCalendar) and some people are involved in maintenance work (#3

Solving a problem at customer A). In addition, new functionality for one of

the major products of the company is being developed in a project for a key

customer who has in a separate contract agreed to pay for it (#4 MgmtTool

New Feature X for Customer B). Some attention is being spent on optimiz-

ing the platform used by both of the major products of the company (#5

Tech. platform optimization). A couple of people are to conduct two train-

ing days to get a key customer started on using the MgmtTool product (#6

Training at Customer B), and are preparing for these. To get the company

some visibility, the same guys are also to hold lectures at the local technical

university (#7) based on largely the same material they are preparing for

the training days. While – luckily – there are no ongoing delivery projects, a

sale consisting of both delivery and the development of new functionality

required by the customer (Delivery and New Feature Y for customer C) is

likely to be closed in the near future. There has been talk about remaking

the user interface with a newer technology (UI Facelift), and it is unclear

whether somebody is – or should be – working on it. Finally, the warranty

period in which ―all found bugs are promised to be dealt with within a

week‖ (which means either producing a patch release or inventing and ex-

plaining a feasible work-around) is still going on for the key customer men-

tioned earlier (Warranty repairs for customer B), and at any moment,

some work might arise from that direction.

The above example is in our experience rather typical, and can be encountered

in many (if not most) organizations that develop software - whether, small, me-

dium-sized or larger. Note that while the depicted situation may seem chaotic or

difficult to manage at best, the organization in question is actually already doing

quite well in terms of structuring its development portfolio – something that we

will return to in Part III. This is because it has actually defined what activities are

ongoing (or in sales or on hold), as well as the distinct types of development

activities (to be explained in Part III).

52

PART II: ASSESSING THE

HEALTH OF YOUR PORTFOLIO

MANAGEMENT
Before you start an initiative to introduce or improve a develop-

ment portfolio process in your organization you should have a

solid picture of the current state of affairs. This part describes a

method you can use to assess the health of your portfolio man-

agement processes. We call the method development portfolio

health barometer study (HB). HB has been developed over the

years by the researchers of SoberIT’s Software Process Re-

search Group (SPRG). The study has over a period of five

years been performed from two to four times in eight different

organizations that vary in business area and size. In each and

every of those organizations we have uncovered things that the

organization has found important and interesting. We start this

part by describing the theoretical background behind the health

barometer study in Chapter 4: The Portfolio Management

Health Barometer. In Chapter 5: Performing a Portfolio Man-

agement Health Barometer Study we give concrete guidance

on how you can perform a health barometer study in your or-

ganization. In addition to the theoretical background and the

study method, we have also developed a tool to assist in HB.

The use of this tool is described in Chapter 6: The Health Ba-

rometer Tool.

Chapter 4: The Portfolio Management Health Barometer

53

Chapter 4: The Portfolio
Management Health Barometer

Jarno Vähäniitty

One of the best ways to assess your current situation in terms

of product and portfolio management and their (lack of) connec-

tion with the development is to examine the health of your de-

velopment portfolio management process. The Portfolio Man-

agement Health Barometer helps you assess whether your or-

ganization needs improvement, and if so, where you should

start the improvement work. Section 4.1 explains in more detail

the Health Barometer and the key ideas behind it, while sec-

tions 4.2-4.4 describe the actual issues measured by the Health

Barometer as well as the theoretical underpinnings of why

measuring these issues is important.

4.1 Examine your development portfolio

management to find out where you stand

Software engineering literature is ripe with different approaches for assessing

your development processes. Some of them aim towards certification and are

based on a standard or the CMMI framework, while others are more interested

in, e.g., trying to sort out how agile your development teams really are.

But, if we leave aside asking from your customers, we have found out that per-

haps the best way to get an understanding of your real capability in the area of

producing working good-enough solutions with real value is to examine the

health of your development portfolio management process. This is because of its

crucial role in enacting your strategy via resource allocation, as well as providing

feedback from development to the business and strategy people.

Towards this end, we have developed the Portfolio Management Health Baro-

meter. The Portfolio Management Health Barometer (Health Barometer or HB

for short) is a structured and systematic way of assessing the adequateness of

the current practices for development portfolio management over time.

The Portfolio Management Health Barometer is conducted for an organization

as a study containing a questionnaire to be answered and in-depth interviews.

The minimum needed for a study, in principle, is a single person to answer the

Chapter 4: The Portfolio Management Health Barometer

54

questionnaire, but that rarely produces quality results. The largest studies we

have conducted consisted of having some 30 people answering the question-

naire and a third of them interviewed, which provided very useful results. De-

tailed instructions for conducting Health Barometer studies and on using the

accompanying open source survey tool follow in Chapter 5 and Chapter 6.

The Health Barometer is based upon the fact that portfolio management deci-

sions are always made, sometimes consciously but also inadvertently, through

inaction, or by accident. Thus, the lack of an explicit portfolio management

process does not necessarily cause problems: the mix of ongoing activities in a

small organization may be sufficiently simple to be managed for each project or

even without formal project management. For example, if the ongoing activities

have no resource- or deliverable dependence, explicit portfolio management

may not be needed. To assess whether an organization is actually suffering from

the lack of explicit portfolio management, we need to know what symptoms oc-

cur in conjunction with inadequate portfolio management. If an organization

exhibits many or most of such symptoms but does not intentionally or explicitly

practice portfolio management, it is reasonable to propose that explicit portfolio

management could be beneficial.

The most important function of the Portfolio Management Health Barometer is

to record how the development portfolio management is being managed along

with the health of the potential problem areas as perceived by the participants,

and use these as a baseline for future HB rounds to measure the effectiveness of

improvement efforts. However, it serves several other purposes as well (see Fig-

ure 4.1 below).

As illustrated in Figure 4.1, conducting a Health Barometer study has shown to

raise the participants‘ (or subjects‘) awareness of the development portfolio

management process (or the lack of it), all the issues that may be affected by it,

as well as what factors increase the need for an explicit portfolio management

process. From a research standpoint, the HB rounds we have conducted have

provided us valuable data on how people of different roles and seniority view

these issues10.

10

 These results have not yet been published and thus are out of the scope of this book.

Chapter 4: The Portfolio Management Health Barometer

55

Figure 4.1: The Portfolio Management Health Barometer serves many purposes

Content-wise, the Health Barometer consists of four main sections: demograph-

ics, hereditary factors, lifestyle, and symptoms (see Figure 4.2 below).

Chapter 4: The Portfolio Management Health Barometer

56

Figure 4.2: The Health Barometer measures demographics, hereditary factors, lifestyle,
and symptoms

Demographics contain questions on the respondent‘s responsibilities, team,

where their work place is physically located, duration of employment, and the

profitability of the company. While the demographics section does not contain

questions about the size of the organization that is being assessed – mainly be-

cause we don‘t want to bother the respondents with unnecessary questions that

are better answered via other mechanisms – you should record this informa-

tion!

By hereditary factors11 we refer to organizational attributes that are outside the

domain of development portfolio management, but increase the need for more

rigorous development portfolio management if symptoms are to be avoided; for

example, appropriateness of organization structure, reward systems, organiza-

tion size, and business model. Lifestyle refers to how well the development port-

folio is structured, and the actual processes and practices used for development

11

 Note, that while changing hereditary factors may be difficult or painful, it is by no means im-
possible –think of epigenetics…

Chapter 4: The Portfolio Management Health Barometer

57

portfolio management. By symptoms we refer to problems that in the literature

have been associated with inadequate portfolio management (Vähäniitty, Rau-

tiainen & Lassenius 2010), for example, late decision-making, inefficient re-

sourcing and lack of focus.

With the exception of demographics, the specific contents of the main sections

of the Health Barometer are explained in more detail in Sections 4.2-4.4 below.

4.2 Hereditary factors

The hereditary factors measured by the health barometer are illustrated in Fig-

ure 4.3 and explained in Sections 4.2.1-4.2.7 below.

Figure 4.3: Hereditary factors measured by the Health Barometer

Note that some of the hereditary factors are such that having them is not ‗good‘

or ‗bad‘ as such. For example, small companies often have multiple roles and

responsibilities per person (especially for the key people), which is the way it

Chapter 4: The Portfolio Management Health Barometer

58

should be. In the case of hereditary factors, a ‗bad‘ score (see Section 5.5.1)

simply means that on the average, leading a healthier lifestyle (that is, having a

more rigorously structured development portfolio and an explicit portfolio

management process) is likely to be beneficial for overall success.

4.2.1 Leveraging customer-specific work for product development

The statement for leveraging customer-specific work for product development

is:

New products or features are developed in customer-specific projects

Often, especially in small companies, new products and/or features are devel-

oped for a specific customer at first in order to share risk and generate revenue.

Note that while the statement refers to ‗projects‘ for the sake of clarity, it may be

that only some of customer-specific work that produces useful output from the

perspective of the offering(s) are managed as explicit projects. This further in-

creases the need for explicit portfolio management.

4.2.2 Multiple roles and responsibilities

In the companies we have seen, the development people often have been work-

ing on many activities besides software development (for example, sales sup-

port, maintenance, deliveries, customer service, and consulting). The statement

for assessing this is:

Most of our development people have a broad work profile (e.g. they participate in
many of the following: product development, customer projects, project manage-
ment, sales / sales support, customer support, consulting, deliveries, training, etc.)

The more people have multiple roles and responsibilities, the more there is need

for rigor in development portfolio management (Vähäniitty, Rautiainen & Las-

senius 2010). This is partly because of the lost focus resulting from trashing be-

tween roles and activities. When this factor is combined with leveraging cus-

tomer-specific projects for product development (see Section 4.2.1 above), rigor

is truly needed. This is because the multiple roles of the employees are many

times inherently conflicting (Vähäniitty & Rautiainen 2005). For example, the

product manager at one of our case companies simultaneously acted as the

manager of a certain customer-specific development project and recognized

himself as biased toward accepting requests from his own customer with a less

thorough consideration for the overall direction to which the product should

head.

4.2.3 Dependency on short-term cash flow

The majority of software companies either are not able to acquire or simply do

not wish significant external funding (Rönkkö et al. 2009), leaving them more

Chapter 4: The Portfolio Management Health Barometer

59

or less dependent on short-term cash flow. This factor is measured with the fol-

lowing statement:

A downswing in cash flow is quickly reflected in the ability to pay salaries

While long-term product and business goals should set the framework for tak-

ing action, generating short-term cash flow and customer satisfaction cannot be

neglected. Without rigorous portfolio management to maintain the delicate bal-

ance, significant amounts of effort can be spent on activities that ultimately are

less important.

Also, many times at least some of the services a software company offers are not

related to the products offered. For example, at our fictional example company

HardSoft (that is based on a combination of experiences from real companies),

some developers were performing management consulting, and a significant

percentage of the entire development staff was contracted to other companies

for longer-term software development projects. This, again, increases the need

for explicit portfolio management.

Dependency on short-term cash flow, together with Leveraging customer-

specific work for product development (Section 4.2.1) and having Multiple roles

and responsibilities per person (Section 4.2.2) are in our experience the three

most important factors that cause even small companies to have a need for ex-

plicit portfolio management (Vähäniitty, Rautiainen & Lassenius 2010).

4.2.4 Clarity of strategy

Development portfolio management, whether explicit or implicit, is the main

mechanism for enacting strategy. Clarity of strategy is measured with the fol-

lowing statements:

Strategy and long-term plans are clearly defined

Strategy and long-term plans are clearly communicated

While even rigorous portfolio management cannot really function based on an

unclear strategy, with implicit portfolio management the less-than-optimal situ-

ation of having an unclear strategy goes unnoticed much longer. Also, if the

strategy has not been clearly communicated, it becomes harder for the devel-

opment people to make the right decisions on their own and without escalating

decisions upwards, which again increases the need for effective portfolio man-

agement.

4.2.5 Appropriateness of incentive systems

The incentives of the managers, sales people or even developers may be tied to

their performance in a dysfunctional way from the perspective of effectively

Chapter 4: The Portfolio Management Health Barometer

60

managing multiple activities as a portfolio. This is measured with the following

statement:

Developers, project managers, sales, or senior managers are evaluated and re-
warded in ways that are harmful to the whole

Over the last couple of decades, the financial community has become increa-

singly preoccupied with short-term success and a desire for fast profits12. This

can be seen in the way senior people are often measured, and consequently,

many senior managers have become ―speed demons‖, placing far too much em-

phasis on accelerated time-to-market and cycle-time reduction. (Cooper & Ed-

gett 2003)

To maintain balance, middle management (and in turn, developers) may at-

tempt to procure the maximum time possible for projects and tasks, because

their reporting and reward systems in turn may evaluate success according to

how well the estimates are met. (Cerveny & Galup 2002, Dooley, Lupton &

O'Sullivan 2005). And, despite that the staff already seems occupied at all times,

management continues to take on additional work, as it does not wish to see an

opportunity to make money slip away (Payne 1995).

Personnel reward systems in most organizations may also be divisive rather

than integrative. Rewards based upon functional rather than organizational

goals13 easily work against the whole rather than for it (Payne 1995). For exam-

ple, a department may be reimbursed for engineering hours spent on contracted

projects, while non-project time, such as meetings, improvement activities, edu-

cation, and slack time are accounted as costs. In this situation, the financial in-

centive is to spend as many engineering hours as possible on each singular

project and there are little financial incentives for productivity improvements

(Engwall & Jerbrant 2003).

4.2.6 Appropriateness of organizational structure

If the organizational structure is inappropriate, product development (or vice

versa, functional responsibilities) may suffer (Cooper, Edgett & Kleinschmidt

2000). The health of the organizational structure is measured with the following

statement:

Our organizational structure supports our current operations

12

 While the inherently and tragically flawed mantra ―the goal of an enterprise is to maximize
shareholder value‖ is starting to be replaced with healthier alternatives (see e.g. Martin: The Age
of Customer Capitalism. Harvard Business Review Jan-Feb 2010), it will probably take a while
before these pervade the mainstream; so, stay awake here!
13

 Every now and then we interview someone who, when explaining his answer for this state-
ment, starts to wonder whether the personal performance should be rewarded based on a more
granular scheme than simply tying possible bonuses to organization-wide goals such as revenue.
And no, such a system is likely to be a very bad idea in terms of the performance of the whole
(Larman & Vodde 2010).

Chapter 4: The Portfolio Management Health Barometer

61

Compared to the day-to-day project priorities, functional responsibilities may

be viewed as an extra workload (Dooley, Lupton & O'Sullivan 2005) – or vice

versa. Functional budgets may be misaligned with project resource assignments,

or there is a misalignment between project skill requirements and departmental

resources (McGrath 1996). Lack of adequate cross-functional working is also

common (De Reyck et al. 2005), and there may be confusion and conflict over

roles and responsibilities between functional- and project managers (Dooley,

Lupton & O'Sullivan 2005).

4.2.7 Health of individual activities' practices

While insufficient for ensuring portfolio management efficiency, the health of

management practices on the level of individual activities that take up time from

the development people remains crucial (Martinsuo & Lehtonen 2007). This is

measured with the following statement:

Each of our different activity types (e.g. product development projects, customer-
specific development, maintenance, deliveries, etc.) has its own practices that work

Note that despite the importance of practices on the level of individual activities,

you should not wait to perfect them before setting up explicit portfolio man-

agement. On the contrary, establishing the rudiments of portfolio management

is actually a prerequisite for effective single-project management (Vähäniitty,

Rautiainen & Lassenius 2010). Even if you have the best of project management

practices, trashing between projects and other tasks (caused to a large extent by

inadequate or missing portfolio management) can render them useless.

4.3 Lifestyle

The Health Barometer measures Lifestyle in terms of two categories: Develop-

ment portfolio structure (Section 4.3.1) and Development portfolio management

process and practices (Section 4.3.2); see Figure 4.4 below.

Chapter 4: The Portfolio Management Health Barometer

62

Figure 4.4: Lifestyle as measured by the Health Barometer

A more detailed description on how to improve your lifestyle follows in Part III

of this book.

4.3.1 Development portfolio structure

By development portfolio structure we refer to the basic elements used in go-

verning the multitude of potential, upcoming, on-hold, and ongoing develop-

ment activities. Without a portfolio structure, it is almost certain that one will

Chapter 4: The Portfolio Management Health Barometer

63

end up with a fire-fighting mentality (see Section 4.4.2 for details) as far as pri-

oritization is concerned.

Portfolio structure consists of identifying the types of development activities

(Section 8.2.3), setting and monitoring target spending levels (Section 8.2.4),

setting the relative priorities of the ongoing activities (Section 8.2.7), setting the

criteria for selecting and prioritizing development activities (Section 8.2.7), and

understanding the possible dependencies between the activities, and finally vi-

sualizing the ‗big picture‘ of ongoing activities (Section 8.2.2). Table 4.1 presents

the statements used to measure the health of these issues.

Table 4.1: Statements used to measure development portfolio structure

Issue Statement(s)

Identification of
development activi-
ty types

We have identified the different types of activities development
people spend their time on (e.g. product development projects,
customer-specific development, maintenance, deliveries, etc.)

Ability to see the
'big picture''

Business people are able to see the 'big picture' of ongoing
activities (a.k.a. the development portfolio)

Development people are able to see the 'big picture' of ongoing
activities (a.k.a. the development portfolio)

Target spending
levels

I understand how much time, from a business perspective, I
should spend on different types of activities

Criteria for selecting
and prioritizing ac-
tivities

We have criteria for prioritizing our ongoing development activi-
ties

Prioritization of the
portfolio

I understand the priorities between ongoing activities (e.g.
project X vs. project Y, project X vs. support request Z, etc.)

Understanding of
dependencies

I understand the dependencies of the ongoing activities

4.3.2 Development portfolio management process and practices

With respect to the process & practices for development portfolio management,

the issues and the corresponding statements used to measure them are dis-

played in Table 4.2.

Chapter 4: The Portfolio Management Health Barometer

64

Table 4.2: Statements used to measure the process and practices for development port-
folio management

Issue Statement(s)

Clarity of role and re-
sponsibility definitions

We have defined who are responsible for development port-
folio management

Clarity of roles and re-
sponsibilities in practice

It is clear who should, in different situations, participate in
development-related decision making (e.g. in the middle of
a project, when an urgent maintenance request arrives,
when making an offer, when deploying a product, etc.)

Managing the devel-
opment activities as an
explicit portfolio

All the ongoing and immediately upcoming activities that
require attention from the developers are managed as an
explicit portfolio

Reflecting the portfolio
to the company's strat-
egy

We actively reflect the content of the development portfolio
to the strategy of the company

Considering the big
picture in decision mak-
ing

In decision making we mainly consider individual activities
and do not take the "big picture" into account

How to do agile-compatible portfolio management is explained in Part III. Now,

let‘s look at the symptoms that are associated with inadequate portfolio man-

agement.

4.4 Symptoms

In order to get an overview of the symptoms associated with inadequate portfo-

lio management, we conducted a systematic literature review (Vähäniitty, Rau-

tiainen & Lassenius 2010) and distilled the findings into eight problem areas

that are symptomatic of inadequate portfolio management (see Figure 4.5 be-

low).

The symptoms are often the most tangible and pressing issues. They can usually

be easily observed in a company. They are: 1) excessive multitasking; 2) fire-

fighting; 3) overload; 4) ineffective decision making, 5) missing strategic align-

ment; 6) slipping schedules; 7) negative changes in performance; and 8) per-

ceived need to improve project management. The symptoms and the statement

groups used to assess the degree of their presence are further described in Sec-

tions 4.4.1-4.4.8 below.

Chapter 4: The Portfolio Management Health Barometer

65

Figure 4.5: Symptoms of inadequate portfolio management as measured by the Health
Barometer

4.4.1 Excessive multitasking

Assigning the same individual to multiple parallel projects enables organiza-

tions to use the person‘s expertise for more than one project (McDonough &

Spital 2003) and reduces the time that resources are idle (Zika-Viktorsson,

Sundström & Engwall 2006, Laslo & Goldberg 2008). The best developers may

find themselves assigned to more than four or five concurrent projects (Wheel-

wright & Clark 1995, Wheelwright & Clark 1992) or crisis management duties

(Wheelwright & Clark 1992). People assigned to too many concurrent projects

start working in a time-sharing manner in an attempt to show progress on all

projects which they are working on (Anavi-Isakow & Golany 2003). The comple-

tion of each project is slowed down (Cerveny & Galup 2002), and time is lost

due to learning, forgetting, and re-learning (Ash & Smith-Daniels 2004, DeMar-

co 2001). More time is needed for activities with low value such as update meet-

ings and problem-solving meetings (Cerveny & Galup 2002, Wheelwright &

Clark 1995, Kaulio 2008). Excessive multitasking has also been reported to re-

Chapter 4: The Portfolio Management Health Barometer

66

sult in perceiving work as disrupted and fragmented, with less opportunities for

recuperation, competence development, or improvement of work routines (Zi-

ka-Viktorsson, Sundström & Engwall 2006).

The issues and the corresponding statements used to measure excessive multi-

tasking are listed in Table 4.3.

Table 4.3: Statements used to measure excessive multitasking

Issue Statement(s)

Number of ongoing
activities

How many different activities (product development projects,
customer projects, etc.) are currently ongoing in your company?

Number of your
own responsibilities

In addition to my main responsibility, I also have other, time-
demanding responsibilities

Compromised
throughput due to
optimized resource
utilization

We have too many parallel ongoing activities

Amount of parallel
work in general

A single person is usually assigned to only one activity (e.g. a
project) at the same time

Intentional limiting
of work-in-progress

We complete one thing at a time and don't shift our attention
from one incomplete task to another

4.4.2 Firefighting

Firefighting refers to the reactive and unplanned allocation of resources to solve

and fix problems that are discovered late in a project or during maintenance.

Firefighting is a self-reinforcing phenomenon and sometimes becomes the de

facto process for resource allocation: activities must be claimed to be urgent if

they are to be attended to at all (Repenning 2001). While the management per-

sonnel should have the flexibility to reallocate resources (Cooper, Edgett &

Kleinschmidt 1997, Blichfeldt & Eskerod 2008), reactive resource redistribution

tends to produce unanticipated negative effects on other projects in the portfolio

(Engwall & Jerbrant 2003). The issues and the corresponding statements used

to measure firefighting are listed in Table 4.4.

Chapter 4: The Portfolio Management Health Barometer

67

Table 4.4: Statements used to measure firefighting

Issue Statement(s)

Resource allocation
by fire fighting

“Fire fighting” describes our work in practice

Cascading effect of
resourcing changes

Changes in resourcing for one activity (e.g. a project) cause
uncontrolled changes in other activities

Ignoring resource
allocations

Resources are being shifted from one activity (e.g. a project) to
another regardless of previously agreed assignments

Flexibility of re-
sourcing

Resource commitments are too rigid for leveraging suddenly
emerging opportunities

4.4.3 Overload

Resource demands are commonly met by having people work overtime because

of the effectiveness of this approach in the short term (Payne 1995, DeMarco

2001). However, often too few people are simply trying to accomplish too much

(Cooper, Edgett & Kleinschmidt 2000, Blichfeldt & Eskerod 2008)(De Reyck et

al. 2005, Englund & Graham 2001). A typical overload may be two to three

times the actual capacity of the workers (Wheelwright & Clark 1995, Wheel-

wright & Clark 1992). Overload may also occur when a significant amount (up to

50%) of development resource effort is spent on tasks that the developers are

not supposed to attend to or that are perceived to have a marginal impact in

terms of resource expenditure (Wheelwright & Clark 1992, Blichfeldt & Eskerod

2008). The issues and the corresponding statements used to measure overload

are listed in Table 4.5.

Table 4.5: Statements used to measure overload

Issue Statement(s)

Working overtime I work overtime

Pipeline manage-
ment by push

When selling or making offers we do not consider how to re-
source the work in practice

Launch frequency
of new activities

New activities (e.g. projects) are launched too often

Impact of overload
to work quality

Our employees have too much to do and quality of work suffers
from it

Sufficiency of re-
sources

We have enough resources in proportion to the amount of work

Chapter 4: The Portfolio Management Health Barometer

68

4.4.4 Ineffective decision-making

The term ineffective is used here as an umbrella term for several issues: 1) late,

2) toothless (e.g., lacking clout), and 3) misguided and/or uninformed portfolio-

level decision making.

First, the senior management may lack the time or the commitment to partici-

pate in portfolio decision making (De Reyck et al. 2005), provide the necessary

guidelines (McGrath 1996), or give feedback to guide the projects in the right

direction (Wheelwright & Clark 1995). Thus, they deal with problems at the last

moment only, if at all (Wheelwright & Clark 1995). As a result, development de-

cisions with strategic implications have to be made by the frustrated developers

(McGrath 1996).

Second, ongoing projects may be very hard to terminate (Cooper & Edgett

2003). Projects are seldom stopped (Elonen & Artto 2003), and when they are,

they may be put in a ―holding tank‖, an endless list of projects recognized as in-

ferior but which nobody wants to terminate (Cooper & Edgett 2003, Payne

1995, Cooper, Edgett & Kleinschmidt 1997, Mader 2004, Cooper, Edgett &

Kleinschmidt 2001). The incentives of the managers or sales people may also be

tied to the projects in a dysfunctional way (Cooper & Edgett 2003, Payne 1995).

Third, a common situation is that no relevant data on which portfolio decisions

could be based have been collected (Cooper, Edgett & Kleinschmidt 2001).

Management may also be overwhelmed with all the possible ways to plot and

visualize relevant information (Cooper, Edgett & Kleinschmidt 1997), and the

information models used for portfolio-level decision making may imply a degree

of precision far beyond the reliability of the actual data (Levine 2005). The is-

sues and the corresponding statements used to measure ineffective decision

making are listed in Table 4.6.

Chapter 4: The Portfolio Management Health Barometer

69

Table 4.6: Statements used to measure ineffective decision making

Issue Statement(s)

Pruning of non-essential
activities

Activities (e.g. projects) are never killed

Management involve-
ment in decisions re-
garding activities

If time runs out, developers resolve by themselves what
can be left undone

Monitoring progress of
activities

The real status of activities is known in development portfo-
lio -level decision making

Rate of change of priori-
ties

The priority ranking of activities changes constantly

Management response
to problems

Management reacts to problems detected in activities (e.g.
projects) too late

Senior mgmt's involve-
ment in portfolio level
decision-making

Senior management is actively involved in portfolio-level
decision making

Health of the dialog be-
tween Business and
Development

The dialogue between Business and Development people
works

4.4.5 Strategic alignment

The ongoing mix of projects may not be strategically aligned (McGrath 1996) or

it may lack an apparent link to strategy or organizational goals (De Reyck et al.

2005, Englund & Graham 2001, Cooper, Edgett & Kleinschmidt 2001, Cooper,

Edgett & Kleinschmidt 2001). As there is no possibility to make firefighting or

project selection decisions in the context of strategy, divergence between indi-

vidual projects and the goals of the entire organization easily develops (Dooley,

Lupton & O'Sullivan 2005, McGrath 1996, Wheelwright & Clark 1992, Cooper,

Edgett & Kleinschmidt 2001). A portfolio consisting of many relatively small

projects of low value, such as small adjustments and modifications to existing

systems, has also been reported to be a sign of missing strategic alignment

(Cooper, Edgett & Kleinschmidt 2000, Cooper, Edgett & Kleinschmidt 2001).

The issues and the corresponding statements used to measure strategic align-

ment are listed in Table 4.7.

Chapter 4: The Portfolio Management Health Barometer

70

Table 4.7: Statements used to measure strategic alignment

Issue Statement(s)

Strategic alignment of
ongoing activities

Ongoing activities are in alignment with the company's strat-
egy

Significance of ongo-
ing activities

Ongoing activities are essential to our business

Portfolio balance: leve-
raging existing prod-
ucts

We have a sufficient amount of development projects that
incrementally improve existing products or services

Portfolio balance:
creating new business

We have a sufficient amount of product or service develop-
ment projects that aim for new business

4.4.6 Slipping schedules

Sometimes, projects are late (De Reyck et al. 2005, Wheelwright & Clark 1992,

Blichfeldt & Eskerod 2008), time to market is increased (Cooper, Edgett &

Kleinschmidt 2001, Cooper, Edgett & Kleinschmidt 2001), and development

cycle times are increased (Cooper, Edgett & Kleinschmidt 2000) because of in-

adequate portfolio management. Target dates do not become commitments,

because company workers know that the priorities will shift and the dates will

be revised again (Wheelwright & Clark 1995). The issues and the corresponding

statements used to measure slipping schedules are listed in Table 4.8.

Table 4.8: Statements used to measure slipping schedules

Issue Statement(s)

Progress of activities Ongoing activities are behind schedule

Activity progress sta-
tus reporting

Progress of ongoing activities is reported optimistically

4.4.7 Change in performance

Negative changes in performance, visible from, for example, project failures and

disappointing project outcomes, are often associated with inadequate portfolio

management (Cerveny & Galup 2002, De Reyck et al. 2005). Performance may

suffer due to compromised project scope and quality, too many low- or high-risk

projects, or insufficient penetration of the market. Product launches may be is-

sued in an indifferent manner, and the overall failure rate of products and/or

features is high (Cooper, Edgett & Kleinschmidt 2001, Cooper, Edgett & Klein-

schmidt 2001). The issues and the corresponding statements used to measure

changes in performance are listed in Table 4.9.

Chapter 4: The Portfolio Management Health Barometer

71

Table 4.9: Statements used to measure failures and poor profitability

Issue Statement(s)

Performance of the de-
velopment organization

From a business viewpoint, development performs its
duties well

Improvement in software
development capability

Our capability to produce high-quality software has im-
proved during the past year

4.4.8 Perceived improvement needs

Inadequate portfolio management may not be recognized as a cause of the

troubles experienced. Instead, the personnel may believe that better project

management, e.g., more detailed planning or more precise effort estimates,

would help (Cerveny & Galup 2002). While efficient management of individual

projects has been found to be important for efficient portfolio management, it is

not sufficient to guarantee such efficiency (Martinsuo & Lehtonen 2007). The

issues and the corresponding statements used to measure perceived improve-

ment needs are listed in Table 4.10.

Table 4.10: Statements used to measure perceived improvement needs

Issue Statement(s)

Investing in individual
activities' practices

We should invest more in improving the practices of individual
activities (e.g. project mgmt., team practices, deployment
processes, sales processes, customer support, etc.)

Investing in devel-
opment portfolio
mgmt practices

We should invest more in improving development portfolio
management (e.g. prioritizing activities, linking strategy with
daily work, structuring the development portfolio, etc.)

Chapter 5: Performing a Portfolio Management Health Barometer Study

72

Chapter 5: Performing a Portfolio
Management Health Barometer

Study

Ville Heikkilä & Kristian Rautiainen

This chapter describes how you can perform a portfolio man-

agement health barometer study. The first section describes

how to prepare for a health barometer round, the second sec-

tion describes how to collect data, the third section describes

how to analyze the data and the fourth and final section de-

scribes how to visualize and present the findings from the

health barometer. Instructions are given for both the first round

and the subsequent rounds. The first round performed in an or-

ganization differs somewhat from the subsequent rounds, as

the results from the previous round are used as a reference to

find changes in the health levels.

5.1 Preparing for a Health Barometer study round

There are a few things you need to do to prepare for a Health Barometer (HB)

study round. Depending on whether it is the first round at your organization or

a consequent follow-up round, different details need taking care of. In general,

you need to select participants, prepare and open the survey, book interview

times, and prepare and send instructions. These are discussed in the following

sub sections. The terminology we use here refers to the HB tool which was used

in the ATMAN project, the details of which are discussed in Chapter 6. Naturally

you can use other survey tools available to you, but then you also need to map

the terminology to that context.

5.1.1 Selecting the participants

Before you do anything else, you should consider who should participate in a

HB round from your organization. The basic idea should be that more people

participate in the survey than in the interviews. Since each organization is

unique in this regard, it is not possible to give any concrete number of inter-

views which would suffice to uncover the root causes. However, we have found

that six to ten interviews per round usually suffice to uncover causes to the most

problematic areas, depending on the size of the organization. You should inter-

Chapter 5: Performing a Portfolio Management Health Barometer Study

73

view members from different parts of your organization, from different organi-

zational levels, and people with different kinds of work type (developers, man-

agers, testers, etc.) and at least two people with a similar work type and organi-

zational position to identify any outliers14. If your organization works on many

projects, one idea for sampling participants is to include people that are in-

volved in the same project(s). In that way the participants are more likely to re-

fer to the same context when choosing their answers, providing less ―noise‖ in

the answers.

For subsequent rounds, we recommend that you include as many people from

the previous round as possible, especially if you choose the option in the Health

Barometer survey software to show the participant‘s answers from the previous

round. We have found that this produces results that are more comparable than

results when you include a lot of new people in consecutive rounds.

5.1.2 Preparing and opening the survey

If it is the first survey you are conducting, you need to create the questionnaire.

The steps for this are:

1. Create the Organization you are studying in the HB tool.

2. Create a new Round for your Organization by choosing the ATMAN Default

Round and cloning it to your Organization. In this way your starting point is

the set of Sections, Issues, and Statements which were created and used in

the ATMAN project. These are explained in Chapter 4 and Chapter 6. Leave

the Round in Draft state.

3. Check the list of Responsibilities and groom it to match your Organization. If

some Responsibilities are missing from the list, you can create new ones.

4. If you feel like adding new Statements, go ahead. However, be careful about

creating too long a questionnaire.

5. Tweak the questionnaire to your liking or just go ahead and use the ATMAN

Default. When you are ready, change the State to Started to open the ques-

tionnaire for the participants. Remember to Save.

6. If you are using some other tool, check the ATMAN Default questionnaire in

English and Finnish in Appendix B and Appendix C.

On subsequent rounds you do not need to create your organization and you

should use your previous round as basis for cloning. In this way any tweaks you

might have made to the questionnaire are included. You can also choose wheth-

er you want to show the answers of the previous round to the participants when

they are filling in the questionnaire. This is done by selecting the reference

14

 Outlier is a data point that is greatly different from the rest of the results. For example, an
employee that has received a notice of termination might not represent his/her demographic
group accurately. Naturally, you should avoid interviewing such employees.

Chapter 5: Performing a Portfolio Management Health Barometer Study

74

round to be the previous round number or ―(none)‖ for not showing previous

answers. Otherwise, the steps described above apply also to subsequent rounds.

5.1.3 Booking interview times and the dissemination time

Now you have opened your questionnaire. Before you send instructions to the

participants, you need to book the interview times and the dissemination time.

Of these the interview times are more important, because you need to ensure

that the selected interviewees are available. The dissemination time can always

be agreed later on.

You should reserve at least one and half an hour for the interviews. For the first

round you may even consider reserving two hours. On subsequent HB rounds

the issues are more familiar which makes for a speedier interview. For the per-

son(s) responsible for performing the interviews it may be smart to stack as

many interviews on the same and/or consecutive days as possible as the analysis

can then be started with all the data fresh in mind.

The dissemination time should be chosen so that as many people can attend as

possible. Discussing the results and improvement suggestions gives a chance to

find more results and improvement suggestions and refine the existing ones,

creating an atmosphere of shared ownership. In that way the dissemination

event is also an important part of the analysis of the results and the whole port-

folio management improvement effort.

5.1.4 Preparing and sending instructions

While answering a questionnaire in itself is no rocket science and thus would

not require instructions, four important areas need addressing in the instruc-

tions: confidentiality, terminology, deadlines, and where to go to find the survey

questionnaire. If you want honest answers, you need to provide sufficient confi-

dentiality to the participants. In some organizations this may not even be an

issue, but at least give it a thought. In the ATMAN project the context for confi-

dentiality was straightforward. The researchers performed the interviews and

analyses and only reported aggregated findings without disclosing answers from

any single participant to the companies. For a self assessment of an organiza-

tion, there needs to be a trusted person in charge of the data, so that the partici-

pants can feel safe in giving their answers.

At least for the first HB round the terminology may not be familiar and thus

needs to be explained in the instructions. For the consequent rounds, there may

be some changes in how your organization interprets the terminology, and those

should naturally be explained.

Deadlines for answering the questionnaire should be set. Otherwise you may get

very few answers. For the interviewees the deadline should be before the agreed

interview time, so that there are answers to walk thorough in the interview.

Chapter 5: Performing a Portfolio Management Health Barometer Study

75

However, we have also conducted interviews where the interviewee had not

filled in the questionnaire beforehand. The interviewee ―answered aloud‖ during

the interview, which also seemed to work well.

The final important detail in the instructions is a pointer to where the question-

naire can be found. You should also include some motivation in the instructions.

In Appendix A we provide an example of the instructions used in the ATMAN

project that you can use as a starting point for your own instructions. When the

instructions are ready, you should send them to all participants. Depending on

the level of confidentiality you need, consider using the bcc field in your e-mail

software.

5.2 Gathering Health Barometer data

5.2.1 Health Barometer questionnaire

The purpose of the Health Barometer questionnaire is to gather quantitative

information from the people in your organization about the current state of de-

velopment portfolio management. You should try to get as many people as poss-

ible to answer to your questionnaire, since people with different backgrounds

can produce interesting results. You might feel that, for example, technical writ-

ers do not need to participate, but we still recommend that you include them at

least during the first Health Barometer round. During the second and following

rounds you may want to narrow your selection of participants to those who pro-

vided the most interesting results during the previous rounds, although there is

little harm15 in inviting your whole organization to answer to the questionnaire.

5.2.2 Health Barometer interviews

The goal of the health barometer interviews is to uncover the root causes of the

most problematic issues in the organization. Every interviewee should have

completed the Health Barometer questionnaire before being interviewed. Before

starting the interview have the questionnaire answers from the interviewee open

and visible for you and the interviewee. Health barometer interviews are per-

formed in a semi-structured fashion in which the questionnaire provides the

interview structure. You start with asking the interviewee to explain what

his/her responsibilities in the organization are. You then ask the interviewee to

explain his/her answer to each questionnaire statement one-by-one. During the

second and later rounds you can also ask why the interviewee has changed

his/hers answer to the statement (if it has changed). You should either record

the interview for later transcription or write down the answers immediately. For

the sake of analysis of the data you should also record the issue number the in-

15

 Filling the Health Barometer questionnaire naturally requires some effort from the respon-
dents. We have found that 30 minutes is typically sufficient for filling the questionnaire. In addi-
tion, analyzing the questionnaire can take more time when you have more answers.

Chapter 5: Performing a Portfolio Management Health Barometer Study

76

terviewee is answering to so you can easily connect the interview answers to the

numerical data you get from the questionnaire. If time allows, feel free to ask

follow-up questions to questionnaire statement questions when you think the

interviewee might produce additional insights if probed further.

One way to probe further into a question during a semi-structured interview is called

laddering. You perform laddering by asking follow-up questions using the interroga-

tive words ―why‖ and ―how‖. Why-questions allow you to climb up to more abstract

answers while how-questions allow you to climb down to more concrete answers. A

helpful example follows:

A: ―After each day I record my working hours before I leave the office.‖

Q: ―Why do you record your working hours?‖

A: ―I don‘t really know, but we are told to record our hours each day.‖

Q: ―How do you record your working hours?‖

A: ―I open our timesheets program and enter my working hours there‖

During the first Health Barometer round in your organization you should try to

cover every questionnaire statement to build a solid baseline for further rounds.

During the second and later rounds you should concentrate on the issues which

have changed most, or to those statements that you have tried to affect but

which have nevertheless stayed the same or even gone worse. We have found

that one and half an hour to two hours per interviewee is usually enough time to

cover every statement and also perform some additional probing. If you have

less time during the first Health Barometer round you should concentrate on

the issues that are most interesting based on the questionnaire analysis results

(see Section 5.3). We have conducted interviews lasting 45 minutes, but those

gave us no opportunity to investigate any issue deeper and some issues needed

to be skipped completely, leaving us with many unanswered questions in the

analysis. Therefore we recommend that you try to stick to reserving at least one

and half an hour for each interview.

It is always useful to ask the interviewee to provide concrete examples of what (s)he

means. In this way you can avoid misunderstandings between the interviewer and the

interviewee.

One useful concept is the ―theoretical saturation point‖, which is the point after

which new data doesn‘t add new significant findings. During the interviews you

might get a feeling that the answers you get to an issue do not reveal any new

information about the issue. In such case you should skip the issue in further

interviews and concentrate on those issues you think you need more informa-

tion on.

Chapter 5: Performing a Portfolio Management Health Barometer Study

77

In the ATMAN project we interviewed from 4 to 11 participants when 12 to 32 had

answered the survey. However, we found that interviewing 4 respondents was not

enough and we would have preferred to have more information regarding many is-

sues.

5.3 Analyzing the health barometer data

5.3.1 Preparing the questionnaire data

It is important to remember that some statements in the health barometer ques-

tionnaire are inversed. If your survey software doesn‘t automatically inverse the

results from the inverse statements, you should take care to do it yourself before

you start the analysis of the numbers.

This section is written with the expectation that you use Microsoft Excel spread-

sheet tool to analyze the questionnaire results. You should keep the results sheet

as it is and make duplicates of the sheet for further manipulation of the data.

During the second and further rounds you should copy the original answers

sheet from the previous round to the same workbook with the current round

answers sheet to make the comparison between rounds fluent (see Section

5.3.4). Whenever you want to analyze a subset of the results you should dupli-

cate the original results sheet and conduct the analysis using the duplicate

sheet.

The file exported from the Health Barometer questionnaire software is in Microsoft

Excel file format. To make the analysis of numerical results of a health barometer

round as straightforward as possible the raw exported results need to be prepared for

analysis. The exported file contains only one sheet called answers. The sheet is in tabu-

lar format where each row contains either one issue or median of several issues. Each

column contains the answers of one respondent. You should copy the answers sheet

into a new sheet called numbers. The numbers sheet contains several columns which

we do not need for the numerical analysis. The ―Answer‖ column contains the num-

bers we are interested in, so you can delete ―Original‖, ―User comment‖ and ―Admin

comment‖ columns for each respondent.

5.3.2 Calculating and analyzing median and dispersion

The HB questionnaire uses Likert-like scale and the results should be analyzed

as ordinal level data. Calculate the median answer to each statement and the

dispersion of the answers using interquartile range16. Since the numerical an-

swers fall between 1 and 6, the interquartile range is between minimum of 0 and

maximum of 5. Typically interquartile range of 2,5 or over means that you

16

 Interquartile range is the difference between the 75% quartile and 25% quartile values.

Chapter 5: Performing a Portfolio Management Health Barometer Study

78

should look at the issue more closely. Figure 5.1 illustrates the relationship be-

tween median and interquartile range. Issues that have low dispersion are the

most straightforward to analyze, since most of the respondents agree on the cur-

rent situation. You should identify 3-5 most problematic (high median) issues

with low dispersion and try to find out the root causes for the problems by ana-

lyzing the interview responses to those issues (see Section 5.4).

Most statistical software packages have a function for calculating the interquartile

range. You can also calculate it using Microsoft Excel function QUARTILE: QUAR-

TILE(results;3) - QUARTILE(results;1) where results is the cells containing the results

of a single questionnaire statement.

Figure 5.1: The relationship between median and interquartile range

If you find issues with high dispersion you should try to identify commonalities

between the respondents who dissented from the majority. Typical commonali-

ties are related to organizational units, position in the organization, or the type

of job. For example, you might notice that the answers to the issue ―Working

overtime‖ have high dispersion but low median and further analysis could re-

veal that everyone who agreed to the statement belongs to the same team. You

should then look at the interview responses of the team members to find out

why they are working overtime (see Section 5.4).

5.3.3 Comparing demographics

In the previous section we tried to find demographic groups by analyzing the

data to identify commonalities between respondents. You can also define the

demographic groups before you look at the data. Group the respondents that

belong to the same demographic group and calculate the median answers and

dispersion for each group. By looking at the median and dispersion you can

identify issues that have a notably different median between the groups and a

low dispersion inside the group. Differences of one point or more in the median

Chapter 5: Performing a Portfolio Management Health Barometer Study

79

answer of the two respondent groups typically mean that there is notable differ-

ence of opinion between the groups. You should note such issues and try to find

explanations from the interview results. Some groups you could look at are res-

pondents with different types of jobs, for example developers versus managers,

and respondents from different workplace locations. Table 5.1 shows an exam-

ple of demographic group comparison. There is a 1,5 point difference in the me-

dian between managers and developers regarding issue ―Appropriateness of or-

ganizational structure‖, but the interquartile range (dispersion) of developers‘

answers is quite high. Thus you cannot conclude that developers in general

think the situation in much worse than the managers. The two-point difference

in the median regarding issue ―Clarity of roles and responsibilities‖ together

with the low interquartile ranges suggests that there is a clear difference of opi-

nion between the two groups regarding the issue.

Table 5.1: An example of a demographic group comparison

 MANAGERS DEVELOPERS

Issue Median Interq.
Range

Median Interq.
Range

Appropriateness of organisational structure 3,5 1 5 2

Clarity of roles and responsibilities in practice 5 0,25 3 1

5.3.4 Comparing Health Barometer rounds

When we compare two rounds of health barometer we are more interested in

the changes between the rounds and more specifically changes in the answers of

the respondents who participated in both rounds. Naturally such comparison is

only possible if you have a sufficient number of such respondents. In addition,

you should only include the answer of a single person to a single statement if the

person has answered to the statement on both rounds. If a person has not ans-

wered to the statement (empty result) or answered ―Don‘t know‖ (N/A result)

on either round you should exclude the person from the median and interquar-

tile range calculations of that statement. Analyzing the changes is straightfor-

ward; you simply compare the medians of the issues between the rounds to find

any notable changes and note those issues for the interview analysis (see Section

5.4). If you received enough answers to the health barometer questionnaire you

can also combine the demographic analysis and round comparison to identify

demographic groups that have changed their opinions between the rounds. Such

groups have great potential for interesting findings in the interview analysis.

Chapter 5: Performing a Portfolio Management Health Barometer Study

80

5.4 Analyzing the interviews

Interview analysis relies heavily on the intuition and insight of the analyzer. The

basic process is simple. You first arrange the transcribed interviews so that the

responses to each statement can be easily compared between the respondents.

We have found that having a large spreadsheet that contains all transcribed interviews

works well. We arrange the spreadsheet so that each column contains the answers

from a single respondent and each row contains the transcribed answer to one state-

ment.

Next, you should tag the statements that were identified as somehow interesting

in the questionnaire results analysis (see Section 5.3). For example, you should

try to find out what are the root causes for the most negative statements, why a

certain demographic group differs in opinion from the rest of the respondents,

or why some issue has improved or degraded notably between two health baro-

meter rounds. Especially you should look for similar answers from several res-

pondents and opposing answers. You should also look at the comments given in

the questionnaire for additional insights. Whenever you find interesting or reve-

latory answers you should note the answer or part of it (i.e. quotation), the rea-

son you think it is interesting or revelatory and, if relevant, the related numeri-

cal questionnaire result. The systematic way of processing interviews in such

manner is called coding interviews. The final step is to look at your notes and

draw conclusions based on the questionnaire results and interview answers. For

more instructions on analyzing interviews, see for example Patton (2002).

We have found that compiling the interview notes in a single mind map helps to keep

the results organized. The figure below shows an example of how you can record inter-

view notes in a mind map.

Chapter 5: Performing a Portfolio Management Health Barometer Study

81

5.5 Presenting the results

5.5.1 Interpreting the numbers

When presenting individual numbers you should use textual interpretations of

the results in addition to the raw numbers. The scale used in the questionnaire

is from ―strongly agree‖ to ―strongly disagree‖, or in numbers from one to six,

respectively. Table 5.2 describes how you can use different textual representa-

tions of the different numbers to give your audience a better idea of how the dif-

ferent health barometer result numbers should be understood. The first column

contains the numbers which are retrieved from the Health Barometer question-

naire software. The second, third and fourth columns contain textual interpreta-

tions of the results for issues from different categories.

Table 5.2: Textual interpretations of the HB numbers

Number Hereditary issue Lifestyle issue Symptom

1 Perfect Exemplary Fit as ever

2 Good Got it covered Feeling all right

3 Moderate Reasonable I’ve been worse

4 So-and-so So-and-so Feeling a bit queasy

5 Predisposition for problems Clearly room for im-
provement

Ouch, it clearly hurts

6 The only option is to lead a
strictly healthy life

High risk and ready to
crash

Hospitalized

The answers of individual respondents to the questionnaire are summarized by

taking the median of all answers. When there is no single middle value, the me-

dian is created by taking the mean of two middle values, which may result in a

decimal number. In that case you can either state that the result is between two

values, for example 2,5 could be ―between moderate and good‖, or you can

create your own textual interpretation of the value.

5.5.2 Visualizing the numbers

When you present multiple related results together you should try to visualize

the numbers using graphic charts. This can help to better identify problematic

areas, areas that work well and, in the case of second or later rounds, highlight

changes in the results. When you present the results of the first HB round you

can use a bar chart to visualize the results. Figure 5.2 gives an example of visua-

lizing Symptoms. The numbers on the vertical axis have been replaced by cor-

responding textual interpretations of the results from Table 5.2. The values of

different issues are shown as the bars on the vertical axis. Note that the smaller

a bar in the chart is, the better the current situation regarding that issue is.

Looking at the figure, you can easily see that ―Strategic alignment‖ is doing well,

Chapter 5: Performing a Portfolio Management Health Barometer Study

82

but there are lots of ‖Perceived improvement needs‖ and ―Slipping schedules‖

are a problem.

Figure 5.2: Visualizing results with a bar chart

Bar charts are very good for visualizing sets of unrelated data. When you are

visualizing multiple series of related data you should use a chart such as the ra-

dar or spider web chart which help you visualize the overall score and compare

multiple data series. For example, you can use a radar chart to visualize the me-

dians and dispersions of the component issues of one symptom. Figure 5.3

shows an example of a radar chart visualization of the Overcommitment symp-

tom results. Each spoke of the radar shows the results for one issue related to

Overcommitment and the further away from the center the data point is the

worse off the issue is. The red line is the median answer, the blue line is the 25%

quartile and the green line is the 75% quartile. The top spoke shows the textual

interpretations of the result numbers. From the figure you can easily see that

―Impact of busyness to work quality‖ and ―Pipeline pushing‖ are slightly prob-

lematic areas according to most respondents, ―Working overtime‖ and ―Launch

frequency of new activities‖ are not a problem, and that ―Sufficiency of re-

sources‖ is neutral on average but the answers have a quite high dispersion.

Decision making Fire fighting Multitasking Overcommitment Perceived
improvement

needs

Slipping
schedules

Strategic
alignment

Successes

Symptoms

All respondents

Fit as ever

Feeling all right

I've been worse

Feeling a
bit queasy

Ouch, it
clearly hurts

Hospitalized

Chapter 5: Performing a Portfolio Management Health Barometer Study

83

Figure 5.3: An example of Overcommitment radar chart visualization

Radar charts are also excellent for visualizing differences between different de-

mographic groups or visualizing changes between rounds. Figure 5.4 shows an

example of visualizing demographic data. You can easily see from the figure that

testers are most worried about ―Impact of busyness to work quality‖, developers

are worried about ―Sufficiency of resources‖ and in general managers are least

worried of the three demographic groups. Figure 5.5 shows an example of visua-

lizing changes over two rounds. Looking at the figure, it is easy to see that ―Im-

pact of busyness to work quality‖ and ―Working overtime‖ have decreased while

―Sufficiency of resources‖ has become worse.

Impact of busyness to
work quality

Launch frequency of new
activities

Pipeline pushingSufficiency of resources

Working overtime

25% quartile Median 75% quartile

Hospitalized

Ouch, it clearly hurts

Feeling a bit queasy

I've been worse

Feeling all right

Fit as ever

Chapter 5: Performing a Portfolio Management Health Barometer Study

84

Figure 5.4: An example of visualizing demographic differences

Figure 5.5: An example of visualizing changes over rounds

5.5.3 Presenting the interview results

Regardless of how you have recorded the interview analysis results in your notes

you should prepare a separate presentation or report of the results in a more

accessible format for your target audience. For example, you can use a structure

where you first present an interesting numerical result and then present an ex-

Impact of busyness to
work quality

Launch frequency of new
activities

Pipeline pushingSufficiency of resources

Working overtime

Managers Developers Testers

Hospitalized

Ouch, it clearly hurts

Feeling a bit queasy

I've been worse

Feeling all right

Fit as ever

Impact of busyness to
work quality

Launch frequency of new
activities

Pipeline pushingSufficiency of resources

Working overtime

Round 1 Round 2

Hospitalized

Ouch, it clearly hurts

Feeling a bit queasy

I've been worse

Feeling all right

Fit as ever

Chapter 5: Performing a Portfolio Management Health Barometer Study

85

planation of the numbers based on the interviews. If possible, you should give

both your own interpretations of the results and direct quotes from the inter-

views that support you interpretations. Depending on your audience, you also

might want to validate your findings and interpretations, for example by asking

the members of the audience to raise their hand if they find your results to be

believable. You can also ask the audience to help you further analyze the results

by asking them what they think is the underlying reasons or root causes of some

results.

5.5.4 Then what?

Performing a Health Barometer study is only the first step in a portfolio man-

agement improvement process. You might want to discuss the findings imme-

diately after or during your dissemination session or you might defer the discus-

sion to a later time with a different group. A Health Barometer study gives you

some ideas of what are the most problematic areas in your organization, but the

cures to those areas vary greatly between different organizations. Generally

speaking, you should try to affect the lifestyle issues. Changing hereditary fac-

tors is usually slow, if possible at all. Curing symptoms is usually useless without

first changing the hereditary or lifestyle factors that cause them.

Chapter 6: The Health Barometer Tool

86

Chapter 6: The Health Barometer
Tool

Kristian Rautiainen

This chapter presents the Health Barometer (HB) tool that was

created during the ATMAN project for gathering data about the

health of organizations’ portfolio management. The tool is open

source (MIT license) and can be downloaded from the ATMAN

Blog. Section 6.1 shows where you can find it. Sections 6.2-6.3

show how to use the HB tool.

6.1 Where to find the HB tool

The installation package can be found from:

atman.agilefant.org

The package contains the installation instructions and the HB tool with the

ATMAN Default questionnaire included in the database. Additionally you need

to install Java 6, MySQL 5, and Tomcat 5.5, but that is all explained in the in-

stallation instructions (readme.txt file in the zip-folder).

In the rest of this chapter we explain how to use the tool as an administrator and

as a participant in a HB survey.

6.2 Administration tasks

Administration rights are needed for creating surveys and extracting the data

from the HB tool. When an administrator logs in, (s)he gets an overview of the

existing rounds according to their status (started, draft, closed), as shown in

Figure 6.1.

Chapter 6: The Health Barometer Tool

87

Figure 6.1: Administrator front page in the HB tool

The columns of Figure 6.1 are explained in Table 6.1.

Table 6.1 Explanation of the columns in the administrator front page

Column Explanation

Organisation The name of the organization for which a survey has been created.

Round Round Number. The numbering can be running (e.g. 1, 2, 3, …) or free.

Users The number of users that have completed the survey / started the survey / the

total number of users who have an account.

Answers The number of answers that have been completed / the number of answers that

should have been completed (# of users who have started the survey multiplied

by # of issues) / the maximum number of possible answers (# of users who have

an account multiplied by # of issues)

Issues The number of issues asked in the survey.

Comments The number of comments in the survey provided by the users.

Ref round The number of the reference round for the survey.

Details Clicking on the View button opens a summary of the details for that round (see

Figure 6.2), which also shows all the users with an account and the rounds they

have attended. From the Round details view you can delete the answers for any

user for that round, if needed for some reason.

Report Clicking on the Report button sends the round‘s questionnaire form data to a

Microsoft Excel file. From a dialog you get to choose if you want to save it on a

hard drive or open it in Excel.

Chapter 6: The Health Barometer Tool

88

Figure 6.2: Example of the Round details view

From the Administration menu, the administrator can choose different tasks to

do. The list of tasks is shown in Figure 6.3.

Figure 6.3: Administrative tasks

The administrative tasks have to do with creating a questionnaire for the HB

survey, maintaining the user base, and extracting the data from questionnaire.

These are discussed in more detail in the following subsections.

Chapter 6: The Health Barometer Tool

89

6.2.1 Creating a survey

A survey is organization- and round-specific, which means you first need to

create an organization. This is done by selecting Organisations from the Admin-

istration menu. This opens a view of all the organizations shown in Figure 6.4.

Figure 6.4: Organisations view

A new organization is created by clicking the Add button on the bottom left.

This opens a text box where you can write the name of the organization and

then save it. Then you need to create a survey round for your organization. This

is done from the Rounds view selected from the Administration menu. In the

Rounds view (Figure 6.5) you see all the Rounds that have been created in the

instance of the HB tool you are using. If you are using the installation package

provided by the ATMAN project, you should see the ATMAN Default round in

the list. If not, you should first create the Sections, Issues, and Statements for

the questionnaire of your survey. These are explained later in this subsection.

Figure 6.5: Rounds view

Chapter 6: The Health Barometer Tool

90

If you are creating your first round and see the ATMAN Default round in your

list (it should be the only one if you used the ATMAN installation package), click

on it to open the Round Information view, which is shown in Figure 6.6. Scroll

down the page to find the Clone button. Select your organization from the drop

down list left of the Clone button and click Clone. This will open a new Round

Information view for your organization (in draft state) with all the ATMAN De-

fault Issues and Responsibilities (see Figure 6.7) already added. If you are happy

with that, you can open the round by changing the state to Started. If not, you

can edit a few things in the Round Information view:

1. You can move the Issues in different order with the arrow symbols on the

right-hand side.

2. You can remove Issues by clicking the red cross furthest to the right.

3. You can choose which Responsibilities you want to exclude to be shown to

the users by un-checking the checkbox left of the responsibility in the list

(they should all be checked if you cloned the ATMAN Default round). At this

stage you might notice that some responsibilities crucial to your organization

are missing. These need to be added in the Responsibilities view. Save your

round in draft state and go add the necessary responsibilities. You will find

your round later from the Round view.

If you need to change any Sections, Issues, or Statements, you need to do it from

the corresponding views. Always remember to Save your round and leave it in

Draft state, until you are ready to open it.

Chapter 6: The Health Barometer Tool

91

Figure 6.6: Round Information view (truncated in the middle and the end) of ATMAN De-
fault round

Chapter 6: The Health Barometer Tool

92

Figure 6.7: Responsibilities list from ATMAN Default

The questionnaire form in a survey is built of Sections, Issues, and Statements.

Sections are high-level groupings of Issues. In the ATMAN Default round the

Chapter 6: The Health Barometer Tool

93

highest level Sections are Demographics, Hereditary factors, Lifestyle, and

Symptoms (see Figure 6.8). The three latter are explained in detail in Chapter 4.

The Sections can have sub sections, as is the case with both Lifestyle and Symp-

toms in the ATMAN Default round.

Figure 6.8: The Sections view

You create Sections in the Section view (from the Administration menu) by

clicking the Add button. This opens the Section dialog shown in Figure 6.9. Fill

in the name of the Section and the Finnish and English Tags of the Section,

which are shown in the questionnaire form to the user. First-level sections have

ROOT as parent, sub sections have their corresponding higher-level section as

parent, which you choose from the Parent drop down list.

Chapter 6: The Health Barometer Tool

94

Figure 6.9: Section Information dialog for creating or editing Sections

When you are ready creating the sections you need, you need to create Issues for

the sections. Issues are specific areas of concern you want to measure in the

survey. Issues are created in a similar way as sections, by clicking the Add but-

ton in the Issues view. Issues are not shown to the user in the questionnaire

form, and therefore the dialog looks a bit different, as can be seen in Figure 6.10.

Only the name of the Issue is needed, not the Finnish and English Tags. There

can be two types of Issues: Radio and Free. Radio means that answering the

Statement that measures the Issue is done with radio buttons on a six-point

scale from Strongly agree to Strongly disagree, with ―I don‘t know‖ as a seventh

option. Free means that the Statement has a text field for free form answers.

Choose the type of your Issue from the drop down list. Also, choose which Sec-

tion the Issue belongs to from the Section drop down list. Do not forget to click

Save when you are ready.

Chapter 6: The Health Barometer Tool

95

Figure 6.10: The Issue Information dialog for creating Issues

When you are ready creating the Issues you want to measure, you need to create

the Statements that measure the Issue. Statements are what the users see and

answer to in the questionnaire form. Statements are created from the State-

ments view by clicking the Add button. The dialog for creating Statements is

shown in Figure 6.11. English and Finnish Statements need to be created sepa-

rately. Write your Statement in the Description text field. Choose which Issue

the Statement measures from the Issue drop down list. Choose the language of

your Statement. The Negative tick box is needed for ―inverted statements‖, i.e.

when answering on the Agree side is not considered positive. Otherwise the log-

ic in the HB tool is that Agree answers are interpreted as good and Disagree an-

swers as bad and this logic is used in the calculation in the Excel report de-

scribed in 6.2.3 Extracting the data from the filled in questionnaire. However, the

context always dictates what actually is good or bad, and determining that is

part of the analysis of the results.

Chapter 6: The Health Barometer Tool

96

Figure 6.11: Statement Information dialog for Statement creation

When you have created the necessary Sections, Issues, and Statements for your

questionnaire form, you are ready to create a new survey round. Click the Add

button in the Rounds view to create a new Round. That will open the first part of

the Round Information view where you choose your organization from a drop

down list. When you have chosen your organization, click the Save button. This

will open the second part of the Round Information view, shown in Figure 6.12.

The Issues (and Section hierarchy) shown in the Issue list in Figure 6.12 are

from ATMAN Default. In your case the Sections and Issues you created would

be shown. In order to create the questionnaire form you need to add the Issues

you want to investigate in order of appearance by choosing the Issues from the

list and clicking the Add button. You can order the Issues afterwards, but it can

be burdensome. The whole process of adding Issues for the questionnaire form

can be painstaking, but when you have the questionnaire form ready, you can

always clone it for your following rounds. When your questionnaire form is

ready, you can open your round be changing its state to Started and clicking

Save. You can also leave it in Draft state, but do not forget to click Save.

Chapter 6: The Health Barometer Tool

97

Figure 6.12: Part 2 of the Round details view

6.2.2 Maintaining the user base

Users participate in the survey by answering the questionnaire and some users

are also interviewed. Users can create their own account when they log in, which

is explained in 6.3 User tasks. The Administrator can also create the accounts

for users, but we recommend that users do it themselves. If a user forgets

his/her login information, the Administrator can view the list of users in the

Users view and edit any user‘s information by clicking on the user, opening the

User Profile view shown in Figure 6.13. The Administrator can also delete a user

or render the account inactive by unchecking the Active tick box.

Chapter 6: The Health Barometer Tool

98

Figure 6.13: User Profile view

6.2.3 Extracting the data from the filled in questionnaire

In the Administrator front page shown in Figure 6.1 you find the Report button

to the right of all Started and Closed Rounds. Clicking on the Report button

saves the questionnaire data into a Microsoft Excel file. The columns of the Ex-

cel file are explained in Table 6.2. Analyzing the data is explained in Section 5.3.

Table 6.2 Explanation of the columns in the Excel data file

Column Explanation

Section The Section the Issue and Statements belong to.

Issue The Issue that is investigated.

Type Type of the Issue (Radio or Free).

Statement FI The Statement measuring the Issue in Finnish.

Statement EN The Statement measuring the Issue in English.

Round N: Median N=Round number. Median of an Issue or a whole Section.

Round N: Min The lowest value of all answers for an Issue or a whole

Section.

Round N: Max The highest value of all answers for an Issue or a whole

Chapter 6: The Health Barometer Tool

99

Section.

Round N: Freq. The number of answers for an Issue or a whole Section.

Username: Answer The answer of the user as a numerical value used in the

calculations. Strongly agree = 1 and Strongly disagree = 6,

unless the Statement is ―Negative‖ as explained in 6.2.1

Creating a survey. In that case the scale is inverted

(Strongly agree = 6 and Strongly disagree = 1).

Username: Original an-

swer

The Administrator can force change the user‘s answer, as

can be seen in Figure 6.14 (the second row). If the Admin-

istrator force changes a user‘s answer, the changed answer

is shown in the Answer column and the original answer of

the user is shown in this column.

Username: User comment The questionnaire form has a text field reserved for user

comments for each Statement. If the user writes a com-

ment it is shown in this column.

Username: Admin com-

ment

The Administrator can comment changes or user answers,

or even use this field in the Administrator view of a user‘s

answers (Figure 6.14) to make interview notes. The Ad-

ministrator‘s comments are shown in this column in the

Excel file.

Figure 6.14: Example of Administrator view of user answers

6.3 User tasks

The user of the HB tool really has only one task, answering the Statements in

the questionnaire form. To be able to do that, the user needs to sign up for an

account, unless the Administrator has created an account for the user. The login

dialog (Figure 6.15) gives the user the possibility to create an account by clicking

the Signup link below the Login button. This opens a view similar to that in Fig-

ure 6.13 where the user fills in his/her information and presses the Signup but-

ton at the end. An e-mail is sent to the user‘s e-mail address, but the user can go

on and directly log in to the HB tool without waiting for the e-mail.

Chapter 6: The Health Barometer Tool

100

Figure 6.15: The Login dialog

When the user logs in, (s)he sees any open rounds for his/her organization, like

in the example in Figure 6.16. The questionnaire is opened by clicking on the

open round in question.

Figure 6.16: User’s front page

Filling the questionnaire is like filling any other questionnaire and is not ex-

plained here, except for the one detail that is different from other questionnaires

in the HB tool. The Administrator can choose to show the user his/her answers

from a previous round. This is done in the Rounds Information view (Figure 6.6)

by selecting the reference round. For a first round this is naturally not available.

When a reference round is selected, the user sees his/her answers from the ref-

erence round (if (s)he participated in it) as grey boxes in the questionnaire form,

as shown in Figure 6.17. Seeing the previous answers can bias the user‘s answers

for the current round, but we have noticed that it lessens the noise in the an-

Chapter 6: The Health Barometer Tool

101

swers, so we like to use it. The interviews can then confirm that the answers are

to the point and not too biased.

Figure 6.17: Example of how the User sees his/her previous answers (grey boxes)

Chapter 6: The Health Barometer Tool

102

Appendix A: Instructions for the
Health Barometer

Below is a copy of the email instructions we have used when conducting the

health barometer study rounds. Feel free to adapt and utilize it as you see fit

for your context.

The Health Barometer (HB) is a method developed in the ATMAN research

project for assessing the adequateness of an organization's practices and

processes for what we call "development portfolio management". With the HB

you can see what needs to be improved next and hopefully thus make your life

easier.

This transcript contains the instructions on how to answer the survey. The

DEADLINE for answering the survey is DD.MM. at 23:59. You can answer the

survey right away, it will take you some 30 minutes if you do it the first time (if

you have done it before, it is a bit faster). Before starting, please take the time to

quickly read through the instructions.

THOSE WHO ARE TO BE INTERVIEWED MUST ANSWER THE SURVEY BE-

FORE THE INTERVIEW!

Here are the instructions for completing the survey:

1) Go to http(s)://<address_of_the_survey>

2) If you have answered the survey on an earlier round, login using your existing

username. You can reset your password from the login page if you don't re-

member it. If you have not answered the questionnaire before, you have to sign

up; select your organization, and pick the language you are more familiar with

(Finnish/English). You'll receive a confirmation email but you don't have to wait

for it to continue. Just log in.

3) Click yourself into the open survey round (#N) by clicking on the round name

and answer the survey. It will take you between 20 and 40 minutes, with the

past median being around 30min.

4) Start from the responsibilities and demographics section; check those boxes

that fit your responsibilities. If some of your responsibilities are missing from

the possible choices, type them into the answer space for the first question after

the checkboxes. Then fill in your demographic data.

Chapter 6: The Health Barometer Tool

103

All of your answers & possible comments are kept confidential, only the per-

son(s) doing the analysis will see all the data.

5) Answer the rest of the questionnaire by evaluating how strongly you agree or

disagree with the statements. If you had answered the previous round, your past

answers are shown in the form as grey boxes to make comparison easier.

Answer from the perspective of your own team / unit / department -whatever is

the "smallest appropriate organizational block" to evaluate the statement. Use

the comments space to specify the context of your answer.

Answer realistically, without exaggerating or "tidying things up".

If you are unsure of whether you understood the statement, make a brief note in

the comment field. If you understand the statement but don't know the answer,

pick "I don't know". Also, rather answer "I don't know" than make a guess.

6) Remember to save your answers every now and then by clicking the button at

the bottom of the form. However, please answer all of the statements, even if it

takes two or more sessions!

If you are inactive for a longer period of time, there is a time-out, so remember

to save your answers if you get interrupted!

The following terms are used throughout the survey:

IN FINNISH:

TEKEMISSALKKU viittaa kaikkien "kehitysporukan" (eli teknisen ja/tai

tuotekehityksen henkilöstön) huomiota vaativien, meneillään sekä välittömästi

suunnitteilla olevien "tekemisten" kokonaisuuteen. Esimerkkejä tyypillisistä

tekemisten tyypeistä ovat tuotekehitysprojektit, ylläpito, asiakaskohtainen

kehitys, toimitukset, asiakaspalvelu, koulutus, konsultointi ja myynnin tuki.

Kuitenkaan tekemisen tyyppejä EIVÄT ole esim. määrittely, suunnittelu,

koodaus ja testaus.

TEKEMISSALKUN HALLINTA on tekemissalkun ajan tasalla pitämisestä

vastaava päätöksentekoprosessi. Tekemissalkun hallinnassa priorisoidaan

tekemisiä (esim. tuotekehitysprojektit) ja päätetään niiden resursoinnista.

Tekemissalkun hallinnassa päätetään myös miten äkillisesti ilmaantuvat

tekemisten väliset konfliktitilanteet hoidetaan.

IN ENGLISH:

THE DEVELOPMENT PORTFOLIO is the set of ongoing and upcoming activi-

ties that require attention from the "development people" (e.g. product devel-

opment and/or technical resources). Common types of development activity

types are e.g. release-based product development projects, customer-specific

Chapter 6: The Health Barometer Tool

104

development, maintenance, deliveries, customer service, training, consultation,

sales support, etc. However, specification, design, coding and testing are NOT

types of activities we are looking for here.

DEVELOPMENT PORTFOLIO MANAGEMENT is the decision process for up-

dating and revising the development portfolio. In development portfolio man-

agement, development activities (e.g. projects) are prioritized and resourced

Development portfolio management is also responsible for appropriately re-

sourcing the handling of suddenly emerging urgencies.

If you encounter problems in answering the questionnaire, whether technical or

otherwise, do not hesitate to contact N.N. (person responsible for the survey).

The results of the survey & the interviews will be disseminated on DD.MM. N.N.

will inform you of the exact time and place.

Best regards,

N.N.

Chapter 6: The Health Barometer Tool

105

Appendix B: ATMAN Default
Questionnaire in English

Chapter 6: The Health Barometer Tool

106

Chapter 6: The Health Barometer Tool

107

Chapter 6: The Health Barometer Tool

108

Chapter 6: The Health Barometer Tool

109

Chapter 6: The Health Barometer Tool

110

Appendix C: ATMAN Default
Questionnaire in Finnish

Chapter 6: The Health Barometer Tool

111

Chapter 6: The Health Barometer Tool

112

Chapter 6: The Health Barometer Tool

113

114

PART III: FRAMEWORK AND

PRACTICES FOR AGILE PROD-

UCT AND PORTFOLIO MAN-

AGEMENT

Part III of this book presents our framework for agile product

and portfolio management (chapters 7-9) and selected practic-

es regarding areas of agile product and portfolio management

that have proved challenging in practice (chapters 10-12).

Chapter 7 discusses how long-term product and release plan-

ning should be understood in the context of agile software de-

velopment, and describes the ATMAN framework for linking

strategy with action. In Chapter 8 we explain the levels of port-

folio management for governing an agile enterprise, present a

framework for portfolio decision-making in agile software devel-

opment based on these levels as well as a series of steps for

setting up agile portfolio management. Chapter 9 provides an

in-depth discussion of the complexities related to proper back-

log management in managing an agile development portfolio.

Here, we also relate our framework to software companies

where multi-tasking and consequent fire-fighting have become

the de-facto management process. Chapter 10 explains how a

company reorganized its product management process to bet-

ter link it with the R&D who used Scrum. Chapter 11 discusses

the joint release planning method for performing release plan-

ning when there are many teams working on the same product.

Chapter 12 presents the basics of Kanban and explains how

having multiple teams working on multiple products can be ma-

naged using a Kanban board. Chapter 13 rounds up part III by

summarizing the most important requirements for backlog man-

agement tool support for making product and portfolio man-

agement work with agile software development.

Chapter 7: Agile Product Management

115

Chapter 7: Agile Product
Management

Jarno Vähäniitty

If fast-paced development is not properly managed, there is a

danger that fragmented results are produced and the big picture

of the ongoing work and its contribution to the business goals or

the company’s overall strategy becomes unclear. To realize the

benefits from an agile software development process for the en-

tire organization, agile methods should be extended from ad-

dressing individual development projects to long-term product

and release planning and portfolio management.

In this chapter we explore existing work and definitions of re-

lease planning (Section 7.1) and roadmapping (Section 7.2),

and explain how they should be understood in the context of

agile software development (Section 7.3). Section 7.3 also ex-

plains why retaining the trace between the high-level goals ex-

pressed in long-term plans (e.g. business goals) and short-term

objectives (e.g. individual user stories and tasks) is what can

make (but more commonly break) the connection between

product management and agile software development, and de-

scribes the ATMAN framework for linking strategy with action.

7.1 What is release planning?

Release planning (sometimes referred to as ―product release planning‖ or ―stra-

tegic release planning‖) is concerned with selection and assignment of require-

ments in one or more sequences of releases so that important business, technic-

al and resource constraints are fulfilled (Svahnberg et al. 2010).

While release planning has attracted attention among software engineering re-

searchers, most of the research treats release planning (Akker et al. 2008, Chat-

zipetrou et al. 2010, Ngo-The & Ruhe 2009, Mc Elroy & Ruhe 2010, Al-Emran,

Pfahl & Ruhe 2010) essentially as an optimization problem (Kittlaus & Clough

2009). Most of the existing work on release planning has focused on developing

model-based approaches designed for a situation where there is a single prod-

uct/service offering with a set of possible features to be selected from (Svahn-

Chapter 7: Agile Product Management

116

berg et al. 2010). These features are assumed to have been elaborated to the de-

gree that their development cost and business value can be reasonably esti-

mated. Also, it is assumed that relevant stakeholders are readily available to fa-

miliarize themselves with the requirements and vote on them.

Unfortunately, one or more of the above listed assumptions do not hold in prac-

tice (Svahnberg et al. 2010, Lehtola 2006), rendering the optimization models

as near-useless. For example, the degree of up-front requirements elaboration

needed by the approaches is often not feasible or even desirable (Larman &

Vodde 2010, Poppendieck & Poppendieck 2009). Also, in practice requirements

are not prioritized as a one-off activity, but in multiple phases of development,

with each phase involving different kinds of decision-making (Lehtola 2006).

Furthermore, there are often requirements from more than a single prod-

uct/service offering for the development staff to work on (Rothman 2007, Dob-

son 1999, Rothman 2009).

Overall, existing systematic algorithmic approaches to planning the future de-

velopment steps of a particular product/service offering often seem to have un-

fortunately little applicability to the actual decision-making problem faced by

practitioners (Ivarsson & Gorschek 2009). Thus, it is hardly surprising that

most approaches to release planning have not been validated in an industrial

setting (Svahnberg et al. 2010).

Rather than further devising models for ―optimizing‖ the contents of upcoming

releases, this book takes the stand that it should first be understood how the

roadmapping and release planning processes actually manifest themselves in

agile software development. This is discussed in Section 7.3 (Linking agile with

long-term product and release planning). A more detailed explanation of how

release planning should be conducted when there is more than a single team

working on the same solution is given in Chapter 11: Scaling Up Agile Release

Planning.

7.2 What is roadmapping?

Product roadmapping (or simply roadmapping) is a common metaphor for

planning the allocation of development capacity and the use of technology as

well as their relationships over a period of time. The process of roadmapping

should identify, evaluate and select strategic alternatives for achieving desired

objectives (Kostoff & Schaller 2001). The resulting roadmaps summarize and

communicate the results of key business decisions (DeGregorio 2000). Thus,

the roadmaps‘ implementability is at least as important as their possible strateg-

ic value (Kostoff & Schaller 2001).

There is little research literature on software product roadmapping (Fleury et al.

2006). Thus, in order to summarize existing understanding on software product

roadmapping, we examine what two recent books by recognized expert practi-

Chapter 7: Agile Product Management

117

tioners, one from the perspective of software product management (Kittlaus &

Clough 2009) and the other from the agile software development movement

(Pichler 2010) say of roadmaps and roadmapping.

The discussion below is structured in terms of the definition of a roadmap, what

should be included in a roadmap, the purpose of roadmapping, the timeframe

for roadmapping, how often the roadmaps should be updated, as well as who

should be involved in roadmapping.

Definition: A software product roadmap is a planning artifact showing an

overview of how a product is likely to evolve over a strategic timeframe of six

months (Kittlaus & Clough 2009, Pichler 2010) to up to five years (Kittlaus &

Clough 2009).

What should be included: A product roadmap should state the upcoming

releases, their projected launch dates, the target customers, their needs, and (up

to) top 5 features (Pichler 2010). Usually, important dependencies on other

products or technologies are also depicted (Kittlaus & Clough 2009). According

to (Pichler 2010), the product roadmap should be simple and focused on the

essentials, as the details will emerge and be captured in the product backlog.

The purpose of roadmapping: Pichler (2010) simply states that the road-

map facilitates the dialogue between the Scrum team and the stakeholders. It

allows the organization to coordinate the development and launch of related

products, for instance a product line or a product portfolio. Kittlaus and Clough

elaborate on this by stating that the main purpose of a roadmap is to give direc-

tion both internally and externally:

Internally it shows the relationship between product plans and financial fore-

casts and the major themes and requirements governing the plan. It indicates

if the product will provide continuing career opportunities for employees who

work on it, be they developers, sales, or support specialists. The roadmap is

important for a product manager in order to reach agreement within his com-

pany regarding the longer-term direction and priorities, and for the road-

map’s useful effects described above. Externally the roadmap plays an impor-

tant role in demonstrating the viability of a product as well. Often bigger po-

tential customers are willing to sign non-disclosure agreements in order to see

a product roadmap before they make a significant investment decision. Simi-

larly, market analysts mostly base their judgment on a convincing story about

a product’s future expressed in the roadmap. (Kittlaus & Clough 2009, p. 77)

The timeframe: The roadmap can be detailed and precise for the short-term

timeframe, but the more it looks into the future, the less precise it tends to be

(Kittlaus & Clough 2009). Only the immediate future (the first one to two years

according to Kittlaus and Clough, and the next 6-12 months rather than next

two to three years according to Pichler (2010) in a roadmap are more or less

Chapter 7: Agile Product Management

118

reliable, though still subject to slippages caused by development (Kittlaus &

Clough 2009) or changes in direction (Pichler 2010). Pichler states that the

product roadmap should cover a realistic planning horizon and crafting a prod-

uct roadmap that covers the next three years provides little benefit (Pichler

2010). However, the outer years can also be considered a formal way of saying

that the vendor has a long-term commitment to the product (Kittlaus & Clough

2009).

Updating the roadmap: According to Pichler (2010), a product roadmap

states how the developing organization believes the product is likely to evolve

based on the current understanding of the market. Roadmaps are living docu-

ments that evolve and change. The product roadmap should be created once the

product has been successfully introduced into the marketplace. Kittlaus and

Clough (2009) say that the roadmap is usually updated as part of the corporate

planning cycle, which differs from agile methods‘ notion of continuous planning

(Shalloway, Beaver & Trott 2009).

Who will create & update the roadmap? Pichler (2010) denotes that the

relevant people to create and update the product roadmap include at least the

product owner and the development team, but it might also involve the person

in charge of the product portfolio and representatives from other product devel-

opment teams and product management.

7.3 Linking agile with long-term product and release

planning

Overall, in much of the literature on agile software development, the complexi-

ties of release planning and roadmapping are simply crammed into using a

product backlog and considered as something the product owner gets done.

Thus, it is of essence to understand how the product backlog should function in

long-term product and release planning. In the first part (Section 7.3.1 Road-

mapping, release planning and the product backlog), we explain how the prod-

uct backlog relates to long-term product and release planning, or more specifi-

cally, roadmapping and release planning, and provide agile-compatible defini-

tions of these concepts. Then, we discuss the prevailing dichotomy of whether

one should retain the trace of how smaller work items have been split from the

larger ones, and explain why retaining the trace is indeed important (Section

7.3.2 Splitting work items and traceability). We end the section in presenting

our framework for linking long-term product and business goals with daily tasks

(Section 7.3.3 From strategy to action and back again).

Chapter 7: Agile Product Management

119

7.3.1 Roadmapping, release planning and the product backlog

The product backlog17 is a list of all the work that currently can be seen as po-

tentially useful to perform in order for an offering to succeed and prosper. It

contains all the features, functions, technologies, enhancements, and bug fixes

that constitute the changes that should and could be made to the product for

future releases. The work items are ordered sequentially according to priority,

with the topmost items being more urgent and/or important than those beneath

them. The product vision drives this prioritization by describing the long-term

objective(s) for the offering (see Figure 7.1).

Figure 7.1: Planning is driven by comparing what’s been done so far to an up-to-date
product vision

The product backlog can be viewed as consisting of four sections (see Figure 7.2

below). The topmost section, iteration backlog, contains those work items that

have been committed to for the ongoing development iteration and the tasks

that are needed to get the work items done. In the case of multiple teams work-

ing in parallel on the same product, each team has its own iteration backlog.

Beneath the iteration cut-off line, the next section is the release backlog, con-

taining those work items that are currently thought as to be included in the first

upcoming release of the product. The sections beneath the cut-off line of the

ongoing release outline the contents of foreseeable future releases. At the bot-

tom, there may be many more work items that have been thought of but so far

have not been seen as crucial enough to attend to in the foreseeable future.

17

 The description in this chapter has been compiled by Jarno Vähäniitty from multiple

sources (Schwaber & Beedle 2002, Shalloway, Beaver & Trott 2009, Leffingwell forth-

coming 2011, Vlaanderen et al. 2009, Pichler 2010, Schiel 2009, Galen 2009, Cohn

2010, Leffingwell 2007, Schwaber & Sutherland 2010). It is based on the Scrum

framework, as Scrum is the most well-known and widely adopted framework for man-

aging agile software development (Krebs 2008).

Chapter 7: Agile Product Management

120

Figure 7.2: Long-term product and release planning and the product backlog

The higher the items are in the product backlog, the clearer and more detailed

they should be in terms of their description, effort estimates and relative priori-

ties. For example, the work items committed to for the iteration are in absolute

rank-order, and the actual tasks needed to get them done have been fleshed out

and the effort left for completing them is estimated in man-hours. The items in

the section regarding the ongoing release as well as the roadmap are estimated

in more abstract terms that typically have no clear connection to calendar time,

for example story points or T-shirt sizes (e.g. XS, S, M, L, XL, XXL). The work

items in the bottom sections of the product backlog are often large and vague.

However, they can also be small and detailed, such as in the case of a laborious

but basically simple bug fix that needs to be done at some point but which has

not been seen as crucial to attend to just yet.

Although the product backlog is defined to be a prioritized list, only the priority

order of the topmost items should in practice be considered to be thought

through and absolute (even this tends to change). It is seldom worth the effort

to prioritize the items further down the backlog – for example, beyond the cur-

rent release – with the same degree of accuracy as those items that are currently

being worked on. Figure 7.2 above depicts this with having items in the lower

sections of the backlog on the same level horizontally.

Based on the above analysis, we define release planning, roadmap, and road-

mapping as follows:

Chapter 7: Agile Product Management

121

Release planning refers to planning and refining the contents of the imme-

diately upcoming (ongoing) release.

The roadmap is a view into the product backlog that depicts how a particular

solution (or line of solutions) is currently planned to evolve in the foreseeable

future. The roadmap shows the release dates, the planned features (possibly

with related epics and strategic product themes), their sizes in story points and

the planned resource usage. The roadmap should also depict accompanying ser-

vices, and the planned resource usage for those services that demand the devel-

opers‘ attention. Ideally, a visual roadmap is possible to be discerned directly

from viewing the product backlog itself, or can be automatically generated.

Roadmapping means grooming the product backlog so that it reflects the cur-

rent understanding of the relevant stakeholders in terms of foreseeable future

releases and the features planned to be included in them.

7.3.2 Splitting work items and traceability

As development proceeds, the ideal is to have at least the top sections of the

product backlog (see Figure 7.2) constantly up-to-date and ready to feed devel-

opment with detailed-enough user stories when the need arises. For this to hap-

pen, the product owner should continually refine the product backlog with the

help of the development team. In this progressive refinement and re-

prioritization of work items, also known as backlog grooming, the larger, vague

work items are split into smaller and more detailed work items. This is illu-

strated in Figure 7.3.

Figure 7.3: Breaking epics to features, stories and tasks (Leffingwell’s model
18

)

Indeed, during the last few years, frameworks for referring to requirements on

different abstraction levels have started to emerge in the literature. Table 7.1

displays the proposed frameworks we are so far aware of, organized according to

18

 Figure 7.3 has been adapted from scalingsoftwareagility.com

Chapter 7: Agile Product Management

122

the planning horizons of the Cycles of Control framework explained in Chapter 3

(Figure 3.2).

Table 7.1: Requirement abstraction levels by different authors

Cycles of
Control

(Gorschek
& Wohlin
2006)

(Vähäniitty
& Rautiainen
2008)

(Shalloway,
Beaver &
Trott 2009)

(Galen
2009)

(Vlaanderen
et al. 2009)

(Leffingwell
forthcoming
2011)

Business
mgmt

-
Vision &
business
goals

Vision /
initiative

- Vision
Strategic
product
theme

Product &
service
mgmt
(multiple
releases)

Product
goal

Epic
Business
capability

Vision &
mission

Theme Epic

Release
(project)
mgmt

Feature
Iteration
goal

Feature Epic Concept Feature

Iteration
mgmt

Compo-
nent

Backlog item Story Story
Requirement
definition

Story

Heartbeat Function Task Task Task - Task

The frameworks in Table 7.1 originate from sources that discuss how agile de-

velopment can be scaled beyond its original context of an individual, relatively

independent team. However, reflecting the terms to the planning horizons of the

Cycles of Control framework and Figure 7.2, we see that they can also be used to

express long-term product and release plans. For example, using the framework

from Leffingwell (forthcoming 2011), a company‘s strategy for achieving its

business goals would be reflected in the strategic product themes and their in-

vestment levels. The roadmap for a particular strategic theme would be ex-

pressed in terms of epics and features, the planned contents of the current re-

lease would be fleshed out on the feature level, and the ongoing iteration in

terms of stories and tasks. Note that despite of the terms used, all of the work

items on different levels can and even should be thought of as user stories of

different granularity (Leffingwell forthcoming 2011, Pichler 2010).

From the perspective of using the frameworks in Table 7.1 for expressing long-

term plans and monitoring the progress of ongoing development against such

plans, it is problematic that the vast majority of the practitioner books or re-

search articles on agile software development do not take a clear stand on

whether it is important to retain the trace of how the smaller work items were

split from the larger ones. This is particularly well exemplified by the following

excerpt:

After an epic is split into smaller stories, I recommend that you get rid of the

epic. Delete it from the tool you’re using or rip up the index card. You may

Chapter 7: Agile Product Management

123

choose to retain the epic to provide traceability, if that is needed. Or you may

choose to retain the epic because it can provide context for the smaller stories

created from it. In many cases, the context of the smaller user stories is ob-

vious because the epics should be split in a just-in-time manner as noted earli-

er in this section. When an epic is ripped up and turned into smaller user sto-

ries shortly before the team begins work on it, remembering the context of the

small stories is much easier. (Cohn 2010, p. 178)

As we see, Cohn does not come to a conclusion whether – and in what kinds of

situations – retaining the trace is of significance. Another example of the vague-

ness surrounding the topic can be found from a systematic review on strategic

release planning models (Stober & Hansmann 2010, pp. 77-78). While the au-

thors dedicate two pages to discussing the importance of having a system of hie-

rarchical goals from the overarching company strategy down to the actual cod-

ing work, they do not directly relate this to requirements management or the

product backlog per se.

We take the position that in the light of what little research (Lehto 2010, Lehto

& Rautiainen 2009) and opinions (Shalloway, Beaver & Trott 2009, Leffingwell

forthcoming 2011, Ktata & Levesque 2009, Savolainen, Kuusela & Vilavaara

2010, Leffingwell 2007) there are on the subject, the trace of how the smaller,

‗child‘ user stories have been split from the higher level, ‗parent‘ user stories is

crucial to retain.

Without the trace of how the individual iteration-level work items contribute to

higher level objectives, monitoring progress of development in terms of these

higher level objectives becomes very difficult. The missing feedback loop beyond

the level of iteration-level work items often is, in fact, the missing link between

agile software development and product roadmapping and release planning, in

other words, product management. Also, knowing the higher level objectives

and the business context may be useful for providing guidance for the develop-

ers‘ decision-making regarding the implementation details as well (Lago, Muc-

cini & Vliet 2009).

Section 7.3.3 below further discusses the issue of traceability, the need for goal-

oriented requirements structures and explains the ATMAN framework for link-

ing strategy with action (Figure 7.4).

7.3.3 From strategy to action and back again

This section describes the ATMAN framework for linking long-term product and

release plans with agile software development. The essentials of the framework

are illustrated in Figure 7.4 and discussed below. The terminology and concepts

of the framework have been related to the levels presented in Dean Leffingwell‘s

Chapter 7: Agile Product Management

124

agile requirements model (Leffingwell forthcoming 2011), as it seems currently

to be the most prominent framework related to the subject19.

Figure 7.4: The ATMAN framework for linking daily work with product and business
goals

20

Figure 7.4 depicts how business level goals and the vision for the product (or

business area) can be linked with the developers‘ daily work via a system of hie-

rarchical goals. These ‗goals‘ are commonly referred to as backlog or work items.

Goals that are possible to achieve in a single iteration or release are referred to

as Stories and Features, respectively. Goals that are considered too big to fit into

a single release are referred to as Epics.

19

 The most notable influences on the ATMAN framework since Vähäniitty & Rautiainen (2008)
are Lehto & Rautiainen (2009), Lehto (2010) and Leffingwell (forthcoming 2011). The first two
further developed the framework from Vähäniitty (2008) to more explicitly describe a hierarchy
of backlog items. The third coined Epics, Features and Stories as currently the most widespread
terminology for referring to a three-level requirements hierarchy in the context of agile software
development.
20

 The objects with a dashed line denote concepts that have not at the time of writing been im-
plemented in Agilefant as concepts of their own.

Chapter 7: Agile Product Management

125

In line with the definitions provided in Section 7.3.1 (Roadmapping, release

planning and the product backlog), a Roadmap is a view into the product back-

log that highlights the most important Features and Epics that are planned to be

pursued in the foreseeable future.

The high-level goals expressed in long-term plans (e.g. business goals and epics)

are, via the processes of roadmapping and release planning eventually split into

short-term objectives (e.g. features and stories), which in turn get expressed as

actionable tasks via iteration planning. When the trace of how the ‗smaller‘ goals

result from the ‗larger‘ goals is kept, the result is a hierarchical system of goals

per ongoing development activity. The resulting system can then be explored

bottom-up or top-down as needed. If a high-level goal changes or is dropped,

the entire tree should be examined and altered and/or pruned as necessary. Al-

so, the process of splitting a larger goal into smaller ones may, especially as de-

velopment proceeds, yield new information that results in modifications to the

original high-level goal.

In Chapter 8 and Chapter 9 we further explain this from the perspective of port-

folio management and how it should be understood in agile software develop-

ment.

Chapter 8: Portfolio Management and Agile Software Development

126

Chapter 8: Portfolio Management
and Agile Software Development

Jarno Vähäniitty

Portfolio management becomes crucial when there is more than

one initiative that requires attention from the same resource

pool. However, there is not a singular process of “portfolio

management”, but multiple levels of portfolio decision-making:

at the highest level, portfolio decision-making is concerned with

deciding on the set of products and services offered and devel-

oped by the organization, as well as deciding on the relative

spending across the set of products and/or business areas.

This is commonly referred to as product portfolio management.

In contrast, development portfolio management deals with tac-

tical resource allocation and prioritization across the set of

possible activities that compete for the same pool of resources.

And, in daily work, the development people choose which

task(s) from which activities get attended to next.

In this chapter we explain how these levels of portfolio man-

agement manifest themselves in the context of agile software

development (Section 8.1). Then we present a series of steps

on how to set up agile portfolio management, coupled with ex-

amples of each step based on experiences from case compa-

nies (Section 8.2) and two alternative approaches to setting up

agile portfolio management found from literature (Section

8.2.10).

8.1 Levels of portfolio management in an agile

enterprise

There is always more than one potential initiative that requires attention from

the same resource pool, and thus, effective portfolio management is always cru-

cial – whether explicit or not. However, in the context of agile software devel-

opment, it becomes clear that instead of a singular portfolio management

process, there are actually multiple levels of portfolio decision-making, that

Chapter 8: Portfolio Management and Agile Software Development

127

each should connect both with each other as well as with product management

decision-making of the corresponding level.

There are levels of portfolio decision-making that we as well as several other

authors have found relevant in managing an agile enterprise. These levels are 1)

Setting investment levels for business areas, 2) Setting product and business

goals, 3) Development portfolio resourcing, 4) Resolving mid-iteration emer-

gencies, and 5) Time management conducted by individuals.

Figure 8.1: Levels of portfolio management in agile software development

As illustrated in Figure 8.1, the two first mentioned levels match quite well with

the concept of product portfolio management, while the rest cover the decision-

making we referred to as development portfolio management back in Chapter 2.

The levels of portfolio management are further explained in Sections 8.1.1-8.1.5

below.

8.1.1 Setting investment levels for business areas

At the top, portfolio management in an agile enterprise is about setting invest-

ment levels for product and/or business areas of the company. For example,

Dean Leffingwell‘s framework for agile requirements (Leffingwell & Aalto 2009)

and enterprise agility (Leffingwell 2009) discusses portfolio management as an

enterprise‘s top-level activity for defining strategic product themes (or invest-

ment themes, or simply themes for short) and their investment levels.

Leffingwell‘s themes differ from work items such as epics or stories in that their

priorities are not expressed in rank-order, but rather as percentage-based in-

vestment levels. Figure 8.2 provides an example of what Google‘s strategic prod-

uct themes might have looked like at a hypothetical business unit responsible

for development of the web applications in question.

Chapter 8: Portfolio Management and Agile Software Development

128

Figure 8.2: Resource allocation according to strategic product themes as an example

For a focused organization, only a few themes should be active at any one time

(Leffingwell & Aalto 2009). While a work item that has a low priority may never

be worked on, the top-ranking work items within a theme with the lowest rela-

tive investment level still should be addressed over time if the enterprise acts

according to the longer term priorities it has decided on.

This view of portfolio management is congruent with the view of portfolio man-

agement adopted in the literature on software product management (see Chap-

ter 3: The Gap in the Literature).

8.1.2 Setting product and business goals

Portfolio management also takes place in the form of updating the product vi-

sion and setting high level goals for the business and product areas so that they

are compatible with the current investment level. For each product/business

area (or strategic product theme, as Leffingwell calls them), there should be a

product/business vision statement and the most important business goals

should be spelled out (see Figure 7.4 on p. 124 and Figure 8.3 below).

Figure 8.3: From investment levels to product/business area vision, goals, actions – and
back again

In Leffingwell‘s framework (Leffingwell & Aalto 2009) portfolio management on

this level deals with the prioritization of epics. These are derived from themes,

and are the highest level expression of a customer need. Leffingwell defines Ep-

ics simply as stories which are estimated as ―too big to be realized in a single

release‖. In Leffingwell‘s framework, the instantiation of themes occurs first

through epics, then through features and finally through stories (see Figure 7.3

on p. 121). Our framework (Figure 7.4 on p. 124 and Figure 8.3 above) distin-

Mail
59 %

Picasa
23 %

Reader
10 %

Wave
8 %

Chapter 8: Portfolio Management and Agile Software Development

129

guishes between business goals and product epics, but otherwise the frame-

works are compatible.

8.1.3 Development portfolio resourcing

The most common interpretation of portfolio management in the literature on

agile software development is to perceive it as responsible for the resourcing

decisions across a portfolio of planned and ongoing projects.

For example, Shalloway‘s concept of lean portfolio management (Shalloway,

Beaver & Trott 2009) entails deciding on a relatively frequent basis on how the

development resources are allocated across a portfolio of projects in order to

develop and deliver those minimum marketable features that at the moment

seem to provide the most business value. Thus, Shalloway‘s portfolio manage-

ment refers to short-term tactical project-wise resource allocation, which differs

considerably from Leffingwell‘s use of the term.

Figure 8.4 illustrates Shalloway‘s approach of how the development resources

are allocated to develop the most important business features.

Figure 8.4: Portfolio management as decision-making on short-term project resource
allocation (Shalloway, Beaver & Trott 2009)

In the first iteration, the most important business features from the two most

important projects (projects 1 and 2) are implemented, while the rest of the

projects remain on hold. Since Shalloway‘s business features can be developed

in an iteration, they are smaller than Leffingwell‘s features, which, by definition,

do not fit in an iteration but do in a release. Thus, in terms of Leffingwell‘s

framework (Leffingwell forthcoming 2011), Shalloway‘s business features

roughly correspond to a group of related stories small enough to fit in an itera-

tion.

Pichler (2010) recommends that competing backlogs should be dealt with in a

similar fashion as recommended above in (Shalloway, Beaver & Trott 2009).

Another voice in favor of this kind of approach comes from Larman and Vodde

Feature
A1

Feature
B1

Feature
C1

Feature
D1

Project A

Project B

Project C

Project D

Feature
A2

Feature
A3

Feature
A4

Feature
A5

Feature
A6

Feature
B2

Feature
B3

Feature
B4

Feature
C2

Feature
C3

Feature
C4

Feature
C5

Feature
D2

Feature
D3

Feature
D4

Time

Chapter 8: Portfolio Management and Agile Software Development

130

(2008). They note that for organizations of less than 100 people, prioritizing on

the level of the portfolio of products and services offered tends to lead to local

optimization. Instead, portfolio management can be more effectively carried out

by merging the backlogs for different product/service offerings into a single

backlog and then performing backlog management as usual. Likewise, Krebs

(2008) advocates that the ongoing and planned projects should be kept in a list

called the ―project portfolio backlog‖. Decisions about which projects will con-

tinue, be put on hold, launched or killed are then made on a per-sprint basis. A

similar approach is also mentioned by Rothman (2007):

If you develop in iterations and always develop the highest priority require-

ments first, you can change [project] priorities as often as you finish an itera-

tion. I’m not recommending that you do so but that you could. (p. 310)

The approaches discussed above seem to assume that all of the ongoing activi-

ties that require the developers‘ attention follow an agile life cycle, have up-to-

date backlogs, and have synchronized cadences. Indeed, a common mindset in

the literature seems to be that when all of the development activities are run

using an agile life cycle, the progress and potential value of each activity are

transparent, and thus, portfolio management becomes easier. This is exempli-

fied by the following excerpt from (Rothman 2009):

If you are already using an agile approach for your projects or an iterative or

incremental life cycle where you have an opportunity before the end of the

project to finish features, you can use the ideas here to be a successful leader in

the organization, no matter what level you are. If you use a serial life cycle

where you can’t see any progress until the end of a project, you will find these

ideas more difficult to use. If you use a serial life cycle, try to create interim

deliverables. The more frequently the projects deliver something you can see,

the easier it will be to manage the project and to manage the project portfolio.

(p. 3)

While this is plausible, in most organizations, all, or even most of the

development resources’ activities may not be run using an agile life

cycle – or even conducted as distinct projects. This is not discussed in

the literature on agile software development beyond warning against such situa-

tions, as stated by Krebs (2008):

Don’t mix agile and non-agile projects in one portfolio. (p. 137)

Also, even with respect to those activities that are managed using an agile life

cycle and have up-to-date product backlogs, it may not in practice be easy to

prioritize their contents against each other on a sprint-by-sprint basis (Hodg-

kins & Hohmann 2007). The higher level context for the small work items may

not be evident because the trace of how the smaller work items were split from

higher level goals is missing (Lehto 2010, Lehto & Rautiainen 2009). For more

Chapter 8: Portfolio Management and Agile Software Development

131

on the issue of work item traceability, refer back to Chapter 7 (especially Sec-

tions 7.3.2 and 7.3.3).

8.1.4 Resolving mid-iteration emergencies

At the iteration level, portfolio management is responsible for resolving mid-

iteration emergencies that require escalation. Literature on agile software de-

velopment is generally against the notion of making mid-iteration changes to

iterations‘ staffing or contents. However, because of concerns regarding revenue

or the customer satisfaction of important clients, it can in some situations bene-

fit the organization to ―raise the red flag‖, and adjust the resourcing for the re-

mainder of the iteration to deal with the crisis even if this compromises the

completion of what was being worked on (Rothman 2007). In these situations,

stripping activities of resources and/or putting them on hold in order to salvage

something of more importance is a portfolio management decision.

8.1.5 Time management conducted by individuals

In general, literature on agile software development recommends that all of the

team‘s work, whether related to the ongoing development effort or not, should

be included in the sprint backlog, and that a single person should have a single

sprint backlog to pull tasks from at any given time (Larman & Vodde 2010).

However, more often than not, this is far from the case in reality (Rothman

2007, Rothman 2009, Haapala 2010). Thus, in the less-than-optimal but all-

too-common-situation of people having multiple responsibilities, the bottom-up

time management of individual workers can be seen as one final level of portfo-

lio management. Rothman states that regardless of whether portfolio manage-

ment is explicitly performed or not, it is ultimately up to the individual – wheth-

er an individual developer or a manager – to enlist the activities he or his teams

are expected to work on, prioritize them and communicate this to the people

who are expecting the results (Rothman 2009).

To help in identifying and enlisting the entire spectrum of work that needs to be

attended to, Rothman proposes that in addition to ―project work‖, there is also

periodic work, ongoing work and emergency work (Rothman 2009). Periodic

work needs to be done at a specific time but is not necessarily part of any partic-

ular project. Ongoing work is something that has to be taken care of every now

and then, but attending to it is not tied to any particular time. Emergency work

is something that occurs by surprise, usually as a result of some kind of crisis,

and has to be attended to. Rothman recommends that ongoing work should

be transformed into periodic work whenever possible, which is some-

thing we advocate as well. For example, checking and responding to email is

something that most people can most of the time restrict to a pace of two times

per day.

Chapter 8: Portfolio Management and Agile Software Development

132

However, there is no evidence either way whether including ongoing and peri-

odic work in the team‘s sprint backlog is an optimal way to communicate the

possible unsustainable situation of too many concurrent duties to management.

Also, current literature on agile software development so far seems to provide

little guidance as to how the transition of a team or an individual from multi-

tasking between several development efforts to a single-backlog situation should

be carried out in practice.

We recommend that instead of forcing people to be assigned to a single

activity only, your tooling should help enlist, collect and communi-

cate the duties and the respective workload that an individual may

have (and most likely has) from his multiple concurrent assign-

ments. This also means that your tooling should somehow support the con-

cepts of periodic and ongoing work as described above.

We also recommend that you do not ‗abandon‘ time management as something

that either happens or does not, and cannot be helped. While making most of

their time is everyone‘s personal responsibility, you should make sure that

people know that it actually is their responsibility, as well as collect good time-

management practices (such as the Pomodoro Technique21) and spread know-

ledge about these across your company.

8.1.6 Summary: portfolio management decisions on different levels

To complement the single product / business area view presented in Figure 7.4

(The ATMAN framework for linking daily work with product and business

goals on p. 124) and Figure 8.3 (From investment levels to product/business

area vision, goals, actions – and back again on p. 128), Figure 8.5 below pro-

vides a more detailed illustration of the function of portfolio management in

moderating the flow from strategy to action and back and the basic ―parties‖

involved.

21

 http://www.pomodorotechnique.com/

http://www.pomodorotechnique.com/

Chapter 8: Portfolio Management and Agile Software Development

133

Figure 8.5: A map of portfolio decision-making on different time horizons

Product portfolio management refers to deciding on the set of products and

services offered and developed by the organization, as well as deciding on the

relative spending across the set of products and/or business areas. This roughly

corresponds to the notion of deciding on strategic business themes and the per-

centage of total corporate resources to spend per theme as defined in (Leffing-

well forthcoming 2011)

In contrast, development portfolio management deals with tactical resource

allocation and prioritization across the set of possible activities that compete for

the same pool of resources. While product management (see Figure 7.4) is re-

sponsible for prioritizing and preparing the backlog of a certain activity, devel-

opment portfolio management decides according to the situation at hand which

of the activities actually get resourced, and what their relative priorities current-

ly are.

Note that in Figure 8.5 ongoing activities are meant to include everything that

takes up time and attention from the development people / teams, for example

customer-specific development, consulting, possible non-project work and so

on22. In many of the case companies we have worked with, especially non-

project work seemed to take up an amount of effort from development people

22

 See the notion of types of development activity in Section 8.2.3.

Chapter 8: Portfolio Management and Agile Software Development

134

that upon a closer look was both considerable as well as a surprise for both the

developers and the managers involved.

8.2 Setting up agile-compatible portfolio

management

In our experience, the key steps in setting up and performing agile-compatible

portfolio management are:

1. Mapping who is/are responsible for decisions on the various levels

2. Building a publicly visible list of all ongoing activities that require time from

development, including the information on who are assigned to which activi-

ties

3. Identifying the different types of development activities

4. Setting target spending levels per development activity type that reflect the

organization‘s strategy, and possibly tracking the actual spending

5. Ensuring that incentive systems do not steer people towards local optimiza-

tion

6. Synchronizing the portfolio

7. Meeting regularly at portfolio synch-points (for example, on a bi-weekly ba-

sis) to keep the list of ongoing activities up-to-date, perform short-term pri-

oritization (force-ranking the ongoing activities) and setting the default re-

source allocation until the next meeting

8. Agreeing on how decisions affecting more than one ongoing activity are

made in urgent, ‗emergency‘-type situations

9. Curbing excessive multi-tasking by explicitly setting limits to the number of

concurrent activities a person can be involved in

10. Keeping the enterprise cadence going!

These steps are further explained in Sections 8.2.1-8.2.9 below.

8.2.1 Step 1: Appoint who is responsible for what

Different decisions belong on different levels (see Figure 8.5), and different roles

should participate in making them.

The three ―basic parties‖ responsible for portfolio management decision-making

depicted in Figure 8.5 are the Portfolio council, the Traffic control squad, and

the Development people (or Teams in the context of ―pure agile‖). The portfolio

council is composed of the people responsible for the business success of the

company, as well as representation from development. The portfolio council is

responsible for product portfolio management and ultimately, development

Chapter 8: Portfolio Management and Agile Software Development

135

portfolio management decisions as well. Both of these are further described

below. The traffic control squad is responsible for resolving mid-iteration con-

flicts and crises. It is composed of a subset of the portfolio council as well as

representatives from development on a per-need basis for resolving the conflict

in question.

Table 8.1 below features an example of how HardSoft has organized its devel-

opment decision-making, closely resembling the basic schema described above.

The key roles on each level are written in bold, and the assisting roles are

written in italic. When things are ―going smoothly‖, participation from the as-

sisting roles is not needed. However, when it seems that one or more goals set

(for e.g. the iteration, the release, etc.) in the above cycle are in jeopardy, the

assisting roles need to participate.

As can be seen from Table 8.1, the key roles that should participate in develop-

ment portfolio management at HardSoft are product manager(s), the portfolio

manager, head of product development (should such exist as a separate role)

and the project manager(s).

Product managers represent Business and they are, when necessary, responsible

for inviting Business unit managers and/or Sales to participate in portfolio

management decision-making. Likewise, it may be necessary to have more ex-

perienced developer(s) present to participate in the discussion. These are typi-

cally invited by the product or project manager(s).

Depending on the size and complexity of the portfolio (and the degree of tool

support), it may be a good idea to dedicate a person solely (or mostly) to portfo-

lio management. In most of the companies we have seen, it has been difficult to

get the development management process up and running without a person who

can set aside the time to take sufficient action. Whatever the case, the portfolio

manager should possess sufficient presence and charisma to keep the meetings

in line. Also, to ensure the neutrality of the role, the person acting as the portfo-

lio manager should not have direct product, project, or business unit manage-

ment responsibilities.

Note that the terms product manager and product owner should be extended

to include anyone who ―owns‖ a crucial development activity (or a development

activity type). For example, if customer service (or maintenance, deployment

projects, installation, training, etc.) are essentially powered by the development

people, the managers of the respective functions should take part in portfolio

management.

Chapter 8: Portfolio Management and Agile Software Development

136

Table 8.1: Key decisions on each ‘cycle’ at HardSoft and the roles involved

Cycle Decisions Roles involved

Corporate gover-

nance

Overall direction and area of operation for the com-

pany in terms of its business units, their interaction,

and investment levels, attitude towards growth

Board

CEO

Business unit managers

“Department” heads (sales,

development, products)

Business unit man-

agement

Business goals and revenue, product vision, release

cycles, identifying the types of development activi-

ties

Business unit manager

Sales

Product managers

Head of development

Product manage-

ment

Product roadmaps, resource requirements, release

goals for e.g. individual segments / solution offer-

ings / technology

Business unit manager

Sales

Product manager

Product owner

(Lead) developer

Activity
23

 portfolio

management

Balancing the goals and the overall resource de-

mands set in roadmaps through launching (killing /

freezing) development activities, monitoring spend-

ing levels, prioritizing the development portfolio,

setting criteria for selecting and prioritizing devel-

opment activities and conducting periodical evalua-

tions, identifying dependencies between ongoing

activities, setting and enforcing portfolio control

points

Business unit manager

Sales

Product managers

Portfolio manager

Head of development

Project managers

(Lead) developers

Activity manage-

ment

Features, Stories, release-level prioritization Product manager

Product owner

Team

Iteration manage-

ment

Stories, tasks, implementation order, iteration level

prioritization, …

Product manager and/or Sales

Product owner

Team

Heartbeats / daily

work

Personal backlog item and task lists, updating Effort

left –estimates, …

Product owner

Team

8.2.2 Step 2: Compile a list of all ongoing activities

According to Rothman (2009) as well as our experiences, it is rather common

for an organization to not be aware of which projects are active, which projects

should be active, or which projects are planned for when.

Thus, a first step to take is to list all ongoing activities that require time from at

least the development people – whether they are conducted as explicit projects

23

 ―Activity‖ is anything that can take up time from development, e.g., a release project, custom-
er support, etc. See Section 3.3.3 Development portfolio management.

Chapter 8: Portfolio Management and Agile Software Development

137

or not – and marking on the list the people who are involved in each activity.

You might also want to list those activities that are on hold or immediately up-

coming.

This list should be made publicly available (preferably so that it is on a central

place where people can easily see it as they go about their duties at the office) as

well as kept up-to-date on a continuous basis (see Section 8.2.7 Steps 7-8: De-

fine enterprise cadence via portfolio control points for details).

Figure 13.6: Portfolio overview in Agilefant 2.0.4 on page 202 depicts an exam-

ple of a list of planned and ongoing activities, along with the relative priorities of

the activities, the people involved in each activity, as well as the status of each

activity as deemed by the person responsible for the activity in question.

8.2.3 Step 3: Identify development activity types

Identifying the different types of development activities the developers are at-

tending to creates a framework and terminology for thinking about and discuss-

ing the performed activities as an explicit portfolio (Wheelwright & Clark 1992).

Adding structure to the portfolio by identifying the development activity types

of the company helps in seeing how each planned or ongoing activity contri-

butes to the big picture, and makes it easier for management to decide what mix

is currently appropriate and why (Vähäniitty & Rautiainen 2005).

One of the common problems is underestimating the time that is being spent on all

other activities besides the defined development projects. Because of the high degree

of resource sharing – at least in small companies – the development portfolio should

include all of the activities that require attention from the developers, whether or not

these activities actually involve ―product development‖ in the strict sense.

Table 8.2 below displays an example the types of development activity identified

at HardSoft, along with their targeted and actual spending levels (see explana-

tion in Section 8.2.4 below)

Chapter 8: Portfolio Management and Agile Software Development

138

Table 8.2: Types of development activities, their target spending levels (TGS) and actuals
(Act.) at HardSoft

Symbol Activity type Includes TGS Act.

Customer-specific

product develop-

ment

Customer projects (includes design meetings and

meetings for planning security issues - neither were

previously not taken into account when planning

schedules)

Delivery and production testing

The finalization phase (previously left out)

40% 35%

R&D

Product development projects (all ‗larger stuff‘ is

projected)

Prototyping, hacking-for-the-sake-of-interest, de-

sign meetings

25% 5%

User support and

maintenance

Planned (reviews, servicing runs, small tweaks to

delivered systems‘ configuration, updates and their

preparation)

Unplanned i.e. must reserve time for these (on-call

alerts and resolving them, resolving ‗red flags‘)

15% 25%

Training and con-

sultation

Customer training

Lecturing
5% 5%

Sales support

Sales work done by development people

Trade fairs & preparing for them

Bidding & preparing bids for contracts

Small development tasks requested for sales &

promotional purposes

5% 15%

Self-improvement

Internally driven (e.g. writing team level action

guides, adopting the document management sys-

tem, personnel training, improving development

processes and tool support, taking part in university

research projects)

Externally driven (e.g. certification)

5% ?

Administrative

tasks

Business unit management meetings

Team meetings

Logging spent effort

5% ?

Chapter 8: Portfolio Management and Agile Software Development

139

8.2.4 Step 4: Set target spending levels

Establishing target spending levels means deciding how much in relative terms

should in an ideal case be spent on each activity type. The resulting balance

should reflect the acceptable risk level and the strategy of the company

(McGrath 2000). Once target spending levels have been set, the work items in

each activity type can be prioritized against the level set.

See Table 8.2 above for example targeted and actual spending levels at HardSoft

Inc. The strategy set by management will require an increase in the offerings‘

level of productization, which in turn requires concentrating more on R&D.

Looking at the distribution of the actual effort spent in Table 8.2, it seems that

the most likely paths to correct this are to find ways to streamline User support

and maintenance and cut back on developers‘ involvement in sales support.

As another example, Figure 8.6 below displays the types of development activi-

ties identified at three software companies. Figure 8.6 also displays the target

spending levels for the company Odysseus Inc.

Figure 8.6: Types of development activities identified at three companies

Marginaalin

tiivistyslause

Chapter 8: Portfolio Management and Agile Software Development

140

Modern development methodologies tend to consider tracking spent effort in hours as

either directly unproductive (McCarthy & McCarthy 2002) or at best, uninteresting

(Schwaber & Beedle 2002). Nevertheless, in real-life companies there may be valid

reasons for tracking actual hours spent for billing and/or accounting purposes24. Sur-

prisingly, however, the need to reflect target spending levels against the actual hours

spent is not necessarily one of these valid reasons! If you track the estimates for back-

log items‘ (or tasks, requirements, user stories etc.) remaining effort, you can get a

reasonably accurate idea of how your actual spending is matching your targeted

spending even without tracking hour spent per se. This is achieved by comparing the

realized velocities of your completed past iterations – grouped by development activity

type – against the set target spending levels.

8.2.5 Step 5: Check incentive systems

By the time the previous steps have been completed, it has probably become

painfully obvious if you have dysfunctional incentive systems in place. That is,

incentive systems that steer people to behavior that causes local optimization.

Refer to Section 4.2.5 for more on this issue.

8.2.6 Step 6: Synchronize the portfolio

Besides the fact that different development activities compete for the develop-

ers‘ attention, these development activities should in many cases also be ma-

naged differently. For example, the process for developing a new major release

is likely to have different emphasis than the process for conducting customer-

specific tailoring, not to mention making customer deliveries or training the

customers. In our earlier work (Rautiainen et al. 2006) we have identified ca-

dence25 and the resulting control points as the backbone for managing software

development. Cadence supports persistence and forces convergence while re-

taining the flexibility to change plans and adapt to changes at specific time in-

tervals in the control points.

24

 See:
http://danube.com/blog/michaeljames/tracking_hours_spent_appropriate_and_inappropriat
e_usage
25

 Actually, the term used by us in the past has been rhythm instead of cadence. However, most
authors nowadays use the term cadence – and it is, at least in English, a more accurate term for
the phenomenon in question. Thus, we are also using the term cadence in this book.

Chapter 8: Portfolio Management and Agile Software Development

141

Figure 8.7: Cadence and control points in a release-based, incremental development
process

Figure 8.7 shows an example cadence for release-based software product devel-

opment. The time horizon long-term product and release planning, referred to

in Figure 8.7 as ―strategic release management”, spans two release projects,

each release is built in three iterations and the daily work is coordinated and

synchronized with suitable practices in heartbeats. Each time horizon begins

and ends in a control point to plan it or wrap it up, respectively. Specific agen-

das of control points should vary depending, e.g., on the time horizon and the

development activity type (Rautiainen 2004).

Figure 8.8: An out-of-sync development portfolio

Figure 8.7 displays the simplified case of the cadence for a single type of activity

(release-based development). However, in Figure 8.8 above we have illustrated

what the cadence for an entire development portfolio, consisting of four types of

development activities, might look like. In Figure 8.8 each development activity

has its own cadence. Setting a suitable cadence for a development activity en-

Time

Application development

Platform development

Deliveries

Tailoring

Chapter 8: Portfolio Management and Agile Software Development

142

tails understanding what kind of cadence suits the ‗customers‘ of the activity in

question. For example, events and the rhythm of the market directs when prod-

uct releases should be made. However, the nature of the offering (for example,

the time needed for testing), the internal capabilities of the company (for exam-

ple development process effectiveness and personnel skills) as well as how much

effort can be spent considering all the other tasks at hand constrain what is

possible.

Setting a development cadence creates control points that (with the exception of

the heartbeat level) may require the attention of portfolio level decision-making.

Thus, as illustrated in Figure 8.8, there is a danger that those responsible for

portfolio decisions on various levels become overloaded with requests for atten-

tion due to the sheer volume of control points required by even the four ongoing

development activities shown in Figure 8.8.

An out-of-sync portfolio26 leads to problems in resource planning and alloca-

tion. When push comes to shove, the types of development activities with close

customer involvement tend to override release-based product development,

which in turn makes longer term planning of release-based product develop-

ment both difficult and frustrating.

Portfolio synchronization means organizing the control points for different de-

velopment activities so that the overall enterprise cadence becomes as simple as

possible. For this to succeed, the cadence of all types of development activities

should be similar. For example, if the longest iteration time horizon for any de-

velopment activity is 4 weeks, the other development activities should have ite-

ration time horizons that are 1, 2, or 4 weeks. In this way the entire enterprise is

synchronized at least every 4 weeks, which can be used as the time interval for

portfolio control points (see Section 8.2.7 Steps 7-8: Define enterprise cadence

via portfolio control points). Even if conducting customer deliveries and doing

consulting would not by themselves require control points on the iteration level,

they should adhere to some kind of cadence for the benefit of resource planning

and allocation for the entire portfolio.

The notion of portfolio synchronization is also supported by virtually all of the

existing (though scarce) grey literature that discusses portfolio management in

the context of agile software development. Synchronizing the iterations makes it

feasible to commit the resources for a fixed period. Provided that the organiza-

tion‘s cadence or ―enterprise iteration‖ is short enough, this helps alleviate a

fire-fighting mentality as cross-project trade-offs are possible to make proac-

tively and on a more continuous basis.

26

 Many, or perhaps most companies are actually doing multi-tasking on a non-synchronized
portfolio that has an irregular cadence; more on this in Chapter 9.

Chapter 8: Portfolio Management and Agile Software Development

143

8.2.7 Steps 7-8: Define enterprise cadence via portfolio control

points

Ultimately, the cadence of an enterprise is set via portfolio control points. We

have identified three basic kinds of portfolio control points: roadmap updates,

portfolio reviews and traffic control meetings. These are illustrated in Figure

8.9 and further explained below.

Figure 8.9: A synchronized development portfolio with three types of control points

Portfolio Reviews set the enterprise cadence, and they are the primary me-

chanism for ensuring that the ongoing activities are aligned with strategy. Port-

folio Reviews look at the ongoing development activities as defined by their in-

ternal control points, but keep the entire portfolio in mind when dedicating re-

sources and setting the scope for the upcoming set of development iterations.

The objective is basically to freeze the resources and scope for the upcoming set

of iterations. If the portfolio reviews are held often enough, firefighting is mini-

mized as cross-project tradeoffs are made proactively on a continuous basis

(Harris & McKay 1996). Portfolio Reviews require the attention of both Business

and Development, but depending on the exact roles and responsibilities, the

representation of Business need not be as extensive as in Roadmap Revisions

(see Section 8.2.1 Step 1: Appoint who is responsible for what on page 134). For

portfolio reviews to work, portfolio synchronization is in most cases necessary.

Chapter 8: Portfolio Management and Agile Software Development

144

Table 8.3 below describes the responsibilities (from the perspective of portfolio

management) of the major roles involved in portfolio management before, dur-

ing and after portfolio review meetings.

Table 8.3: Roles and responsibilities related to Portfolio reviews

Role

Responsibilities

in preparation of, during, and after the meeting

B
u

si
n

es
s

Help the product manager(s)

as needed to prepare the

business case

Final word on resource spending

per ongoing activity and the

relative priorities until the next

portfolio review; sanity check

the decisions against company

strategy and financial goals

Support people to act ac-

cording to the decisions

made

P
ro

d
u

ct
 m

a
n

a
g

er
(s

)

&
 P

ro
d

u
ct

 o
w

n
er

s

(i
n

cl
u

d
es

 t
h

e
h

ea
d

s
o

f
d

ev
e

lo
p

-

m
en

t
re

so
u

rc
e

–
d

ep
en

d
en

t
fu

n
c-

ti
o

n
s

,
e.

g
.

cu
st

o
m

er
 s

er
v

ic
e)

 Prioritize your product back-

log(s) to include enough stuff

in line with the currently

approved roadmaps to work

on until the next portfolio

review (in case you got all of

the resources you wanted);

Figure out which resources

you‘d want; prepare the busi-

ness case(s) to match your

needs

Presenting what the approved

roadmap(s) have in store for the

upcoming period (e.g. in terms

of stories and features), what

these require in terms of re-

sources, and what can be

achieved if the requested re-

sources are granted

Check early & often that the

work done indeed is such

that it fulfills the related

stories and features; keep

activity status up-to-date

P
o

rt
fo

li
o

 m
a

n
a

g
e-

m
en

t

Make the portfolio manage-

ment visualization and the

dashboard up-to-date with

current status. Gather infor-

mation about actual progress.

Organize the meeting (i.e.

invite the participants, make

sure they are coming)

Act as meeting chair; keep a

(suitable) memo of the discus-

sion and decisions made;

present actual spending since

the last portfolio review (if avail-

able); expose unplanned work

since the last portfolio review;

sanity check the decisions

against historical performance

Update the portfolio visuali-

zation; monitor whether the

decisions made in the meet-

ing are being acted out

P
ro

je
ct

 m
a

n
a

g
-

er
(s

)
/

P
ro

d
u

ct

o
w

n
er

(s
)

Get up-to-date on how the

upcoming iteration goals are

doing and possible impedi-

ments

Inform others of how the cur-

rently ongoing iterations are

doing and why; strive to remove

the impediments

Blow the whistle on un-

planned work; let portfolio

and product management

know of impediments; keep

activity status up-to-date

and make sure work items‘

status reflects their real state

D
ev

el
o

p
m

en
t

Help the product manager(s)

by estimating efforts as needed

for prioritizing the product

backlog(s); help project man-

ager(s) to understand current

status; tell portfolio manage-

ment if something unplanned

has been demanding your

attention; reserve time for

joining the meeting when

asked to contribute to the

discussion

Aid in the discussion and deci-

sion-making when you can make

a contribution

Focus on the daily work;

inform product own-

er/project manager of impe-

diments; inform product

owner / product manage-

ment of unforeseen technical

difficulties; keep stories and

tasks up-to-date

Chapter 8: Portfolio Management and Agile Software Development

145

Roadmap updates deal with issues such as product visions and release strat-

egies, and should involve a procedure for long-term planning, such as product

roadmapping (Kappel 2001). Roadmap updates require the attention of people

from both Business and Development.

Table 8.4 describes the responsibilities (limited to the perspective of portfolio

management) of the major roles involved in portfolio management before, dur-

ing and after roadmap updates. While the Roadmap update is referred to here

as ‗a meeting‘, it might as well take the form of a two-day strategy retreat, com-

plete with evening program, etc. Also, at least in small companies, it is a good

idea to involve the entire staff in the process.

Table 8.4: Roles and responsibilities related to Roadmap updates

Role

Responsibilities

in preparation of, during, and after the meeting

B
u

si
n

e
ss

Prepare for revising the target

spending levels and the criteria for

selecting and prioritizing devel-

opment activities; check whether

the identified types of develop-

ment activities still match what‘s

actually going on. Organize the

meeting (i.e. invite the partici-

pants, make sure they are coming)

Act as meeting chair. Set a

balanced resource allocation

that matches the company

strategy for the competing

set of proposed releases and

other development activities.

Keep a (suitable) memo of

the discussion and decisions

made.

Support people to act

according to the decisions

made; check when possi-

ble that the work

progresses towards the set

business goals; participate

in the portfolio mgmt

process (see Table 8.3

above)

P
ro

d
u

ct
 m

a
n

a
g

er
(s

)
&

p
ro

d
u

ct
 o

w
n

e
rs

(i

n
cl

u
d

es
 t

h
e

h
ea

d
s

o
f

d
ev

el
o

p
-

m
en

t
re

so
u

rc
e

–
d

ep
e

n
d

en
t

fu
n

ct
io

n
s

,
e.

g
.

cu
st

o
m

er
 s

e
r-

v
ic

e)

Do a preliminary revision of the

product roadmap(s) representing

your own view of where the prod-

uct should go.

Present the revised product

roadmap(s) and justify the

resource demands for the

upcoming release(s)

Keep your backlog(s)

groomed; participate in

the portfolio management

process

P
o

rt
fo

li
o

 m
a

n
a

g
e

-

m
en

t

Analyze the past period in terms of

target vs. actual spending levels,

strategic alignment, financial

value, conformance to the deci-

sions made in the prev. roadmap

update and the portfolio reviews,

and the controllability of the de-

velopment portfolio

Present a summary of the

past period, sanity check the

decisions made against

historical performance,

request adjustments to the

portfolio management

process as necessary

Participate in the portfolio

mgmt process

P
ro

je
ct

m
a

n
a

g
er

(s
)

/
P

ro
d

u
ct

o
w

n
e

rs
 Help portfolio and product man-

agement where needed; reserve

the time to participate to the meet-

ing

Sanity check the decisions

made against historical

performance

Participate in the portfolio

mgmt process

D
ev

el
o

p
m

en
t Help portfolio and product man-

agement where needed

Sanity check the decisions

made against historical

performance

Participate in the portfolio

mgmt process

Chapter 8: Portfolio Management and Agile Software Development

146

For more on roadmap revisions, see e.g. (Vähäniitty 2004).

Traffic control meetings are essentially event-triggered Portfolio Reviews.

Business realities may make an absolute adherence to the principle of freezing

resource allocation until the next portfolio review impossible. Defining and al-

lowing Traffic control meetings increases the likelihood of systematic and con-

scious decision-making when mid-iteration changes have to be made. In addi-

tion to making the needed changes in priorities and resourcing, a Traffic control

meeting should also analyze and record the root cause that led to the situation.

This makes it easier to spot similar situations in advance, as well as provides a

baseline for estimating how often Portfolio reviews are likely to be needed,

which in turn promotes realism in planning. When a Traffic control meeting is

needed, it may or may not be necessary to call the entire team responsible for

portfolio decision-making. While the number of people that need to be involved

depends on the size of the ―traffic jam‖, the deciding factor is whether the small-

er group of people is able to solve the problem and be accountable for the trade-

offs made.

The responsibilities of a Traffic control meeting are otherwise identical to that of

a Portfolio review meeting (see Table 8.3 above), with the addition that the port-

folio manager is, with the help of others, responsible for analyzing and record-

ing the cause(s) of the traffic jam.

8.2.8 Step 9: Curb excessive multitasking

While agile software development literature generally advises strongly or very

strongly against individuals or teams multi-tasking on several activities, we

deem this challenging in practice. This issue is explored more in-depth in Chap-

ter 9.

However, while an absolute adherence to single-team/individual-attends-to-a-

single-activity-only may be impossible, it is quite easy to go overboard with mul-

ti-tasking (and many, if not most companies are doing this already). Thus, at

this step you should look at whether organization-wide restrictions on the num-

ber of activities a person or a team can be involved in should be in place, and if

Work-in-Progress should be limited (for this Kanban could be an alternative,

see Chapter 12)

8.2.9 Step 10: Keep the enterprise cadence going!

Getting people to adhere to the enterprise cadence set up by the portfolio con-

trol points and sticking to it can be challenging. Ideally, the portfolio council is

able to set and keep the resource allocation fixed for the duration of the organi-

zation‘s enterprise iteration. However, business realities may make an absolute

adherence to this principle next to impossible. This is especially the case in

those organizations where the development portfolio does not consist solely of

activities following a ―pure agile‖ life cycle. We believe that most organizations

Chapter 8: Portfolio Management and Agile Software Development

147

indeed are such; at least, most of the case organizations we‘ve worked with

were. Thus, it is quite plausible that such a situation is fairly common.

In our approach, the fact that mid-iteration conflicts eventually occur was ad-

dressed by the traffic control squad, a forum in which mid-iteration conflicts

between activities are resolved in the light of the prevailing business priorities.

The traffic control squad is a subset of the portfolio council, consisting of only

those people necessary to solve the conflict in question, possibly terminating or

freezing one or more ongoing iterations so that the most important ones get the

needed support. Having a nominated traffic control squad increases the chances

for systematic and conscious portfolio decision-making to take place when mid-

iteration conflicts occur, and helps keep the enterprise cadence going.

8.2.10 Setting up agile portfolio management in the literature

Below, we present two approaches for setting up agile-compatible portfolio

management as presented by (Rothman 2009) and (Poppendieck & Poppen-

dieck 2009) that both, when properly carried out, deal with many of the steps

presented in Sections 8.2.1-8.2.9. In terms of published research, there is little

evidence or suggestions related to agile-compatible portfolio management. Two

industrial experience reports published in the Agile 2007 conference were found

using IEEEXplore (Hodgkins & Hohmann 2007, Tengshe & Noble 2007). These

approaches resemble the one described by Rothman below.

According to Rothman (2009), the first step in setting up portfolio management

is to gather the list of all activities with their supposed start and end dates. Once

everything that takes up people‘s time has been gathered, the next step is to eva-

luate each activity in terms of whether it should be continued at all. The activi-

ties that survive this phase should then be prioritized against each other in a

rank-ordered list, and the result of this ranking should be published along with

an explanation for the rationale behind the ranking. This evaluation and rank-

ing should be made with the company mission in mind. If the company mission

has not been defined or updated in a long time, this should be done before con-

tinuing. The evaluation and ranking of projects should then be revisited at itera-

tion boundaries, and preferably, the iterations across different activities should

be synchronized.

In Poppendieck‘s approach, possible development efforts that take up people‘s

time are first classified by type, for example as strategic business initiatives,

feature upgrades, infrastructure upgrades, and maintenance. Then, the de-

sired cycle time for each type of development effort is created. The investment

levels for each category are set by determining how many initiatives of each type

should be carried out within a year, or in the case of activities that have no clear

start or end dates (such as maintenance), a reservation is made of how much of

the total capacity the activity should be allowed to expend (see Table 8.5).

Chapter 8: Portfolio Management and Agile Software Development

148

Table 8.5: Structuring the portfolio by investment levels (Poppendieck & Poppendieck
2009)

Type Timebox Number per year

Strategic business initiative 6 months 2 of these

Business feature upgrade 2 months 12 of these

Infrastructure upgrade 12 months 1 of these

Other (e.g. maintenance) Ongoing 20% of capacity

Finally, the slots for the initiatives are laid out in the calendar in advance. As a

time slot allocated for a certain type of initiative approaches, its actual contents

are decided based on what currently seems to be the most valuable initiative for

the category in question.

Chapter 9: Agile Development Portfolio Management

149

Chapter 9: Agile Development
Portfolio Management

Jarno Vähäniitty & Ville Heikkilä

Most advocates of agile software development as well as the

majority of the literature advice against assigning a single indi-

vidual or team to work on multiple development activities such

as release projects. However, we believe that working on mul-

tiple activities is something that in practice can only very seldom

be completely avoided, and trying to avoid it completely only

leads to multi-tasking “under the radar”, so to speak. So, as

your typical managed-by-fire-fighting organization is transform-

ing to a more disciplined agile way of working, simultaneous

work on multiple projects and teams should to some degree be

allowed – as long as the resulting situation is visible. This chap-

ter starts with explaining why a team or an individual in practice

almost always has multiple activities to attend to (Section 9.1).

Then we explain what working concurrently on multiple devel-

opment activities means from the perspective of backlog man-

agement in order to ease your company’s transformation into a

more agile way of working without strictly enforcing the one-

team-one-activity limit (Section 9.2). Last, we explain how the

degree of working on multiple simultaneous development activi-

ties and the related planning overhead can be brought to a

more acceptable level (Section 9.3).

9.1 Why have teams work concurrently on multiple

projects?

Like explained in Section 8.1 (Levels of portfolio management in an agile en-

terprise, page 126), portfolio decision-making happens – or at least, should

happen on multiple levels. We also explained how portfolio management mani-

fests itself during iterations and ultimately in developers‘ daily work (see Section

8.1.5 Time management conducted by individuals on page 131).

When you have one team that works on only one iterative activity at a time, such

as a product development project, the team members choose which work item

Chapter 9: Agile Development Portfolio Management

150

they will next attend to. This decision-making is quite simple, since a developer

has only a single sprint backlog to pick work items from. This is also the basic

Scrum model at its simplest, and with it there are numerous benefits such as no

inter-team dependencies, there is no switching from one project to another dur-

ing an iteration, and progress monitoring is simple.

However, what goes on in real-world organizations seldom resembles this. In-

stead, developers in practice have several different activities that compete for

their attention, for example, working on the next release of a product, respond-

ing to customer support requests, and preparing for conducting a training ses-

sion at a customer. Or, a person with specialized skills may belong to two teams,

which have been assigned to two different projects which have their own distinct

sets of work items to get done during their ongoing iterations, which may or

may not have the same start and end dates.

A development project can benefit greatly from the simplicity of the basic Scrum

model of limiting multiple assignments to the maximum of one. This is because

the comparison is made to the hardly optimal everybody-doing-too many-

things-concurrently-and-prioritization-occurs-by-fire-fighting situation.

However, there are downsides to enforcing teams and individuals being as-

signed to a single activity. First, the rest of the activities tend to suffer, as they

are still managed with the old prioritization-by-fire-fighting mentality, but are

crippled in the sense that certain people can no longer be used in ―saving the

day‖ when needed. This can actually be a serious hurdle from the perspective of

agile adoption – especially in small companies – as the majority of people ac-

tually end up suffering as the result of providing one team the peace and quiet

needed for success!

Second, even if all activities are conducted using the basic Scrum model, the

single-activity-only mode has several limits – which are, to a degree, recognized

and even addressed in some Scrum trainings nowadays27. For example, if for a

business reason you need to show progress on two activities - say, a product de-

velopment project and a customer-specific customization project at the same

time, this can‘t be handled by the single-team-single-project model. Or, if in the

name of customer satisfaction support requests are to be responded to during

an ongoing development iteration, this should be accounted for in the iteration

planning.

27

 For example, at least on those two-day product owner courses we have attended; the advice
given is to reserve in iteration planning the time for the additional activities that are expected to
be handled during the iteration. However, at least on those courses we‘ve attended, this is not
discussed in-depth. In this chapter, we intend to take the discussion further, and show the im-
plications of the advice.

Chapter 9: Agile Development Portfolio Management

151

9.2 Controlled multi-tasking with floating backlogs

To support teams and individuals who for one reason or another have to work

on multiple concurrent development activities to properly manage their backlog

and adhere to agile/lean principles, you need what we call floating backlogs.

The backlog is ‗floating‘, because it is not related to any specific prod-

uct/business area, or even a time horizon. Instead, it refers to a prioritized

list of stories merged from the product/release backlogs of multiple

product/business areas that a particular team (or individual) is re-

sponsible for at a particular moment in time. The priorities of the work

items as well as the intended resource spending per activity have been nego-

tiated and agreed upon by the product owners responsible for the prod-

uct/business areas in question. This is illustrated in Figure 9.1 below.

Figure 9.1: Work items from several backlogs merged into a single, prioritized backlog
for a team

A team should not pull more stories from a product/release backlog into its

floating backlog than it thinks it can accomplish within a certain cadence taking

into account all the other activities the team members are involved in. The team

should reserve time for those activities according to the agreement of the re-

spective product owners.

Figure 9.4 (Development portfolio management for two teams working on

three concurrent activities) on page 153 shows an example of how backlog items

from multiple activities are pulled into the teams‘ backlogs. Next, we shall ex-

plain the example illustrated in its entirety in Figure 9.4 on page 153 one step at

a time.

In our example there are two teams, Team A and Team B, which are attending

to three activities: a project that develops the next release of a product (hereaf-

ter, Development for short), another project that is customizing a version of the

product for an existing customer (hereafter, Customization for short), and the

continuous activity of responding to customer support requests (hereafter, Sup-

port for short). All of the activities have their own backlogs and ―product own-

ers‖ who are responsible for prioritizing and grooming the backlogs. In our ex-

ample, Development is color coded as red, Customization as blue, and Support

as green. Work items are represented by colored rectangles, with the size of the

rectangle representing the amount of effort estimated as needed to get the work

Chapter 9: Agile Development Portfolio Management

152

item done. Support does not have a cadence in the same sense as Development

or Customization. Support items are removed from the support backlog as they

get done. New work items are added to the support backlog whenever support

requests arrive, and the customer support manager grooms the support backlog

on a daily basis. This example covers two Development and three Customization

iterations. The horizontal axis represents a timeline and the half-circles denote

the iterations. Colored diamonds (e.g.) denote a session for planning the con-

tents of the next iteration for the activity in question (red for Development, blue

for Customization, and green for Support). The backlog of the activity is drawn

inside each half-circle. This is illustrated in Figure 9.2 below.

Figure 9.2: The cadence of the ongoing activities

As said earlier, there are two teams that both are available to take on work from

the three activities (see Figure 9.3 below).

Figure 9.3: Teams A and B and their floating backlogs at the first planning session

In Figure 9.4 (page 153), the backlogs of both teams at each planning session are

shown on a timeline. The hollow-tipped arrows () going into the backlog

items denote a work item being pulled into a team‘s floating backlog. Lines end-

ing in a dot () denote a work item getting done. Arrows from a work item to

another depict the movement of work items inside and between the teams‘ float-

ing backlogs over time.

Let‘s now walk through the rest of the example step by step. For this, we rec-

ommend that you print a copy of the entire illustration (Figure 9.4 on the follow-

ing page) or open it from http://tinyurl.com/floatingbacklogs so that it can

be viewed together with reading the paragraphs that follow.

http://tinyurl.com/floatingbacklogs

Chapter 9: Agile Development Portfolio Management

153

Figure 9.4: Development portfolio management for two teams working on three concur-
rent activities

Chapter 9: Agile Development Portfolio Management

154

At the first Development planning, Team A pulls three Development work items

from the Development backlog, and the single available Support item from the

Support backlog. The Development, Customization and Support product owners

have agreed that a certain amount of the Team A‘s total available time is re-

served for the upcoming Customization iteration 1, which has been planned to

start during Development iteration 1. Team B pulls two Development items,

with the rest of its time reserved for dealing with the soon starting Customiza-

tion iteration and those Support requests that might arrive during the first De-

velopment iteration.

By the time Customization iteration 1 starts, Team A has completed one devel-

opment item. Team B has also completed one Development item. In addition,

three support requests have arrived and the respective Support items have been

created and prioritized by the customer support manager. When planning Cus-

tomization iteration 1, Team A and B pull two and three Customization items

respectively. Team A also pulls one and Team B two support items in their back-

logs.

Because of the shorter cadence of Customization, Customization iteration 1 ends

before Development iteration 1. By this time, Team A has done one more Devel-

opment item as well as its most important Support item. Also, Team B has com-

pleted its most important Development items as well as one Customization

item. By this time, three additional support requests have arrived and been pri-

oritized. In planning Customization iteration 2, neither of the teams pulls new

items but instead, time is reserved for pulling Development items in the soon

upcoming planning of Development iteration 2.

By the planning of Development iteration 2, Team A has completed one Support

item, and Team B has completed one customization item. Two new support re-

quests have arrived, and the respective Support items have been created and

prioritized. When planning for Development iteration 2, one Development item

that has not yet been started is agreed to be transferred from Team A to Team B.

In addition, Team A pulls two Development items and one Support item. Team

B doesn‘t pull any new items, but reserves some time for the upcoming planning

of Customization iteration 3.

By the planning of Customization iteration 3, Team A has completed one, and

Team B has completed two Customization items. In addition, Team B has com-

pleted two Support items. Two new support requests have also arrived, with the

respective Support items added and prioritized in the Support backlog. When

planning Customization iteration 3, Team A and Team B both pull two new Cus-

tomization items. In addition Team B pulls two Support items.

Chapter 9: Agile Development Portfolio Management

155

By the end of Development iteration 2, both teams have completed all their De-

velopment items, and the remaining Support items are pulled. By the end of

Customization iteration 3, both teams have completed the Customization and

Support items they had in their backlogs. The two Support items pulled at the

end of Development iteration 3 are not yet done, and work on them continues.

9.3 Towards a feasible level of multiple concurrent

assignments

The model described above may seem quite complex. However, it is quite

close to how many non-agile companies are actually trying to work.

However, there are several important differences that separate it from your typ-

ical uncontrolled everybody-working-on-multiple-things-ad-hoc-mgmt-by-

fire-fighting mode.

For starters, there are true cross-functional teams that hopefully have already

‗jelled‘, and the majority of the ongoing activities have defined cadences.

Second, the development activities that compete for the teams‘ attention have

owners who maintain prioritized backlogs. Third, the owners of the competing

activities are able to agree to a common set of priorities for the activities them-

selves as well as target spending levels – at least for the duration of the activity

with the most frequent planning cadence. Thus, instead of committing to sets of

backlog items, the teams actually commit to putting in a set amount of effort per

activity during the planning events. The job of the product owners of the activi-

ties is to match the work items they wish to get done to the available level of ef-

fort. Collaboration in setting the investment levels per activity is crucial, because

it is in the mathematical sense impossible to determine what the ‗next most im-

portant item‘ to attend to is. For example, which would be more important: to

attend to the tasks needed to accomplish story #2 of the most important project,

or the tasks needed to accomplish story #1 of the project that has currently been

ranked as second in importance for the ongoing set of iterations? Or, if some-

thing needs to be added to the most important activity, should something be

removed from it, or should the scope down be made to a less important activity?

In our model, these decisions are made in accordance with the investment levels

agreed upon in the planning events. Finally, the teams and product owners are

reacting to how the work actually progresses. In the example, during the first

Development iteration, Team A was not able to complete a development item

they had pulled, and subsequently the item was transferred to Team B at the

next planning event.

At this point, you may still be thinking that the approach described above is too

complex to work in practice. And you are right: as the number of activities and

teams increases, the time spent in the planning events increases, especially as

both the teams as well as all of the activities‘ owners must be present at each

Chapter 9: Agile Development Portfolio Management

156

event. The teams must also take into account any dependencies between the

items, which becomes harder and harder as the number of activities and teams

increases. Unnecessary context switching may also happen, since different types

of activities are mixed in each team‘s backlog. All of these are the natural down-

sides of applying agile outside of its traditional sweet spot of a single team work-

ing with a single product owner and a single backlog.

However, the most important unnecessary complexity in the above

model is that of not having the activities’ planning cadences syn-

chronized. In the kind of situation described, the planning cadences of those

activities that actually have a defined cadence should be synchronized28. This

reduces the effort spent on planning, as the concurrent activities can be ad-

dressed as a whole making it easier for the product owners to negotiate and

agree on the investment levels until the next planning event.

When feasible, you can take the simplification even further and reduce switch-

ing costs by assigning each team to only one activity per iteration. In this case,

teams can still be switched between iterations.

28

 See Step 6: Synchronize the portfolio on page 35.

Chapter 10: The Agile Requirements Refinery

157

Chapter 10: The Agile
Requirements Refinery

Kevin Vlaanderen, Slinger Jansen,

Sjaak Brinkkemper & Erik Jaspers

Due to the complexity of software products, with a large variety

of stakeholders, long lists of requirements and a rapidly chang-

ing environment, Software Product Management (SPM) is a

complex task. Relatively little scientific work has been per-

formed in this area. Especially regarding agile SPM, little work

exists. It seems that the complexities of SPM have been left

lurking behind the Product Owner (in Scrum) or resident expert

user (in eXtreme Programming) role. One case study describing

the use of agile requirements engineering is described in (Pich-

ler, Rumetshofer & Wahler 2006). However, the paper does not

provide details regarding the agile requirements engineering

process. Part III of this book shows one way to link long-term

product planning and agile development. Greer and Ruhe

(2004) elaborate on agile release planning by providing an

iterative optimization method. Collaboration between product

managers and development teams in challenging environ-

ments, such as where no complete requirements are available,

is investigated in (Fricker et al. 2010). In a comparative case

study by Fogelström et al. (2010), a misalignment was identified

between the agile principles and the needs of pre-project activi-

ties in market-driven development. They state that the differ-

ences between agile methods and the needs of market-driven

software development may threaten product development by

disabling effective product management.

In this chapter, we describe in which way software product

management can be performed in a Scrum development con-

text. We explain an agile SPM method based on Scrum, which

improves the ability to handle large amounts of complex re-

quirements in an agile environment. We also provide a set of

Chapter 10: The Agile Requirements Refinery

158

useful lessons learned that aid in the implementation of Scrum-

inspired SPM alongside agile software development. This chap-

ter is based on a case study that has been reported in two ar-

ticles (Vlaanderen et al. 2009, Vlaanderen et al. 2011).

10.1 An Approach to Agile Software Product

Management

10.1.1 Background: Scrum development method

The Scrum development method was proposed in 1995 by Ken Schwaber (1995),

at a time when it became clear to most professionals that the development of

software was not something that could be planned, estimated and completed

successfully using the common ‗heavy‘ methods. The Scrum method is based on

the work of Pittman (1993) and Booch (1995), and adheres to the principles of

agile software development.

Central to Scrum is the idea that many of the processes during development

cannot be predicted. It therefore addresses software development in a flexible

way, by inspecting and adapting. The only two parts that are fully defined dur-

ing a software development project are the first and last phase (planning and

closure). In between, the final product is developed by several teams in a series

of flexible black boxes called ‗sprints‘. No new requirements can be introduced

during these sprints. This ensures that the final product is being developed with

a high probability of success, even within a constantly changing environment.

This environment, which includes factors such as competition, time and finan-

cial pressure, maintains its influence on development until the closure phase.

The backlog is an important instrument in the Scrum process. The following

backlogs play a part in Scrum development:

 Product Backlog (PB): The PB is central to the Scrum method. The PB

contains a prioritized list of all items relevant to a specific product. This list

can consist of bugs, customer requested enhancements, competitive product

functionality, competitive edge functionality and technology upgrades

(Schwaber 1995). Once a requirement has been fully specified, with the ap-

proval of a developer, the requirement can be copied from the PB onto the

Development Sprint Backlog.

 Development Sprint Backlog (DSB): Each team that participates in the

software development process maintains its own DSB. All requirements that

are assigned to the development team at the beginning of a sprint are put on

their DSB. Every requirement is decomposed into several tasks, which are

then assigned to specific team-members. The Development Sprint Backlog is

fed by the product backlog with items that have been fully specified.

Chapter 10: The Agile Requirements Refinery

159

The DSB enables continuous monitoring of the progress of development work,

while the PB enables weekly to monthly renegotiations about the priorities for

each requirement.

10.1.2 Adapting Scrum to Agile SPM

The development of software by large teams of developers requires a steady flow

of elicited product requirements. Without this steady flow of requirements,

software vendors run the risk of delaying new software releases and bad code

due to badly specified requirements, all resulting in the waste of large amounts

of resources. To avoid these problems, a functioning team of product managers

is required, that can, cooperatively with the development team, supply approved

and well-defined requirements. The agile SPM method applies Scrum to main-

tain a steady flow of new requirements for the DSB.

Furthermore, agile SPM enables a software vendor to flexibly define require-

ments according to a pre-defined procedure. The pre-defined procedure forces a

software vendor to explicitly manage the lifecycle of a requirement, leading to

better-defined requirements. Simultaneously, the process remains agile, i.e.,

some requirements can be defined and implemented quickly, while others move

through their lifecycle at a regular pace.

Figure 10.1: Agile SPM Knowledge Flow

Figure 10.1 shows the flow of knowledge within the agile SPM process. The fig-

ure is based on the default Scrum development process described in the pre-

vious section, and is supplemented with SPM-specific adaptations. In the figure

the product management sprint backlog (PMSB) is introduced. The PMSB is an

agile SPM concept. It provides product managers with a way of working similar

Chapter 10: The Agile Requirements Refinery

160

to that of developers in the Scrum process, using PMSB items to establish divi-

sion of work, and work planning:

 Product Management Sprint Backlog (PMSB): The PMSB contains all

items that need to be completed within the sprint by each product manager.

The PMSB is fed with items from the product backlog, the full list of themes,

concepts, and requirements for a product. The PB feeds the PMSB with

items that need further specification before they can enter the DSB.

Scrum and the agile SPM process are similar in the aspects that they both work

in sprints, and that both developers and product managers perform tasks ac-

cording to the shared PB and a team backlog. The main difference is that at the

end of a sprint, developers produce a working version of the software, whereas

product managers produce refined requirements. Table 10.1 lists the differences

between the agile SPM process and Scrum.

Table 10.1: Differences between Scrum development and agile SPM

 PMSB DSB

Takes work from.. Product Backlog (PB) Product Backlog (PB)

Demands.. Vision (unspecified
requirements), bugs

Specified requirements

Supplies.. Specified requirements Functional software

Deals with.. Visions, concepts
themes, requirements

Bugs, product enhancements,
functionality, technology,
upgrades, etc.

Works in.. Sprints and daily
Scrums

Sprints and daily Scrums

Worked on by.. Product managers Developers

Puts back onto
PB..

Requirements
definitions

Finished PB items

The input for the agile SPM process is in most cases an idea or a wish for new

functionality, but also new technologies, bugs and upgrades. An idea enters the

process in the form of a vision, shown by the cloud at the bottom left of Figure

10.1. During a number of sprints, this vision is then refined several times, going

through the agile requirements refinery, which will be discussed in the next sec-

tion. The main result of this process is a list of further specified themes, con-

cepts, and requirements that can be placed back onto the PB. The requirements

Chapter 10: The Agile Requirements Refinery

161

that have been fully specified and approved by a software developer are candi-

dates for the next development sprint.

At the start of each sprint, each SPM team has to prepare its PMSB. Based on

the amount of time available and the focus determined by the board, the SPM

teams select a set of PB items, such as concepts and visions, and place them on

their PMSB. This activity is similar to the sprint preparation as performed by

the development teams.

The next step is to proceed with either refining the items that are on the PMSB,

or introducing new ideas obtained through customer support, meetings with

business consultants, customer sessions, industry analysts and involvement at

different types of forums in which market parties are active. During a sprint,

each item is refined from its current stage to the next level of detail, i.e. from

vision to themes, from theme to concepts, or from concept to requirement defi-

nitions.

At the end of each completed SPM sprint, a retrospective evaluation takes place,

during which each team looks back at the last sprint, discussing about the aspect

that went good or wrong. The results are written down, and from the resulting

list, two or three items are chosen to be put on the sprint backlog of the next

SPM sprint. This enables the teams to gradually improve the process, learning

not only from their own mistakes, but also from those of the other teams.

The agile SPM process also includes bugs from earlier versions. These form an

alternative way of generating PB items and do not follow the usual path through

the requirements refinery. Instead, they are placed directly on the PB. If the bug

can be fixed easily, it goes straight to the DSB. If the bug cannot be fixed easily,

however, it will go onto the PMSB, for review and further detailing by the prod-

uct management team.

Each working day, also known as a Scrum, starts with a Scrum meeting, during

which the previous day is discussed. As this session is primarily meant to im-

prove the productivity and the effectiveness of the SPM team, a small set of

possible improvements is discussed. This helps avoiding experienced problems

in the future. The end-result of an agile SPM sprint consists of the requirements

definitions, which can in turn be used by the development teams. The sprint

length is equal to the length of development sprints, in order to synchronize the

heartbeat of the product management and the development process.

There are three important stakeholder groups in the agile SPM process. First

and foremost, the product managers‘ work process is the one determined by the

agile SPM process. Secondly, the product board, consisting of key stakeholders

for the product, such as the CEO, the support director, the business consultancy

director, the development director, and several representatives from sales de-

partments, determines requirements priority and product vision in a monthly

Chapter 10: The Agile Requirements Refinery

162

meeting. Thirdly, the development teams increasingly monitor and approve re-

quirements as they come closer to entering the DSB.

10.1.3 Managing the Backlog: The Requirements Refinery

The structuring of the workflow into sprints and Scrums enables agile SPM to

deal with customer wishes. Similar to the Scrum development method, no new

items can be added to the PMSB, as it has been finalized at the beginning of the

sprint. This means that the SPM team(s) can focus on the work at hand without

disruptions. On the other hand, it also requires considerable thought about the

structuring of specific tasks, since they need to be completed within the time-

frame of one sprint. SPM tasks, however, are not easily restructured into fine

grained tasks of up to one month. For this reason, the default Scrum-approach

to task management has been substituted by the more fine-grained approach

that is described in this section.

This approach, the agile requirements refinery, provides a solution for manag-

ing complex requirements. The approach is suited to the characteristics of SPM

tasks, and it resembles an industrial refinery in a way that during each sprint or

iteration work is being performed on the requirement definitions that appear on

the PB, to refine them from coarse-grained to fine-grained. Each refinement,

from one stage to the next, can generally be performed within one month or

even two weeks. When this is not possible, the item should be split and the re-

sulting items should be placed back on the PB to be picked up again in one of

the future sprints. By refining complex requirements according to the abstrac-

tion levels of the requirements refinery, structure is added to the backlog that

will help in completing the tasks in an effective manner.

Since Scrum itself does not provide guidelines for effectively managing large

amounts of requirements of different granularity, a set of stages is introduced.

Within the agile requirements refinery, a product functionality vision will gen-

erally move through these stages, during which it is refined with details and

specifications. The stages are:

 Vision: A vision is the starting point for the lifecycle of most requirements.

It is an idea, brought up by the company board, a customer or any other

stakeholder, and is defined in generic terms. Once the idea reaches a product

manager, he or she then converts it into a (set of) theme(s). An example of a

vision is the wish to target small enterprises as potential customers for an

ERP software package with a light version.

 Theme: A theme is the formal elaboration of a vision, describing it in more

detail. The product manager defines the envisioned purpose of the new func-

tionality, the business value of the theme, and the involved stakeholders. A

theme should briefly describe the business problem from which it originates

and the main issues that fall within the theme scope. This can possibly be ex-

Chapter 10: The Agile Requirements Refinery

163

tended with a set of provisional requirements. In total, a theme description

should not exceed one page of text, in order to maintain clarity. The pre-

viously described vision can for instance be translated to the theme ‗small

enterprises‘, describing its importance and what would be required to ac-

complish it. In reality, a vision is often so complex that it can be refined into

multiple themes. To ensure the technical feasibility of a theme, it is reviewed

by the development teams.

 Concept: Themes are broken down into smaller pieces called concepts. A

concept is a high-level focal point within the theme, consisting of a set of so-

lution stories that can later be used to deduct detailed requirements. The

elaboration of each concept results in a document describing product driv-

ers, product constraints and the concept scope. The description should

briefly explain the necessity of the concept, while remaining clear and de-

tailed enough to be useful for the definition of detailed requirements. The

‗small enterprise‘ theme could for instance be converted to a set of concepts

such as ‗productX Lite‘, describing the high-level requirements of a product

suited to the needs of small enterprises. Each concept definition should be

checked with the software architects. Also, the developers help estimate

whether the concept is sufficiently defined to further split up the concept in-

to requirements.

 Requirement definition: The detailed definition of requirements is per-

formed in three steps, of which only the first one is performed by the SPM

team(s). SPM translates the concepts into a list of requirement definitions

without going into a lot of detail. Requirement definitions consist up to this

point of a description, a rationale and a fit criterion. The latter describes a

constraint that must be met in order for this requirement to be successfully

implemented. To ensure feasibility and compatibility with other require-

ments, each requirement definition should be checked with architects, func-

tional designers or lead developers. After the initial high-level requirement

definitions have been determined based on the previously defined concepts,

the software development teams then elaborate these into requirements con-

taining a detailed description of some desired functionality, described in suf-

ficient detail to work with. To accomplish this, each requirement definition is

first processed during a development sprint by a development team, to en-

sure that they are feasible, consistent and understandable in a general man-

ner. Then a second pass is made, where the development team ensures re-

quirement clarity, so that each requirement is understood by all team-

members. This results in a list with all relevant requirements and their de-

tailed descriptions, including any necessary diagrams, technical specifica-

tions or otherwise necessary information that is required for the implemen-

tation of the requirement.

Chapter 10: The Agile Requirements Refinery

164

Instead of the hierarchy of requirements presented here, you could try other hierar-

chies that you find better suited to your context. One hierarchy proposed in literature

is the one by Leffingwell (2007) with (Strategic theme-) Epic-Feature-Story (-Task).

Another view, a user story maturity pipeline, is presented in (Fisher & Bankston

2009).

With smaller topics, the definition of a vision and a theme might not be neces-

sary, in which case the problem can be placed within an existing theme or con-

cept. They are then elaborated without constructing a vision, theme and/or con-

cept, or they are elaborated with the vision, theme and concept constructed af-

terwards. In other words, the requirements refinery is not restricted to a top-

down approach, but can also be used bottom-up. This is similar to the approach

by Gorschek and Wohlin (2006), who identified four abstraction levels on which

a requirement can be placed, along with both a bottom-up and a top-down path

along these levels.

10.1.4 Timing of SPM sprints and Development sprints

An important aspect of the described agile SPM approach lies in the fact that,

like software development, the SPM task is performed according to sprints with

a fixed length of one to four weeks (varying per company). However, if the SPM

sprint would be performed simultaneously with the development sprint, the de-

liverables from one team would not always be available in time for the other

team‘s new sprint.

Therefore, SPM sprints should not be performed synchronously with the soft-

ware development sprints. Instead, they should be shifted back half of the de-

velopment sprint length. This ensures that the PB is always up-to-date and

ready for DSB use once the software development sprint starts, reducing the

time between the inception of a requirement and its realization in the product.

Also, information regarding implementation progress and the accuracy of re-

quirements sizes and descriptions can flow back from the development teams to

the SPM teams.

Chapter 10: The Agile Requirements Refinery

165

Figure 10.2: Alternating sprints

Figure 10.2 illustrates this concept of alternating sprints. The horizontal time-

line shows the synergy between software product management and software

development, by switching from a focus on SPM to a focus on software devel-

opment and back. The SPM team(s) deliver(s) an updated PB while the devel-

opment teams are developing the next product release candidate (depicted by a

floppy). Based on the demo of this release candidate, SPM will then redefine the

PB, resulting in continuous double-loop feedback.

Similar to Scrum software development, the PMSB is filled with items from the

PB at the beginning of each sprint. The status of completed, canceled or ongoing

tasks is continuously kept up-to-date on the PMSB. Each product manager is

responsible for keeping the backlog up-to-date as the sprint progresses. Based

on the data in the backlog, a burn-down chart is created continuously to allow

monitoring of the progress of the sprint.

10.2 Agile SPM in Practice

10.2.1 Standard PMSB items

In order to improve the structure of the PMSB, several standard recurring back-

log items have been identified. The standard items, as opposed to incidental

tasks, form a basic structure of recurring tasks, mostly with the same amount of

hours allocated each sprint. These tasks can be used to create a cadence within

the team(s).

Table 10.2 shows an overview of these standard backlog items. On the left-hand

side, all standard backlog items related to the SPM sprint are shown. On the

right-hand side, all standard backlog items related to the development sprint

are shown. All tasks are performed by the SPM team(s).

Chapter 10: The Agile Requirements Refinery

166

Table 10.2: Standard backlog items on the PMSB

Spm related backlog items Development related backlog items

Prepare and attend product board Backlog preparation

SPM sprint review Development sprint planning with
development teams

Team retro meeting Development sprint review with development
teams

Team allocation overview How-to-demo stories

Problem and change management

The following describes the items in Table 10.2:

 Prepare and attend product board: The product board consists of sev-

eral lead positions in the company, such as the CEO and the sales director,

who have a major stake in the product itself. Once a month the product

management team presents what has been developed and what the future

plans are for the product board. The product board contributes in two ways.

First, the product management team informs major product stakeholders of

the progress of visions and plans that have an impact on the product. Se-

condly, the product management team is forced to report on their progress,

which requires them to evaluate progress speed and SPM process quality.

 Sprint review: The sprint review consists of a full review of the SPM

sprint. Furthermore, the sprint review leads to an update of the internal and

partner information portals of the product. These portals are used to report

on the progress of the work and on the upcoming features for partners and

sales teams.

 Team retro meeting: Once a month during the team retro meeting the

internal functioning of the SPM team is discussed. The retro meeting does

not specifically address practical problems, but tries to achieve better quality

and use feedback to improve the Agile SPM process. The problems are

placed as PMSB items and the most important ones are solved or worked on

during the next SPM sprint.

 Team allocation overview: Throughout the agile SPM process, themes

are assigned to teams, consisting of a product manager and a development

team. Generally, teams will remain active within that theme. However, when

a certain set of requirements that originates from a certain theme can also be

implemented by a team that has capacity available, requirements sets might

be transferred from one team to another during the team allocation over-

view.

 Problem and change management: The task of problem and change

management deals with customer problems and large changes that require

Chapter 10: The Agile Requirements Refinery

167

the interference of a product manager. Furthermore, product managers go

through the list of reported problems from customers and respond within

one month. The response to a reported problem generally consists of declin-

ing it, i.e., the problem will not be solved, or accepting it, i.e., the problem

will be included in the planning.

 Backlog preparations: A basic structure needs to be provided before each

sprint, with the appropriate names and task types. This only requires very

little work.

 Sprint planning with development teams: The sprint planning with

development teams consists of an eight-hour meeting. During these meet-

ings product managers and developers negotiate, accept, and approve PB

items for the DSB. This is a typical part of the Scrum process.

 Sprint review with development teams: During the sprint review the

development teams present the functionality they have implemented to the

other development teams and the SPM team(s). Developers also defend why

the functionality is necessary.

 How-to-demo stories: Product managers create how-to-demo stories for

the developers who are working within their theme. These how-to-demo sto-

ries are specified to indicate to the developers how they should demo the

functionality they have implemented during the sprint review. The main rea-

son for the creation of these stories is that developers frequently have a dif-

ferent view of the interesting parts of the functionality they have imple-

mented.

These activities provide an overview of the different standard tasks that are ex-

ecuted in each sprint by the SPM team.

10.2.2 Roles and Tasks

Although the identified recurring backlog items already form useful knowledge

within a practical context, the link between the product management tasks and

the actual execution of an agile SPM process is still missing. Therefore, a set of

roles can be identified that apply to an agile SPM team, each focusing on a spe-

cific set of tasks. As fully specialized roles are not common, i.e., a person who

handles only one or two kinds of tasks, each role has a characteristic combina-

tion of tasks assigned to it.

The first role is the senior product manager. This role is mainly manage-

ment-oriented, reflected by the low amount of time spent on requirements ela-

boration. Instead, a large share of the senior PM‘s time is spent on high-level

tasks, i.e. on the concept- or theme-level. The remaining time is for a fair

amount spent on general tasks, supplier management and other management-

Chapter 10: The Agile Requirements Refinery

168

related activities. The senior product manager generally has the biggest influ-

ence on issues related to high-level decisions.

The second role is the general product manager. A product manager spends a

large amount of time on both requirements elaboration and development sprint

elaboration. The product manager is responsible for the lion‘s share of low-level

activities related to requirements and concepts. Furthermore, due to the close

relation between product managers and the development teams, most of the

activities related to the development sprint can be attributed to the product

manager.

The third role is the requirements engineer, which mainly focuses on low-

level work. Almost one half of the time is spent on requirements elaboration.

The other half of the time is divided between development sprint preparation,

concept-level activities and general activities. The requirements engineer is not

an active participant during the standard activities such as sprint review and

planning meetings.

10.3 Lessons learned

For companies who are interested in agile SPM, we have derived a set of lessons

that should be taken into account when implementing agile SPM alongside an

agile software development method.

1. Alternate sprint cycles for SPM and development: One of the main

lessons learned has been the importance of the alternating sprints. As dis-

cussed in Section 10.1.4, the software development and the SPM sprint are

both performed continuously, but with a difference in starting date of ap-

proximately half of the sprint length. This implies that each SPM sprint ends

halfway the software development sprint, ensuring that the PB is ready to be

used when the development teams start their new sprint.

2. Complex requirements are in need of structured detailing: The

essence lies in the division of requirements into themes, concepts and re-

quirements. The structured agile requirements refinery approach has made

it possible to effectively manage large sets of requirements of different gra-

nularity. Both high-level and low-level requirements are placed on the PB

and handled in time by the appropriate person.

3. Daily Scrum meetings are essential: The daily stand-ups, or Scrum

meetings, that are essential within the Scrum development method, are also

valued highly within the agile SPM method. The 15-minute meeting at the

start of each day is experienced as a positive, helpful aspect of the process.

By providing constructive critique, potential problems can be avoided and

existing problems can be solved.

Chapter 10: The Agile Requirements Refinery

169

4. Backlog administration requires discipline: Strict documentation of

all tasks in the PMSB is still difficult to achieve. Although the PMSB can play

a useful role in controlling the SPM process and keeping track of the

progress of a sprint, the motivation to keep up-to-date the current set of

tasks and the amount of time spent on a specific task is still lacking. This un-

dermines the efficiency of methods such as Scrum. However, it should be

noted that one of the agile principles is a favoring of individuals and interac-

tions over processes and tools. This means that, as long as the work gets

done, project administration becomes less important.

5. Early collaboration promotes reuse and integration: Since product

managers in a Scrum team cooperatively work on a PMSB and discuss re-

quirements before they have been implemented, reuse and integration op-

portunities can be spotted at an early stage. We suspect that higher quality

software products are built using this approach, rather than using other ap-

proaches with less communication during the requirements specification

process.

The final three lessons are similar to key aspects of the original Scrum develop-

ment approach. As the approach described in this section is based on Scrum,

this also applies for agile software product management. The first two lessons

apply specifically to agile SPM, and we consider them essential to a successful

implementation of agile SPM.

Chapter 11: Scaling Up Agile Release Planning

170

Chapter 11: Scaling Up Agile
Release Planning

Ville Heikkilä

When an agile development organization grows the basic agile

release planning methods become less and less efficient. One

way to scale up agile release planning to meet the requirements

of multi-team agile development is a method called joint release

planning. This chapter first introduces the problem of planning

software releases, then describes the joint release planning me-

thod and finally motivates the use of the planning method.

11.1 Introduction

Planning the next product release is recognized to be one of the most challeng-

ing parts of market-driven product development (Fogelström et al. 2010) and a

critical success factor in agile software development projects (Chow & Cao

2008). The main goal of release planning is to find an appropriate scope for a

release while taking into account budget, resource, technical, and other con-

straints (Fogelström et al. 2010, Ngo-The & Ruhe 2008).

Scrum, the most popular agile software development method in 2009 (Versio-

nOne Inc. 2009), was originally created for small-scale software development in

small co-located teams (Schwaber & Beedle 2002). The small scale of the soft-

ware under development is not an integral part of the Scrum process, but em-

ploying only a single team creates practical limits for the size of the software

when development time is limited. Scrum emphasizes direct and informal

communication between team members, which limits the practical size of the

development team to approximately eight members (Cockburn 2002). Thus, the

only way to scale up the size of the developed software while still holding on to

the principle of the direct and informal communication is to employ multiple

Scrum teams that simultaneously develop the same software product.

The Scrum process model (Schwaber & Beedle 2002) defines the product owner

role, whose responsibility is to manage the development of a product regarding

scope and value. The agile release planning process in a single-team single-

product development scenario is simple. The team and a product owner discuss

the features that could be included in the next release until an agreeable plan is

reached. The agreed-upon release plan then acts as a vision for planning the

Chapter 11: Scaling Up Agile Release Planning

171

individual iterations (Schwaber & Beedle 2002, Shalloway, Beaver & Trott

2009, Rothman 2007). During a sprint the backlog items selected to be imple-

mented in the sprint cannot be switched. The rest of the backlog can be re-

prioritized by the product owner, but any changes to the release backlog require

partial release re-planning (Schwaber & Beedle 2002).

Joint release planning (Heikkilä, Rautiainen & Jansen 2010) is a method for

multi-team agile release planning for complex systems. Similar to the single-

team agile release planning, the basic idea of the joint release planning method

is to gather all development teams and internal stakeholders in a single space to

perform release planning together. However, the sheer number of people, re-

quirements and dependencies makes joint release planning difficult to perform

efficiently. Scaling agile release planning up to a multi-team environment where

many teams are developing the same product at the same time also introduces

technical complexity. The teams cannot plan releases in isolation, since re-

quirements are selected from the same product backlog and coordination of

who-does-what is required. In an ideal agile world all requirements are inde-

pendent and can be implemented in isolation by feature teams. In the real world

there are often architectural complexities which result in a network of depen-

dencies between requirements (Carlshamre 2002). This also affects the imple-

mentation order of the requirements.

11.2 Background

The majority of publications on software release planning focus on different

kinds of mathematical models and simulations designed to create the most op-

timal or risk free release plans when key parameters such as resource availabili-

ty, value of requirements, development effort and risk factors are known or can

at least be estimated somewhat accurately (Ramesh, Cao & Baskerville 2010).

The model or simulation is then used to generate one optimal release plan or a

set of near-optimal release plans. Such models are called strategic release plan-

ning models (Ruhe & Momoh 2005). Prioritizing requirements is a central

component of any release planning process. Most strategic release planning

models use some variation of a well-known prioritization technique such as

Analytic Hierarchy Process (AHP) (Karlsson & Ryan 1997) or Cumulative Voting

(CV) (Berander & Jönsson 2006). Typically such prioritization methods are only

applicable when there are relatively few requirements and the requirements can

be understood based on a short description (Ngo-The & Ruhe 2008), although

more complex variants claim to mitigate the scalability problem to some extent

(Berander & Jönsson 2006, Karlsson, Olsson & Ryan 1997).

The validity of most of the strategic release planning models in a large-scale in-

dustrial setting is questionable. Svahnberg et al. (2010) reviewed 22 strategic

release planning models. Only four of those models had been validated in large-

Chapter 11: Scaling Up Agile Release Planning

172

scale industrial use. In addition, we (and others, e.g. (Cao & Ramesh 2008))

have noticed that the model-driven approach to release planning is problematic

in practice, as many software companies do not have a software development

process which could be relied on to record or generate required key parameters

(Ramesh, Cao & Baskerville 2010). Often requirements change so frequently

that any long-term plan quickly becomes obsolete (Boehm 2000), and the

aforementioned scalability problem is inherent to the strategic release planning

models (or at least to the ones created so far). Agile software development me-

thods claim to mitigate these issues by not creating detailed long-term plans and

by adapting to changing customer needs and priorities when needed (Abra-

hamsson 2003).

Strategic release planning models have not been widely studied in an agile soft-

ware development context. In 2009 we tried a plan-driven release planning ap-

proach in an agile software development context (Heikkilä et al. 2010). We

found that the plan-driven approach created mathematically more optimal

plans, but the differences between the optimal plans and a manual plan were

quite small and the participants felt that much of the extra complexity intro-

duced by the mathematical model was unnecessary. A release planning paper by

Li et al. describes a process for applying AHP and risk analysis in Extreme Pro-

gramming context (Li et al. 2006). However, the proposed process is quite ge-

neric and does not take into account the special characteristics of an XP project.

Furthermore, following a highly detailed release plan is not generally considered

necessary or even useful in agile software development projects; see e.g. (Boehm

& Turner 2003, Highsmith 2002). Table 11.1 illustrates the conflict between the

agile software development methods and strategic release planning models.

Table 11.1: The conflict between agile software development and strategic release plan-
ning

Agile software development methods Strategic release planning models

Just-in-time elaboration of requirements Big upfront elaboration of requirements

Informal management of dependencies All dependencies must be made explicit

Collaboration between individuals Mathematical optimization based on inputs

Optimizing throughput of requirements on
long term

Optimizing allocation of resources on short
term

Used in industry for at least ten years Only a few models have been validated in in-
dustry

11.3 The joint release planning method

The joint release planning method is a way to plan releases in a multi-team agile

software development context. A release in this context means both a test re-

lease which contains only partial functionality and a public release which con-

Chapter 11: Scaling Up Agile Release Planning

173

tains a complete set of features selected to be published for business reasons.

The features included in test releases should be complete and of publishable

quality. The purpose of test releases is to act as milestones for the project and to

practice and test the release process to gain knowledge and insight for im-

provement of the process and the product. This is very similar to Microsoft's

Synchronize-and-Stabilize process model first reported by Cusumano (1995).

The strategic plans for the whole development project act as input for the re-

lease planning events. The output from a release planning event acts as a start-

ing point for an adaptive development process during the subsequent develop-

ment sprints. The release plan should not be taken as an immutable plan. Figure

11.1 illustrates the relationships between the three time horizons: a develop-

ment project, release projects, and iterations. A development project starts with

a joint release planning event in which the first release is initially planned. The

eventual first release is then followed by a second joint release planning event in

which the next release project is planned. The number and length of release

projects and iterations (that is, development cadence) shown in the figure is il-

lustrative only, as the optimal number and length is context dependent. The

idea of using such a multi-tier framework for managing software development

was first introduced by Rautiainen et al. (Rautiainen, Lassenius & Sulonen

2002) in 2002 and similar multi-tier frameworks have since been proposed by

other authors, e.g. (Leffingwell 2007, Sutherland 2005).

Figure 11.1: An example of development cadence

Scaling agile software development into a multi-team environment creates a

need for further requirements hierarchy, as managing thousands of low-level

requirements quickly becomes an unwieldy task for the product management

organization (Lehtola, Kauppinen & Vähäniitty 2007). For the joint release

planning method description we adopt the model proposed by Dean Leffing-

well29. Themes denote strategic focus areas of a company's business. Within

these, Epics define high-level requirements for products. Epics can be split into

more detailed Features, which in turn can be further split into User stories (or

simply stories). Finally, user stories are refined into development Tasks, which

denote what needs to be done technically to implement a user story. The model

your organization uses probably differs from the model proposed above. In that

case try to identify the levels of your requirements hierarchy which corresponds

29

 http://scalingsoftwareagility.wordpress.com/2008/12/04/a-lean-scalable-requirements-
information-model/

Chapter 11: Scaling Up Agile Release Planning

174

to those described above. For one alternative approach to requirements hie-

rarchy and a Scrum-like process for product management, see Vlaanderen et al.

(2009).

Large, complex product- and multi-team environments also create a need for

additional product management hierarchy. In our joint release planning method

description, we extend the roles defined in Scrum (Schwaber & Beedle 2002)

with an additional product manager role. Scrum defines a development team

which consists of four to seven software developers, a scrum master and a

product owner. Software developers are responsible for creating tasks and sto-

ries, product owners assist software developers in story creation and assist

product managers in feature definition, and product managers are responsible

of creating and managing features and epics. Competent product owners are

crucial in agile software development, as a product owner needs not only

enough technical knowledge to communicate efficiently with software develop-

ment, but also enough business knowledge to communicate efficiently with the

business side of the organization. Unlike the other roles, product managers do

not belong to any single team.

Figure 11.2: The relationships between the roles and the requirements hierarchy

Figure 11.2 illustrates the relationships between the requirements hierarchy and

the roles. Depending on the organization and the type of software it develops

there might be other roles such as software architect, usability expert or tester

who are members of the project organization. According to agile software devel-

opment principles, the team members with such skills should be embedded in

the cross-functional development teams. In reality there is often a need for ex-

perts with highly specialized skills who do not belong into any single team. Rei-

nertsen (2009) suggest several methods for utilizing such experts, but the main

lesson is not to overwork the experts. You should be able to pull experts into

teams to solve difficult problems on short notice, which is close to impossible if

they are already working on maximum capacity.

A joint release planning event is the focal point of the method. The event should

be facilitated by a person with process coaching experience, for example an ex-

perienced scrum master. During an event the whole project organization simul-

Chapter 11: Scaling Up Agile Release Planning

175

taneously plans the next release of a product. A joint release planning event

consists of three segments which differ on content and purpose. The first seg-

ment contains introduction to the project and guidance for the planning, the

actual planning work is done iteratively in team planning breakouts during the

second segment, and the plan and risks are reviewed in the third segment. Fig-

ure 11.3 illustrates the structure of the event. Continuous improvement is an

important aspect of the planning method, but the actual improvement work

may be performed outside the joint release planning events.

Figure 11.3: The timeline of a joint release planning event

Two other important aspects of the method are preparation for a joint release

planning event and continuous planning between releases. Preparatory work is

crucial for the success of the event and, considering the whole development

project, the success of the product. Much of the preparatory work is related to

such software product management subtopics as product roadmapping and re-

quirements management (Weerd et al. 2006). It is important that product man-

agers and product owners keep the backlog of epics up to date between releases.

This continuous planning work is based on progress and other information from

development and the market, and other information from the business organi-

zation.

The main responsibility of a software development team in a release planning

event is the creation of a release project plan for their team together with the

team's product owner. The team's product owner should be always available for

the team to clarify requirements and accept finished stories. Scrum master is a

Scrum-specific role. In addition to coaching the Scrum practices, a scrum mas-

ter is also responsible for removing impediments. In a release planning event, a

scrum-master is responsible for guiding teams release planning practices.

11.3.1 Preparation

The most important task for product managers and product owners in prepara-

tion for a release planning event is prioritizing and selecting the features which

are included in the release planning. The list of features should be long enough

to provide a good basis for planning the next release project. The features‘ de-

scriptions do not need to be detailed, since product managers and product own-

ers are present in the release planning event to provide just-in-time elaboration,

and stories created based on the features will provide more concrete guidance

for the developers. The list of features should be provided to the development

teams well before the event to speed up the planning process during the event.

Chapter 11: Scaling Up Agile Release Planning

176

One way to discuss features in advance is using the backlog grooming practice

or 5% workshop, where the development team and product owner look ahead in

the product backlog to clarify and split upcoming features.

If there are any specialized roles, such as architects or user experience experts,

they should also prepare any relevant materials beforehand and provide it to the

development teams at least a couple of days before the planning event. The de-

velopment teams should prepare by making sure that any progress information

is up to date and the team's velocity for the sprints in the next release project

have been calculated, taking into account any irregularities such as vacations or

other planned absences of team members.

There is a practical limit of self-organization in this type of release planning, as

it is not practical to have multiple teams discuss the feature assignments togeth-

er. In an ideal agile development organization all teams are equally capable and

assignment of features to teams is simple. However, in reality the different

teams often have different areas of expertise and capabilities. Product managers

together with product owners should tentatively pre-assign features to teams

based on their best knowledge on the teams' expertise and capability. However,

creating a bottleneck by assigning many critical features to a single team with

special expertise should be avoided. Instead, other teams should be allowed to

spend time to gain the special expertise and the critical features should be

spread among the teams. It is important to remember that the assignments of

features to teams are only tentative and the teams are free to change the as-

signments based on the new information that is uncovered during a release

planning event.

In addition to pre-assigning the features, the features should also be tentatively

prioritized before a planning event. The priority order should be per team, since

the priority order should allow development teams to make scheduling trade-

offs caused by inter-team dependencies. For example, a team might need to

schedule a less important story earlier than a more important story if another

team's very important feature has a dependency to the less important story.

Again, the priorities are subject to change during the release planning according

to any new information uncovered during the event.

In any non-trivial project there are more features than can be implemented in

the next release project. Product management should limit the number of fea-

tures they select into a release planning event to a realistic stretch goal. Includ-

ing features that have no chance of being implemented in the next release

project is simply a waste of effort and tracking what actually has been planned

to be included in the next release project becomes more difficult. Also, lean and

flow thinking suggests that focusing on maximizing capacity utilization only

slows things down, like in a traffic jam on a highway during rush hour.

Chapter 11: Scaling Up Agile Release Planning

177

For the joint release planning method to work, the product management practices

must support the agile development model. Traditional product management litera-

ture views development as a black box where product requirements are put in and a

product matching those requirements comes out (Ebert 2009, Kahn, Castellion & Grif-

fin 2005). In an agile software development organization, product management must

be capable of adapting to changes in both market and development plans during the

development of the product. The materials prepared for a release planning event by

product management must take into account real development progress, which also

means that development progress must be communicated to product management

during release development. One example of a formalization of such a two-way com-

munication process is the Agile Requirements Refinery described by Vlaanderen et al.

in Chapter 10.

Figure 11.4: An example of joint release planning space floor plan

The large number of people creates some requirements for the space reserved

for a joint release planning event. We have observed joint release planning

events in several different kinds of spaces, for example in an empty exhibition

hall, in a conference hall and in an empty office floor. Figure 11.4 shows an ex-

ample of a joint release planning floor plan. Each team should have a team

breakout area which acts as the planning area of the team. Each team breakout

area should have at least one wall which can be used as a planning board for

sticky notes, drawings, print-outs, etc. There should be a space to have common

presentations and a space to have breaks and enjoy refreshments. Stakeholders

that do not belong to a single team should be reserved a stakeholder base where

they can work on their own when they are not needed by a team.

Chapter 11: Scaling Up Agile Release Planning

178

11.3.2 Introduction and guidance

The planning event starts with an introduction to the event. The introduction

can contain such things as the composition of the project organization, the

schedule of the event and any other information of the practical arrangements.

The introduction is followed by instructions. The detail level of the instructions

given to the session participants depend a lot on how familiar they are with the

release planning method and other agile estimation and planning techniques.

Some things that might be covered in the instructions are guidelines on how to

split requirements to user stories, how to estimate user stories and how to pri-

oritize them. In addition, the instructions should emphasize that the teams are

responsible for solving dependencies and uncertainties concerning the require-

ments and should take an active role in engaging other stakeholders and teams

for help.

Instructions are followed by vision presentations. The purpose of the vision

presentations is to give the participants an overview of what the release project

should accomplish. The most important vision presentation introduces the re-

quirements for the product. A preliminary assignment of requirements to devel-

opment teams should also be given. Requirements should be presented on two

levels of abstraction: concepts for the whole release project on a very general

level, and more precise requirements (such as features) that could be imple-

mented in the following release project. The concepts provide a motivation for

the development, while the more precise requirements guide the direction of the

development. Specialized teams, such as architects or usability experts, act as

internal stakeholders for the development teams. These internal stakeholders

see the product from a different viewpoint and each internal stakeholder group

should therefore give a vision presentation containing plans and requirements

for the product from their perspective. Requirements presentations in the

second and later release planning events should also contain an overview of the

development project progress so far, and all vision presentations should em-

phasize the changes in plans since the initial release planning event.

11.3.3 Team planning breakouts

The actual planning of the release project starts after the introduction and guid-

ance presentations. The teams break out of the general meeting area into their

own planning areas, hence this part of the event is called team planning brea-

kout. Each team should have the prioritized list of features and other require-

ments with the tentative team assignments. Each team starts planning from

their top priority feature. With guidance from the team's product owner and, if

required, a product manager or other specialist roles, the team breaks down the

feature into user stories. The actual implementation scope of a feature is de-

scribed as the user stories derived from it. Since features are relatively broad

and abstract, the content and implementation order of the user stories is nego-

Chapter 11: Scaling Up Agile Release Planning

179

tiated based on balancing the technical constraints (such as implementation

effort) of the stories and the business aspects (such as financial benefit or con-

tract fulfillment) of the features. Any dependencies that are uncovered when the

stories are created should be resolved immediately by the development teams.

The stories are then scheduled into the sprints of the release project based on

the estimated velocity of the development team taking into account any depen-

dencies, critical resources and other aspects that affect the schedule.

Software developers often think in technical terms and might prefer to plan in large

technical tasks instead of stories. However, stories should be written from a user's

point of view, not from a technology point of view. Scrum masters and product owners

should guide the developers to write stories instead of large technical tasks. Planning

sprints on the task level should be done in a sprint planning event, not in a release

planning event. However, sometimes planning on the task level might be necessary to

properly understand and estimate a story and should be allowed in such situations.

The team planning breakout is an iterative process, since new information that

affects the schedule is most likely uncovered during the breakout. In a multi-

team environment there are always implementation order dependencies be-

tween the different teams. Whenever there is a scheduling conflict between two

teams caused by a dependency, the development teams and possibly product

managers should resolve the conflict by identifying the most beneficial schedule

considering the whole release project. Identified risks and impediments should

be, if possible, handled immediately by the development teams. Failing that, the

risks and impediments should be recorded and dealt with in the next status

check. The later in planning a dependency is resolved, the greater the possible

effect may be to the team's plans.

Development teams invest lots of effort into creating their release plans during

the release planning event. However, the teams should understand that plan-

ning is an iterative process and plans may need to be changed based on new in-

formation that is unearthed during the event. For example, a previously unde-

tected dependency might cause re-scheduling of user stories or the priorities of

features might change based on new information revealed in the event.

Internal stakeholders should be available at the planning event and prepare ma-

terials in advance. In case there are specialized internal stakeholder groups

there should be a representative from each group in the planning event. The

representatives should be available to clarify issues related to their specialty

areas. Any materials related to the specialty areas should be available before and

during the release planning event.

It is crucial for the success of the method that the developers understand they

are responsible for communicating with the members of other development

Chapter 11: Scaling Up Agile Release Planning

180

teams instead of asking indirectly from the team's product owner. Direct com-

munication is more efficient and accurate. However, communication practices

should still be agreed so that the teams' planning is not interrupted constantly

by very active communication. For example, teams can agree on spending some

time planning together for a requirement that has a lot of dependencies between

two or more teams.

The overall progress of the planning should be tracked and communicated in a way

that allows all participants to see the progress. One way to accomplish this is a visual

traceability matrix where each team marks which features they are going to implement

and when. The visual planning board shows the estimated start and end points of

working on a feature. In addition, each story and feature should have a unique iden-

tifier which helps tracing dependencies between stories and links stories to the related

feature. The figure below shows an example of a traceability matrix.

Planning status should be checked frequently and in a lightweight way. Release

planning during the team breakout is intensive work for the development teams.

The teams should not be interrupted frequently by status checks. On the other

hand, too infrequent status checks may reveal problems too late. Therefore sta-

tus checks should be lightweight and frequent. Instead of all developers of all

teams, only a representative of each team should participate while the rest of the

team keeps on planning. In the status checks, a representative of each team

shortly reports how their planning has progressed and how much time is still

needed, what their impediments are, and what dependencies, if any, they have

discovered to other teams that need to be resolved. Representatives of the other

teams might notice undiscovered dependencies which should be brought up and

then resolved during the following team breakout. The impediments should be

tackled and resolved by a suitable set of stakeholders during the following team

breakout or as soon as possible. The facilitator or coordinator of the event can

Iteration

1

2

3

4

Feature 4

Feature 8

Team A Team B Team C Team D

Feature 1

Feature 3

Feature5

Feature 2

Feature 7

Feature 6

Depends on

Chapter 11: Scaling Up Agile Release Planning

181

use the status checks to judge how much time is still needed for the planning

and use this information to flexibly plan how the rest of the planning event

should proceed.

11.3.4 Plan and risk review

The final plan review starts with a review of the plan of each development team.

A team member presents the team's plan for the next release project on a gener-

al level and risks associated with the team's work. Other participants are free to

ask questions and comment the plan. Any previously unidentified risks are also

recorded. The next step is the processing of the risks that have surfaced during

the team planning breakout or the final plan review. The facilitator presents the

risks one at a time and each risk is then either accepted or somehow mitigated.

11.3.5 Monitoring and steering a release projects

At some point of the release project, typically sooner than later, the progress of

the release project starts to deviate from the release plan. The development

teams are responsible for keeping their progress information up to date. Typi-

cally updating the status information of the team's stories at the end of each

sprint is enough. The most important consumer of the teams' status information

is the product management organization. If development is lagging behind

schedule, product management is responsible for making scope or schedule

changes to get the project back on track. Product management should also start

preparing for the next release planning event right after the previous release

planning event has concluded, and the plans need to take into account the cur-

rent progress of the release project. Delays in one development team may also

affect the schedule of the other teams via dependencies between stories. There

should be one easily accessible location that contains up-to-date story develop-

ment progress and dependency information. Depending on the organization,

this location might be a physical storyboard located in a central place, a spread-

sheet file in a shared folder, or a more sophisticated electronic tool.

11.3.6 Continuous improvement

Retrospectives (or reflection) are an important part of agile software develop-

ment where the ideal is continuous improvement. Each organization has a

unique context and the joint release planning method should be continuously

improved to better fit into that context. While there are many ways to imple-

ment continuous improvement, the most important aspect is the feedback from

the participants of the release planning event. A survey can be conducted after

an event or some participants can be interviewed to gather feedback. One option

that combines feedback and improvement suggestions is a release planning re-

trospective workshop, where representatives from all teams, from product man-

agement and possibly other stakeholders should participate. First, issues re-

garding the release planning method are gathered. Second, the participants

Chapter 11: Scaling Up Agile Release Planning

182

break out into teams that each have one or a few issues to solve. Third, each

team presents its results to the other participants. As in any process improve-

ment effort, it is also important to follow up on how the proposed improvements

work in practice. For another approach to release retrospectives see (Maham

2008).

11.4 Motivation

In this section we present several reasons why you should try the joint release

planning method. First, we claim that joint release planning is a cost-effective

way to perform release planning in an agile organization. Second, we claim that

joint release planning helps to uncover problems that otherwise might have

been found too late and also helps to solve those problems. Third, we claim that

joint release planning mitigates the problem created by component teams, if you

for some reason still have to use such teams.

11.4.1 Joint release planning is cost effective.

The immediate cost of a joint release planning event might seem prohibitive.

For example, a two-day event with 50 software developers equals 800 man-

hours of software development effort. However, we claim that the knowledge

created and shared by the interactions during a joint release planning event re-

duces wasted effort during the release project more than enough to compensate

the effort spent in the release planning event. First, the teams would have

needed to create some kind of release project plan nevertheless or risk working

on less important or even wrong features. If each team creates a release plan in

isolation there is a high risk that problems caused by unaccounted for depen-

dencies surface during the release project. Second, the simultaneous planning

actually decreases communication overhead, since most of the project organiza-

tion is easily accessible during the planning event. Especially product managers

might be hard to reach by the software developers, since product managers

spend much of their time with external (to the project) stakeholders such as cus-

tomers, the sales organization and upper management (Gorchels 2003).

11.4.2 The release planning method helps uncover and solve potential

problems.

During a release planning event any participant can raise an issue regarding the

development project, regardless if it is related to a team, a requirement, the re-

lease project or the whole development project. Since the participants represent

both business and development, they have sufficient knowledge and authority to

also solve the problems immediately. For example, developers might question a

technology-related presumption that product management has made, or prod-

uct managers might question whether some functionality needs to be imple-

mented in-house or whether it could be acquired. This can be seen as a strength

Chapter 11: Scaling Up Agile Release Planning

183

of the joint release planning method compared to more formal and hierarchical

methods in which the release plan is created by a project manager and devel-

opment tasks are simply fed to the developers, e.g. traditional waterfall or RA-

SORP (Ngo-The & Ruhe 2009).

11.4.3 Release planning mitigates problems resulting from component

teams.

One of the core principles of Scrum is the use of cross-functional feature teams

for software development. With feature teams, dependencies between develop-

ment teams are on feature boundaries. Sometimes, for example for historical

reasons, component teams are used even when the project organization can be

otherwise characterized as agile. With component teams the dependencies be-

tween development teams are on component boundaries. Typically there are a

much greater number of dependencies between components than between fea-

tures. Component teams also cause handovers which in turn increase the need

for communication between teams. The joint release planning method mitigates

the problems resulting from component teams by enabling direct and effortless

communication between all development teams during a joint release planning

event. However, component teams still increase the importance of dependency

management and the effort spent on dependency resolving.

Chapter 12: Kanban for Software Development

184

Chapter 12: Kanban for Software
Development

Kristian Rautiainen

Kanban for software development has been slowly gaining

popularity during the last part of the first decennium of this mil-

lennium. It could be used, e.g., for managing the portfolio of

work of a project with one or several teams participating. In this

chapter we shortly present the basics of Kanban and Kanban

for software development and revisit the example in Section 9.2

to show how we could manage multitasking using a Kanban

board.

12.1 Definition of Kanban

Kanban is the Japanese word for ―signboard‖ or ―billboard‖30. The term has

been used in JIT (Just-In-Time) manufacturing, most famously in the Toyota

Production System (TPS), denoting a signal card that triggers the production or

moving of parts in a pull production system (actually the whole system is often

called Kanban). Kenji Hiranabe summarizes the properties of the original TPS

Kanban concept in his InfoQ article31:

Table 12.1: The properties of the original Kanban concept in TPS

Physical It is a physical card that can be held, moved, and put into or onto things.

Limits WIP It limits WIP (Work-In-Progress), i.e. prevents overproduction.

Continuous flow It notifies needs of production or parts before they run out of stock.

Pull The downstream process pulls items from the upstream process.

Self-directing It has all information on what to do and makes production autonomous
in a non-centralized manner and without micro-management.

Visual It is stacked or posted to show the current status and progress, visually.

Signal Its visual status signals the next withdrawal (of parts from storage) or
production actions.

Kaizen Visual process flow informs and stimulates Kaizen, continuous im-
provement.

Attached It is attached to and moves with the supplied physical parts.

30

 http://en.wikipedia.org/wiki/Kanban
31

 http://www.infoq.com/articles/hiranabe-lean-agile-kanban

Chapter 12: Kanban for Software Development

185

12.2 Kanban for software development

Kniberg and Skarin (2010) characterize the minimum for what can be called

Kanban for software development:

 Visualize the workflow (write each item on a separate card and put it on the

wall, use named columns to illustrate the position of each item in the

workflow)

 Limit WIP (write explicit limits on how many items at a time can be in a cer-

tain workflow position)

 Measure the lead time (the average time to complete one item) and optimize

the process to make the lead time as small and predictable as possible

Co-located Scrum teams who use a so-called Scrum wall for sprint task visuali-

zation usually do the first of the above list, but not necessarily the others. Some-

times that is erroneously called doing Kanban. Kniberg and Skarin (2010)

summarize a comparison of Scrum and Kanban (see Table 12.2). But remember

that while a comparison like this can be done, we are still talking about two tools

for managing work. If you know how to use the tool for managing your work,

you are probably successful. Neither is better or worse than the other, except

maybe for some particular contexts, but we will not go into that discussion here.

Anderson (2010) extends Kniberg‘s characterization of Kanban to 5 properties:

1. Visualize workflow

2. Limit work-in-progress

3. Measure and manage flow

4. Make process policies explicit

5. Use models to recognize improvement opportunities

For visualizing the workflow Anderson suggests mapping the value stream, es-

pecially showing the interactions, handoffs, queues, buffers, waiting, and delays

involved. Measuring and managing flow focuses on keeping the work moving at

a steady flow through the value stream and concentrating effort on improving.

Concentrating on flow instead of waste removal may be the key to avoid some

Lean and mean anti-patterns and dysfunctions according to Anderson. Making

process policies explicit encourages looking at the work process as a set of poli-

cies rather than just a workflow. Using models to recognize improvement op-

portunities means taking a systematic and scientific approach to improvement.

Chapter 12: Kanban for Software Development

186

Table 12.2: Similarities and differences of Scrum and Kanban

Similarities Differences

 Scrum Kanban

Both are Lean and Agile Timeboxed iterations
prescribed

Timeboxed iterations
optional

Both use pull scheduling Team commits to a spe-
cific amount of work per
iteration

Commitment optional
(service-level agree-
ments often used)

Both limit WIP Uses velocity as default
metric for planning and
process improvement

Uses lead time as de-
fault metric for planning
and process improve-
ment

Both use transparency to
drive process improve-
ment

Cross-functional teams
prescribed

Cross-functional teams
optional, specialist teams
allowed

Both focus on delivering
releasable software early
and often

Items must be broken
down so they can be
completed within one
iteration

No particular item size is
prescribed

Both are based on self-
organizing teams

Burndown chart is pre-
scribed for progress
monitoring within an ite-
ration

No particular type of dia-
gram is prescribed

Both require breaking
the work into pieces

WIP limited indirectly per
sprint

WIP limited directly per
workflow state

In both, the release plan
is continuously optimized
based on empirical data

Estimation prescribed Estimation optional

 Cannot add items to on-
going iteration

Can add new items
whenever capacity is
available

 A sprint backlog is
owned by one specific
team

A Kanban board may be
shared by multiple teams
or individuals

 Prescribes 3 roles, prod-
uct owner, scrum mas-
ter, and development
team

Does not prescribe any
roles

 A Scrum board is reset
between iterations

A Kanban board is per-
sistent

 Prescribes a prioritized
product backlog

Prioritization is optional

Chapter 12: Kanban for Software Development

187

Hiranabe shows an example32 of using a Kanban board in a waterfall develop-

ment model, but with a flow. While the project he describes has different se-

quential process areas, such as design, development, validation, etc., the Kan-

ban cards move between the processes, not as a big group (large batch size), but

one at a time like in the one-piece-flow of manufacturing (small batch size). He

describes the whole system as a stable, sustaining phase in a product’s lifecycle,

managed in a waterfall state transition model with a flow. This probably

means that the particular product under development is in a mature state of its

lifecycle and less innovative and more predictable work is performed. But it still

might mean that integration is done often, putting pressure on the technical

development practices and skills, as well as the infrastructure (build servers,

version control system, etc.). These have always played an important role for

any organization in the pursuit of being agile or flexible, as embodied by the

practices of e.g. eXtreme Programming. For this the Kanban board can prove to

be a very helpful driver for improvement. Think, for example, that integration

has a problem and work starts to pile up in the workflow state before it. The

Kanban board will make it painfully visible and the WIP limits will stop work

sooner rather than later, so that everybody‘s attention is at solving the problem

in integration (or rather the root cause(s) that lead to the problem). This may or

may not speed up problem solving, but it most certainly will prevent a massive

queue of code piling up, waiting to be integrated, which, if left to be piled up,

might cause new problems which would be harder to solve causing a negative

spiral. And the solution to the problem should lead to process improvement,

which could speed things up in the future. In this way Kaizen is subtly per-

formed.

As Kanban can be deployed to the current process of an organization by map-

ping the workflow or value stream, it provides for an evolutionary improvement

path towards a leaner organization. In contrast, agile transition often involves a

revolution in the ways of working, easily causing more resistance to change. A

case example from (Kniberg & Skarin 2010) shows that the evolution can be

quite fast. In only three months a system administration team turned from a

bottleneck team that everyone was complaining about to the top-three list of

positive experiences as voted in the company retrospective.

Most of the examples (in blog posts, slide sets, or other sources) on Kanban

software development seem to be of software maintenance, or the maintenance

team. One simple explanation for this is that it would be quite challenging for a

maintenance team or a development team who is also responsible for mainten-

ance of a product to plan and commit to an iteration, because of the nature of

maintenance work. While you could reserve 40% of your team capacity (in the

case of a development team also responsible for maintenance) in an iteration for

32

 http://www.infoq.com/articles/hiranabe-lean-agile-kanban

Chapter 12: Kanban for Software Development

188

maintenance tasks, the exact portion of capacity will vary, meaning that the ca-

pacity for doing development work will vary. By removing the iteration timebox

boundaries you can more flexibly take on work and the Kanban board will help

you do it in a systematic and responsible way, paying attention to flow, instead

of just thrashing between tasks. The visualization of the process also helps when

discussing urgent requests and the trade-offs involved; if work on the urgent

request is started immediately, what should be aborted instead?

12.3 Revisiting controlled multitasking with Kanban

board

The example in Section 9.2 showed how floating backlogs helped Teams A and B

manage complex multitasking. Here we revisit the same example and show what

it could look like if the teams were using a Kanban board instead. Figure 12.1

shows how the Kanban board looked at the time just before the example starts.

In this example work is already underway on some work items. Otherwise the

background story is the same as in Section 9.2 and we use the same points in

time from that example (the iteration planning meeting times) to show snap-

shots of how the Kanban board looks in this example.

Figure 12.1: The Kanban board of Teams A and B before the beginning of the example

The Kanban board in Figure 12.1 should be interpreted in the following way.

The lanes represent the three activities (thus multitasking) Teams A and B are

working on; development, customization, and support. The squares represent

work items (stories or features) for the activities (red for development, blue for

customization, and green for support). A work item marked with the letter ‗A‘

means that Team A is working on it and ‗B‘ means that Team B is working on

the work item. The columns model the work process of the teams. Each column

has a Work-In-Progress (WIP) limit per lane denoted by the numbers in the

Chapter 12: Kanban for Software Development

189

board. There cannot be more work items in each area of the board than the WIP

limit number.

The input queue contains all the work items that are currently planned, e.g., for

the next release of a product, or in the case of support work items all existing

requests. From those, only 3 work items each for development and customiza-

tion, and 2 work items for support can be chosen as top priority to be pulled for

analysis when the WIP limits permit it and the teams have time for those work

items.

Both the Analysis and Development column has been split into two parts: in

progress denotes work underway and ready denotes work queuing for the next

phase of the work process. These both parts together cannot exceed the WIP

limit of the whole area. As we can see in Figure 12.1 system testing is progress-

ing at maximum WIP limit and there are 3 work items queuing for system test-

ing. This could mean that system testing capacity should somehow be improved

as the next improvement effort, especially since the ripple effects can be seen in

the analysis column as 4 queuing work items. This issue would probably be the

topic of the daily standup meeting at the Kanban board.

Now, let‘s jump forward in time to the first step of the example in Section 9.2.

Instead of pulling a lot of work items into their backlogs, Teams A and B now

check the situation on the Kanban board and act accordingly. Figure 12.2 shows

the snapshot of the Kanban board at this point in time.

Figure 12.2: Snapshot of the Kanban board at the time of step 1

As we can see in Figure 12.2, Team A has managed to finish system testing on 1

work item, which is now done. As Team A feels it has capacity to start new work

and the WIP limit for analysis allows it, Team A pulls 1 development work item

and 1 customization work item for analysis, which means that the team (or some

team members) analyzes what needs to be done technically to realize the work

Chapter 12: Kanban for Software Development

190

item as working software (similar or equal to splitting a story into tasks). At this

time the team may need additional information from the person(s) who own(s)

the work items in question. Team B has started development work on 1 support

work item and is struggling with system testing. Therefore Team B only feels

comfortable in pulling 1 development work item for analysis. Team B could have

chosen the only support work item, but they felt more familiar and comfortable

with the development work item. Team A feels it can still manage to pull the

only support work item for analysis (Team A has only 1 work item in progress in

development + system testing work), which completes the description of what

can be seen in Figure 12.2 compared to the situation in Figure 12.1. Since Team

A is doing well and Team B is struggling with system testing, both teams agree

that a senior system testing specialist from Team A will help Team B with their

system testing for the next couple of days. While this will slow down the work of

Team A, it should improve the overall flow of work. At least both teams and the

managers think it is worth trying.

Step 2 of the example in Section 9.2 follows fairly close in time to step 1, but a lot

has still happened on the Kanban board in our example (Figure 12.3).

Figure 12.3: Snapshot of the Kanban board at the time of step 2

The help of Team A‘s senior system testing expert made it possible for Team B

to finish testing 2 customization work items and 1 support item. Team B also

eagerly pulled more work items to system testing, and as we can see in Figure

12.3 Team B still has most of the system test work items, but now they are better

equipped to deal with them. Team A‘s testing has stalled a bit due to decreased

testing expertise and capacity, but some of the other team members are learning

new skills so that they can help with system testing, while some work items are

queuing. Three new support work items had appeared in the input queue since

step 1, and as we can see two of them are already in progress in development

and the remaining one is ready in analysis. One new work item from both devel-

opment and customization has been pulled into analysis by Team B.

Chapter 12: Kanban for Software Development

191

Moving on to the time of step 3 of the example in Section 9.2 a lot has happened

on our Kanban board (Figure 12.4).

Figure 12.4: Snapshot of the Kanban board at the time of step 3

One clear observation from Figure 12.4 is that Teams A and B are very respon-

sive to support requests. In fact, customer satisfaction of the organization has

increased due to this responsiveness. Three new support work items had ap-

peared since step 2 and they are almost done, along with all the other support

work items. System testing is still hard work causing queues both in the devel-

opment column and indirectly in the analysis column. As senior management

has now seen the evidence visually from the Kanban board, they have reacted to

increasing system testing capacity by initiating a system testing training pro-

gram and hiring one new senior system test expert for the teams to share as

seen fit.

Figure 12.5 shows a snapshot of the Kanban board at the time of step 4 of the

example in Section 9.2. Most work items have been done, among them all the

support work items, even the 2 new ones that appeared since step 3. As you may

wonder why there are no new work items in the input queue to pull from, this is

because we have chosen to leave them out in this example for the sake of clarity.

In reality there would naturally be a long list of potential work items to priorit-

ize and pull from. But without a proper process, such as the requirements refi-

nery in Chapter 10, it might in fact be difficult for product management to keep

up with the development teams, once these get their development processes in

shape. However, in this example we have left the complexities of architectural

choices and requirements refining behind the veils of input queue and analysis

(much like Scrum leaves them behind the roles of product owner and empo-

wered, self-organized development team). In reality, these remain very hard to

do successfully, no matter what the process is.

Chapter 12: Kanban for Software Development

192

Figure 12.5: Snapshot of the Kanban board at the time of step 4

By the time of step 5 of the example in Section 9.2 all work for the development

and customization releases has been done. We have now shown two ways to

tackle the complex problem of multitasking. In both ways of working, conti-

nuous planning is needed to get the right work items into the prioritized input

queue. When using timeboxing, as in the earlier example, the first thing you

should consider is synchronizing the cadence of different activities to prevent

the situation from escalating to an even more complex one. In Kanban software

development strict timeboxing is not necessarily used. However, some kind of

cadence, at least for (re-)planning is recommended.

If you think that Kanban for software development might be something you

want to try, you should check out the following books for more information;

(Kniberg & Skarin 2010, Anderson 2010, Ladas 2008).

Chapter 13: Requirements for a Backlog Management Support Tool for Agile
Product and Portfolio Management

193

Chapter 13: Requirements for a
Backlog Management Support

Tool for Agile Product and
Portfolio Management

Jarno Vähäniitty & Ville Heikkilä

The earlier chapters in this part have described product and

portfolio management as they should be understood in agile

software development. This chapter summarizes the key re-

quirements for a backlog management support tool as posed by

the presented frameworks. The discussion has been structured

according to the Cycles of Control framework as Product man-

agement (Section 13.2; incl. Roadmapping and Release plan-

ning), Development portfolio management (Section 13.3) and

Daily work (Section 13.4). Before going into the requirements

themselves, we first discuss the scope of the discussion in Sec-

tion 13.1.

13.1 Scope of the discussion

The intent here is to focus on the essentials and present a blueprint for backlog

management tool support in the context of agile product and portfolio manage-

ment as guided by the understanding collected in this book regarding these

areas, and their interplay with daily work. Requirements for supporting product

portfolio management have been left out of the scope of this book. For the rest

of the cycles, we focus on only those requirements that are crucial for support-

ing the frameworks described in Part III of this book. This means that require-

ments that may be important for backlog management, such as whether the tool

should be physical (that is, whiteboards, post-its, etc.) or electronic, and wheth-

er an electronic system should integrate with version control and issue tracking,

user rights management and so on are simply omitted. Also, details concerning

iteration management are skipped as well, since most of existing tool support –

whether electronic or physical – can handle single iterations quite well, pro-

vided of course that product and release levels are in order.

In this chapter, requirements are expressed in the so-called canonical user story

format; each user story is followed by a short version of its name in parenthesis.

Chapter 13: Requirements for a Backlog Management Support Tool for Agile
Product and Portfolio Management

194

Those user stories that are to a reasonable degree supported by the latest ver-

sion of Agilefant available at the time this book is published are denoted with a

small Agilefant logo () next to the user story name. For those user stories that

are only partially supported, footnotes are used to denote the shortcomings of

the current (version 2.0.4) implementation. Where appropriate, the current im-

plementation in Agilefant is illustrated by a screenshot.

Also, note that the user stories in the following sections are by no means an ex-

haustive list! Rather, they are meant as a minimal checklist to keep in mind

when looking for or designing a backlog management tool suitable for support-

ing long-term product and portfolio management as represented by the frame-

works presented in Part III of this book.

We have since 2008 been collecting a list of backlog and project management tools to

www.tinyurl.com/biglistoftools

The list is freely editable, so feel free to add the tool you are using! Also, we welcome

you to do a self-evaluation of your tool against the requirements set forth in this chap-

ter.

13.2 Product management

From the perspective of backlog management, product management consists of

Roadmapping and Release planning and monitoring. These are addressed in

Sections 13.2.2 and 13.2.3 below. But before delving into specific requirements

concerning them, we discuss the implications of linking product management

and agile software development from the perspective of backlog management

tool support in Section 13.2.1 below.

13.2.1 Work item hierarchy and the backlog

As explained in Section 7.3.2 (Splitting work items and traceability) and Sec-

tion 7.3.3 (From strategy to action and back again), we claim that a pre-

requisite for long-term planning with backlogs is the ability to create and main-

tain structures of hierarchical work items.

This yields the following requirement:

As the product owner, I want to be able to create and manipu-

late work item structures with unlimited hierarchy in order

to enable just-in-time backlog elaboration, estimation and

prioritization (Story tree)

Agilefant‘s implementation of Story tree is illustrated in Figure 13.1 below:

http://www.tinyurl.com/biglistoftools

Chapter 13: Requirements for a Backlog Management Support Tool for Agile
Product and Portfolio Management

195

Figure 13.1: Story tree for creating and manipulating work item hierarchies in Agilefant
2.0.4

However, viewing the backlog as a prioritized list is still needed for prioritiza-

tion:

As the product owner, I want to view the backlog as a rank-

ordered flat list in order to accurately prioritize work

items in preparation for release and iteration planning (Flat

list view)

Agilefant‘s implementation of Flat list is illustrated in Figure 13.2 below:

Chapter 13: Requirements for a Backlog Management Support Tool for Agile
Product and Portfolio Management

196

Figure 13.2: Flat list for work item prioritization in Agilefant 2.0.4

As the team mostly works with flat lists, they still need to be aware of the work

items‘ context. Thus, we end up with the following user story:

As a developer, I want to be able to see the high-level con-

text of work items to help me ask the right questions and

make the right design decisions (Context)

The implementation of Context in Agilefant 2.0.4 is illustrated in Figure 13.3

below.

Chapter 13: Requirements for a Backlog Management Support Tool for Agile
Product and Portfolio Management

197

Figure 13.3: Context pop-up from a flat list in Agilefant 2.0.4

13.2.2 Roadmapping

Based on the definitions of roadmap and roadmapping as described in Section

7.3 (Linking agile with long-term product and release planning), we have de-

rived the following user stories:

As the product owner, I want to define one or more releases

of the product, complete with release dates in order to have

containers into which I can schedule work items (Releases)

And in more detail:

As the product owner, I want to schedule work items into re-

leases in order to express the long-term plans of where the

product is going on a more tangible level than the product

vision (Scheduling
33
)

In Agilefant 2.0.4, the view that in principle would be best suited for Roadmap-

ping would be the Leaf stories tab on the Product level (Figure 13.4):

33

 This can to some degree be achieved in Agilefant 2.0.4; see restrictions on the following page.

Chapter 13: Requirements for a Backlog Management Support Tool for Agile
Product and Portfolio Management

198

Figure 13.4: Agilefant 2.0.4 allows for Roadmapping with leaf stories

However, the current implementation only displays leaf stories (that is, those

work items that have no children), and thus does not fully support work item

scheduling as we currently understand that it should be done34.

The restriction of forcing to plan future releases and iterations in terms of leaf

work items seems to apply to most of the electronic backlog management tools

currently available. If you are aware of a tool that does a good job with respect to

this requirement, let us know.

The final major requirement for backlog management tool support regarding

roadmapping as we understand it is the capability to display the resulting

roadmap (or parts of it) visually and with a degree of detail that suits the au-

dience in question. We formulate this as follows:

As the product owner, I want to be able to communicate the

long-term plan of the product visually and on a suitable lev-

34

 This can to some degree be worked around by using the Story tree view on the Product level to
schedule work items with children into upcoming releases.

Chapter 13: Requirements for a Backlog Management Support Tool for Agile
Product and Portfolio Management

199

el of granularity for different stakeholders; developers,

business people and customers alike (Roadmap visualization)

13.2.3 Release planning and monitoring

Based on the discussion of release planning in Section 7.1 (What is release

planning?) and Chapter 11, we have defined the following user stories for re-

lease planning and monitoring tool support:

As the product owner, I want to express a preliminary release

plan by allocating features and stories into the upcoming

iterations (Iteration level scheduling
35
)

To support the release planning method described in Chapter 11, the following

user story is required:

As the release planning event facilitator, I want to print

out a subset of features and related user stories (Backlog-

to-paper)

As for monitoring the progress of a release, the basic requirement can be posed

as follows (refer to Figure 7.4 The ATMAN framework for linking daily work

with product and business goals and Figure 8.3 From investment levels to

product/business area vision, goals, actions – and back again):

As the product owner / product manager / business owner, I

want to monitor the progress of a release in terms of goals

of the level I can understand (Release monitoring)

A basic metric that can be used to monitor the progress of a release is compar-

ing what has already been done to the current total scope of a release:

As someone responsible for the release, I want to see a burn-

up graph that compares the total amount of done story points

to the current scope of the release (Release burn-up
36
)

The release burn-up (called ‗project burnup‘) in Agilefant 2.0.4 is described in

the paragraph below.

35

 In 2.0.4, only leaf stories (that is, work items that do not have children) can reside in an itera-
tion. Thus, if a feature has already been (at least partially) split into stories, it cannot as such be
scheduled into an upcoming iteration.
36

 Agilefant 2.0.4‘s burn-up is based on comparing the amount of done story points to total
scope calculated from the leaf stories only; thus, it does not account for only partially split work
items. A better burn-up would display two scope graphs, or, use only that number which is the
greater as the total scope.

Chapter 13: Requirements for a Backlog Management Support Tool for Agile
Product and Portfolio Management

200

Figure 13.5: The project burn-up and the iterations of a completed release in Agilefant
2.0.4

The burn-up in Figure 13.5 contains two graphs to show the planned scope and

progress of the release as the function of time. The red line denotes the scope of

the release as the initial story point sum from those work items that are planned

to be completed in the release (reside in the backlog of the release, or in the

backlog of any of its iterations). The green area denotes the story point sum

from those work items that both are planned to be completed in the release and

have been marked as done. As the work items planned for the release get done

or are moved out of the scope of the release (for example, it is realized that an

item is no longer needed or cannot be completed in time), the two graphs get

closer, and eventually meet.

Chapter 13: Requirements for a Backlog Management Support Tool for Agile
Product and Portfolio Management

201

13.3 Development portfolio management

The requirements for supporting development portfolio management have been

divided into two categories: Portfolio overview and Load management. These

are described in Sections 13.3.1 and 13.3.2 below.

13.3.1 Portfolio overview

The main thing in development portfolio management is to get an overview of

what is going on, who is doing what, and see (even on a coarse level) what the

status of the ongoing activities is. This yields the following user stories:

As a member of the portfolio council, I want to see all the

activities that take up people’s time, who is involved in

what, and whether these activities currently need our atten-

tion or not (Overview)

As a member of the portfolio council, I want to be able to

adjust the allocation of resources (i.e. who is assigned to

what) for the timeframe until the next portfolio review to

make sure that what from the business perspective is impor-

tant gets attended to (Resource allocation)

For portfolio review decision-making (see Section 8.2 on Setting up agile-

compatible portfolio management), it is crucial to see the relative importance of

the activities as well as their cadence. This yields the following user stories:

As a member of the portfolio council, I want to see when the

activities’ upcoming control points (e.g. planning meetings

and demos) occur in order to better understand their current

relative importance (Cadence overview)

As a member of the portfolio council, I want to see and be

able to set the relative importance of the ongoing activities

until the next portfolio review in order to guide decision-

making during that timeframe (Activity ranking)

It is also important for the portfolio council to easily see more details concern-

ing the activities themselves when necessary:

As a member of the portfolio council, I want to be able to

quickly see details concerning an individual activity and

possibly “drill down” into it in order to better understand

its actual status (Drill)

Agilefant‘s portfolio overview supports at least to some degree the Overview,

Resource allocation and Activity ranking user stories described above. It is dis-

played in Figure 13.6 below:

Chapter 13: Requirements for a Backlog Management Support Tool for Agile
Product and Portfolio Management

202

Figure 13.6: Portfolio overview in Agilefant 2.0.4

The development portfolio overview shown in Figure 13.6 displays the portfolio

of activities currently ongoing in a case company of some 30 people and the

ranking of the activities‘ relative importance. While the set priority is not abso-

lute in the sense that all of the work in the activities ranked as most important

would be more important than all of the work in the activities that have been

ranked as less important, this explicit priority helps in making trade-offs when

necessary. Also, performing the ranking forces the Portfolio Council to keep

Chapter 13: Requirements for a Backlog Management Support Tool for Agile
Product and Portfolio Management

203

things explicit, and thus in its own way serves to communicate the strategy of

the company. The traffic lights denote the status of the activities as judged by

their owners. In this example, the green color indicates that an activity is pro-

ceeding as expected. Black denotes that an activity is not managed in detail us-

ing Agilefant, and thus, its status cannot be deducted from the system. In this

way, even though not all of the activities that require attention from develop-

ment must or even should be managed using detailed stories and tasks, all of

them can still be represented in Agilefant. The list of ‘unranked projects‘ contin-

ues beyond the bottom edge of the picture, with the total number of ongoing

activities being around 40. The name of the organization itself (as well as the

names of its clients have been blanked out from Figure 13.6 for confidentiality

reasons.

Besides the user stories listed above, it is relatively easy to invent requirements

for a ―perfect‖ portfolio overview. Thus, there is little point to list them all here

in the user story format. To shed some additional light on what a good portfolio

overview might look like, Figure 13.7 and Figure 13.8 below present a couple of

prototypes we have come up with during the past years. Table 13.1 presents a

legend of the notation used in the first of these visualizations (Figure 13.7),

while Figure 13.8 has been built using the more self-explanatory user interface

components currently provided in Agilefant. You can also compare Figure 13.7

to Figure 3.6 in Part I, as both contain the same activities.

Chapter 13: Requirements for a Backlog Management Support Tool for Agile
Product and Portfolio Management

204

Figure 13.7: An example portfolio overview visualization

Chapter 13: Requirements for a Backlog Management Support Tool for Agile
Product and Portfolio Management

205

Table 13.1: Legend for the notation used in the example portfolio visualization (Figure
13.7)

Graphic Explanation

- The scaling of the visualization automatically displays centers on the current date, and displays six weeks forwards and backwards.

The visualization is scrollable.

The timeline – a dashed horizontal line at the bottom of the visualization – displays weeks and the turn of the year. The current

date is denoted with a horizontal dashed line.

Development activities are displayed as horizontal bars of different colors (see explanation of Status below) In addition to the

currently ongoing development activities, those that have ended or start during the period displayed are shown. Activities on hold,

waiting to be launched, or being prepared for in sales are omitted. Non-projected development activities (e.g. support activities) are

shown as bars stretching across the entire visualization.

 Product, project and activity type names are displayed above each activity.

Activity status can be green, yellow or red. Green means that the team‘s best guess is that all planned iteration goals (or project

goals, in the case of non-iterative activities) are going to be met. Yellow means that the team considers it possible that at least one of

the iteration goals is in jeopardy but immediate attention from the Business is not needed as they may be able to resolve the situation

on their own. Red means that the team believes that at least one of the goals will not be met, or when immediate attention from

Business is needed.

Iteration review meeting at the end of an iteration. While Agilefant automatically takes on the current status of the iteration to

represent whether iteration goals were met or not, it is possible to change the status of an iteration review at any time. This is because

an iteration review may reveal that the goals were not in met even though the activity proceeded as green.

The historical velocity of the iteration (or an activity, in case of non-iterative activities) is calculated as the sum of the original

effort estimates of the backlog items ‗Done‘ in the iteration.

Estimated effort left for the rest of the iteration (or an activity, in case of non-iterative activities) is calculated as the sum of the

estimated efforts left for the backlog items not in the ‗Done‘ state. It is displayed in red if the realized velocity for the activity so far is

not enough to get the effort left done on time. In the case of non-projected development activities, its current volume (i.e. the average

amount of weekly attention per involved person is required by the activity) is shown. Currently, historical volume is not tracked.

-
Priorities for ongoing activities are shown in their vertical placing in the visualization, from the most important (at the top) to the

least important (at the bottom). Activities that are not ongoing but start or end within the displayed period are displayed at the bottom

of the visualization, below the least important ongoing activity.

The people involved in the ongoing iteration for each activity are displayed on top of the activity after the names of the product,

project and activity type. Those people who have tasks or backlog items assigned but have not been appointed to the activity by

Development Portfolio Management are displayed in red.

Personal overload occurs when a person has more estimated effort left in terms of backlog items and tasks assigned to him than he,

compared to his personal historical velocity, is likely to be able to get done before his first upcoming iteration deadlines. Personal

overload is denoted with a red exclamation mark after the name of the person.

Dependencies in terms of activities‘ contents are denoted with an arrow. There is no extra notation to denote resource dependencies,

as they in principle can be seen from assignments and personal overload (see above)

 Portfolio control points (see section Error! Reference source not found.on p. 143.are shown on the timeline as a sun (strate-

gy day & roadmap revision), a diamond (portfolio review) or a triangle (traffic control meeting).

Chapter 13: Requirements for a Backlog Management Support Tool for Agile
Product and Portfolio Management

206

Figure 13.8: Another prototype portfolio overview from Agilefant

Chapter 13: Requirements for a Backlog Management Support Tool for Agile
Product and Portfolio Management

207

Finally, while the portfolio overview may be the ―basic‖ view utilized in portfolio

reviews, some people are usually interested in having customized views into the

development portfolio that provide more details of the activities (this could also

be iterations, people, individual stories, etc.) they are interested in while leaving

out the rest:

As (e.g.) a product manager, I want to be able to see at a

glance how the three concurrent development iterations that

feed into my product are progressing, as well as whether my

key product owner is overloaded or not (Customized views)

These kinds of customized views may also be the more feasible way of providing

– or at least implementing – all the information presented in the portfolio over-

views presented in the above prototypes.

13.3.2 Load management

To properly manage the development portfolio, you need to account for all of

the work that takes up time from people. This includes both projects as well as

non-project activities:

As the scrum master, in addition to project work, I need to

be able to account for non-project work in order to stay

aware of my team’s workload and all that needs to be taken

care of (Continuous work)

Like explained in Section 8.1.5 (Time management conducted by individuals),

continuous work is best to be carried out as periodic work whenever possible. As

a simple example, in one of our case companies, a product manager always re-

served 30 minutes at the end of each day to take care of incoming email. Thus,

he was able to refrain from constantly interrupting himself by checking his

email.

As a team member responsible for (a part of) some continuous

work, e.g. responding to support requests, I want the backlog

management system to support me in transforming continuous

work into periodic work in order to stay efficient and re-

frain from unnecessary multi-tasking (Periodic work)

Also, projects can contain continuous work that takes time from people and

needs to be accounted for, but may not be worth the effort to explicitly trans-

form it into periodic work and/or model it as work items or tasks. Examples of

such work are 5% workshops with the product owner, sprint and iteration plan-

ning meetings, and daily meetings. This yields the following user story:

As the scrum master, I want my team to account in their work-

load for the different continuous work they are attending to

Chapter 13: Requirements for a Backlog Management Support Tool for Agile
Product and Portfolio Management

208

in order to keep both themselves as well as the product owner

aware of the team’s true capacity (Baseline load
37
)

Also, if wished, slack and/or overhead (as these are bound to occur anyhow)

could be accounted for in the baseline load.

13.4 Daily work

As explained in Section 8.1.5 (Time management conducted by individuals) on

page 131, it is ultimately up to the individual to make sure he uses the time he

has available efficiently. But this can be supported by proper backlog manage-

ment. This yields the following user story:

As a team (or an individual) I want to collect all of my work

from the ongoing activities summarized in a single view to

help me choose what I should take on next, and help the prod-

uct owners competing for my attention to agree on priorities.

(Floating backlog
38
)

The concept of floating backlogs is explained in-depth in Section 9.2 (Controlled

multi-tasking with floating backlogs) on page 149.

While Agilefant 2.0.4 does not currently support floating backlogs, it has a rela-

tively sophisticated Daily work view that individuals can use for load manage-

ment as well as planning their daily work. This is displayed in Figure 13.9 below:

37

 Agilefant 2.0.4‘s Daily work view handles this from the perspective of an individual, but not a
team. Also, the work items in the current implementation are not displayed in any particular
order, and they cannot be re-prioritized from the view.
38

 While Agilefant 2.0.4 does not implement continuous work, you can work around this by
creating projects that span a long time and adding baseline load to them.

Chapter 13: Requirements for a Backlog Management Support Tool for Agile
Product and Portfolio Management

209

Figure 13.9: The daily work view in Agilefant 2.0.4 summarizes and helps organize the
duties of an individual across the activities he is involved in

The daily work view (Figure 13.9) is designed to help individuals deal with the

―bottom level of portfolio decision-making‖ as explained in Section 8.1 (Levels

of portfolio management in an agile enterprise). It summarizes the duties of an

individual from all of the activities he is currently involved in, draws a graph of

his current and upcoming workload, and helps in selecting and organizing the

Chapter 13: Requirements for a Backlog Management Support Tool for Agile
Product and Portfolio Management

210

task(s) to be attended to next in the bustle of multiple roles and responsibilities

that pervades at least in small organizations developing software.

The load section at the top of the page calculates the total amount of effort re-

quired to complete the tasks the person is either directly (via being assigned as

one of the people responsible for a given task) or indirectly (via being assigned

to an iteration containing unassigned tasks) responsible for, and compares the

total against set thresholds. The middle section of Figure 13.9 displays the per-

son‘s work queue, which is a personal space for choosing and ordering those

tasks that currently seem the most relevant to attend to from the perspective of

the individual. A task‘s priority in the work queue is irrespective of its ―real

priority‖, which can in principle be deducted from the activities‘ and the stories‘

relative priorities. However, there is always room for intuition in picking the

―next most relevant task‖ depending on e.g. the mood of the individual, or simp-

ly the time available before e.g. the lunch break, a meeting, or heading home.

The work queue may also help various stakeholders (for example, the business

owner or the member of another team dependent on this team‘s progress) to

understand the progress (or non-progress) of the activities they are interested in

without disturbing the responsible person.

The lower section of the daily work view lists all of the not-done stories current-

ly relevant to the person, either via being directly responsible for the entire sto-

ry, or some of its tasks only. The context (i.e. the iteration and the activity it be-

longs to) of each task are directly visible from both the work queue and the story

list, and a pop-up can be opened to display the related story hierarchy as well as

the progress of the iteration in question. For example, the pop-up in Figure 13.9

displays how the very small task ―Remind Gabor about the questionnaire‖ con-

tributes both to the publication and the international research co-operation

goals set for the ATMAN project.

As explained in Chapter 9: Agile Development Portfolio Management in the

hypothetical ―pure Scrum‖, the daily work view would be of little value. For an

individual developer, there would be only a single backlog – that of the currently

ongoing iteration – to pick tasks from. However, it seems that the vast majority

of organizations are in the process of adopting agile software development for

some of their activities only, rather than practicing ―pure Scrum‖ for everything.

Also, as explained, there virtually always are multiple ongoing activities that

require the development resources attention. Thus, it is plausible that the daily

work view is relevant in practice.

A complete list of potential requirements for supporting the management of dai-

ly work gained from surveying a number of expert practitioners is presented in

Appendix 3 of Haapala (2010).

References

211

REFERENCES
Abrahamsson, P. 2003, "New directions on agile methods: A comparative
analysis", in Proceedings of the International Conference on Software
Engineering (ICSE 2003), Portland, Oregon: IEEE Computer Society, pp. 244-
254.

Akker, M.,van den, Brinkkemper, S., Diepen, G. & Versendaal, J. 2008,
"Software product release planning through optimization and what-if analysis",
Information and Software Technology, vol. 50, no. 1-2, pp. 101-111.

Al-Emran, A., Pfahl, D. & Ruhe, G. 2010, "Decision Support for Product Release
Planning based on Robustness Analysis", in Proceedings of the 18th
International IEEE Requirements Engineering Conference (RE'10), Sydney,
Australia: IEEE Computer Society, pp. 157-166.

Anavi-Isakow, S. & Golany, B. 2003, "Managing multi-project environments
through constant work-in-process", International Journal of Project
Management, vol. 21, no. 1, pp. 9-18.

Anderson, D.,J. 2010, Kanban, Sequim, Washington: Blue Hole Press.

Artz, P., Weerd, I.,van de, Brinkkemper, S. & Fieggen, J. 2010, "Productization:
Transforming from Developing Customer-Specific Software to Product
Software", in Proceedings of the First International Conference on Software
Business (ICSOB 2010), Jyväskylä, Finland: Springer, pp. 90-102.

Ash, R.C. & Smith-Daniels, D.E. 2004, "Managing the Impact of Customer
Support Disruptions on New Product Development Projects", Project
Management Journal, vol. 35, no. 1, pp. 3-10.

Basili, V.R., Caldiera, G. & Rombach, D.,H. 1994, "The Experience Factory" in
Encyclopaedia of Software Engineering, ed. J.J. Marciniak, John Wiley & Sons,
pp. 469-476.

Beattie, J.S. & Fleck, J. 2005, "New perspectives on strategic technology
management in small high-tech companies", in Proceedings of the 2005 IEEE
International Engineering Management Conference, St. John's,
Newfoundland: IEEE, pp. 313-318.

Beck, K. 2000, Extreme Programming Explained: Embrace Change, Reading,
MA: Addison-Wesley.

Bekkers, W., Weerd, I.,van de, Spruit, M. & Brinkkemper, S. 2010, "A
framework for process improvement in software product management", in
Proceedings of the 17th European Conference on Systems, Software and
Services Process Improvement (EuroSPI 2010), Grenoble, France: Springer, pp.
1-12.

References

212

Berander, P. & Jönsson, P.R. 2006, "Hierarchical Cumulative Voting (HCV)
prioritization of requirements in hierarchies", International Journal of
Software Engineering and Knowledge Engineering, vol. 16, no. 6, pp. 819-849.

Berry, M. 1998, "Strategic planning in small high-tech companies", Long range
planning, vol. 31, no. 3, pp. 455-466.

Berry, M.M.J. & Taggart, J.H. 1998, "Combining Technology and Corporate
Strategy in Small High Tech Firms", Research Policy, vol. 26, no. 7-8, pp. 883-
895.

Blichfeldt, B.S. & Eskerod, P. 2008, "Project portfolio management - There's
more to it than what management enacts", International Journal of Project
Management, vol. 26, no. 4, pp. 357-365.

Boehm, B.W. 2000, "Requirements that handle IKIWISI, COTS, and rapid
change", Computer, vol. 33, no. 7, pp. 99-102.

Boehm, B.W. & Turner, R. 2003, Balancing agility and discipline : a guide for
the perplexed, Boston, MA: Addison-Wesley.

Booch, G. 1995, Object Solutions: Managing the Object-Oriented Project,
Boston, MA: Addison-Wesley.

Brooks, F.P.,Jr. 1995, The Mythical Man-Month: Essays on Software
Engineering, 20th anniversary ed., Reading, MA, USA: Addison-Wesley.

Brown, S.,L. & Eisenhardt, K.,M. 1997, "The Art of Continuous Change: Linking
Complexity Theory and Time-Paced Evolution in Relentlessly Shifting
Organizations", Administrative Science Quarterly, vol. 42, no. 1, pp. 1-34.

Cao, L. & Ramesh, B. 2008, "Agile requirements engineering practices: An
empirical study", IEEE Software, vol. 25, no. 1, pp. 60-67.

Cardozo, E.S.F., Neto, J.B.F.A., Barza, A., Franca, A.C.C. & Da Silva, F.Q.B.
2010, "SCRUM and Productivity in Software Projects: A Systematic Literature
Review", in Proceedings of the 14th International Conference on Evaluation
and Assessment in Software Engineering (EASE), Keele University, UK: School
of Computing and Mathematics at Keele University, UK, pp. 1-4.

Carlshamre, P. 2002, "Release Planning in Market-Driven Software Product
Development: Provoking an Understanding", Requirements Engineering, vol. 7,
no. 3, pp. 139-151.

Cerveny, J.F. & Galup, S.D. 2002, "Critical chain project management holistic
solution aligning quantitative and qualitative project management methods",
Production and Inventory Management Journal, vol. 43, no. 3-4, pp. 55-64.

References

213

Chatzipetrou, P., Angelis, L., Rovegård, P. & Wohlin, C. 2010, "Prioritization of
Issues and Requirements by Cumulative Voting: A Compositional Data Analysis
Framework", in Proceedings of the 36th EUROMICRO Conference on Software
Engineering and Advanced Applications, Lille, France: IEEE Computer Society,
pp. 361-370.

Chow, T. & Cao, D. 2008, "A survey study of critical success factors in agile
software projects", Journal of Systems and Software, vol. 81, no. 6, pp. 961-971.

Christensen, C.M. & Raynor, M.E. 2003, The Innovator's Solution: Creating
and Sustaining Successful Growth, Boston, MA: Harvard Business School
Press.

Cockburn, A. 2002, Agile software development, Boston, MA: Addison-Wesley.

Cohn, M. 2010, Succeeding with Agile: Software Development Using Scrum,
Upper Saddle River, NJ: Addison-Wesley.

Condon, D. 2002, Software product management - managing software
development from idea to product to marketing to sales, Boston, MA: Aspatore
Books.

Cooper, R.G. 2009, "How Companies are Reinventing Their Idea-to-Launch
Methodologies", Research Technology Management, vol. 52, no. 2, pp. 47-57.

Cooper, R.G. 1994, "Perspective Third-Generation New Product Processes",
Journal of Product Innovation Management, vol. 11, no. 1, pp. 3-14.

Cooper, R.G., Edgett, S.J. & Kleinschmidt, E.J. 2001, Portfolio Management for
New Products, 2nd ed., Cambridge, MA: Perseus Books.

Cooper, R.G. & Edgett, S.J. 2003, "Overcoming the crunch in resources for new
product development", Research Technology Management, vol. 46, no. 3, pp.
48-58.

Cooper, R.G., Edgett, S.J. & Kleinschmidt, E.J. 2002, "Portfolio management:
fundamental to new product success" in The PDMA Toolbook for New Product
Development , eds. P. Belliveau, A. Griffin & S. Somermeyer, New York, NY:
John Wiley & Sons, Inc., pp. 331-364.

Cooper, R.G., Edgett, S.J. & Kleinschmidt, E.J. 2001, "Portfolio management for
new product development: results of an industry practices study", R&D
Management, vol. 31, no. 4, pp. 361-380.

Cooper, R.G., Edgett, S.J. & Kleinschmidt, E.J. 2000, "New problems, new
solutions: Making portfolio management more effective", Research Technology
Management, vol. 43, no. 2, pp. 18-33.

References

214

Cooper, R.G., Edgett, S.J. & Kleinschmidt, E.J. 1997, "Portfolio management in
new product development: Lessons from the leaders--II", Research Technology
Management, vol. 40, no. 6, pp. 43-52.

Cusumano, M.A. 2008, "The Changing Software Business: Moving from
Products to Services", Computer, vol. 41, no. 1, pp. 20-27.

Cusumano, M.A. 2004, The business of software - what every manager,
programmer and entrepreneur must know to thrive and survive and good
times and bad, New York, NY: The Free Press.

Cusumano, M.A. 2003, "Finding your balance in the products and services
debate", Communications of the ACM, vol. 46, no. 3, pp. 15-17.

Cusumano, M.A., Crandall, W., MacCormack, A. & Kemerer, C.,F. 2009,
"Critical Decisions in Software Development: Updating the State of the
Practice", IEEE Software, vol. 26, no. 5, pp. 84-87.

Cusumano, M.A. & Selby, R.W. 1995, Microsoft Secrets: How the World's Most
Powerful Software Company Creates Technology, Shapes Markets and
Manages People, New York: The Free Press.

De Reyck, B., Grushka-Cockayne, Y., Lockett, M., Calderini, S.R., Moura, M. &
Sloper, A. 2005, "The impact of project portfolio management on information
technology projects", International Journal of Project Management, vol. 23,
no. 7, pp. 524-537.

DeGregorio, G. 2000, "Technology Management Via a Set of Dynamically
Linked Roadmaps", in Proceedings of the 2000 IEEE International
Engineering Management Society (EMS - 2000), Albuquerque, NM: IEEE, pp.
184-190.

DeMarco, T. 2001, Slack: Getting Past Burnout, Busywork, and the Myth of
Total Efficiency, New York, NY: Broadway Books.

Dobson, M.S. 1999, The juggler's guide to managing multiple projects,
Newtown Square, PA: Project Management Institute.

Dooley, L., Lupton, G. & O'Sullivan, D. 2005, "Multiple project management: a
modern competitive necessity", Journal of Manufacturing Technology
Management, vol. 16, no. 5, pp. 466-482.

Doz, Y. & Kosonen, M. 2008, Fast Strategy: How strategic agility will help you
stay ahead of the game, Upper Saddle River, NJ: Prentice Hall.

Dybå, T. & Dingsøyr, T. 2008, "Empirical studies of agile software development:
A systematic review", Information and Software Technology, vol. 50, no. 9-10,
pp. 833-859.

References

215

Ebert, C. 2009, "Software Product Management", Crosstalk, The Journal of
Defence Software Development, vol. 2009, no. January, pp. 15-19.

Eisenhardt, K.,M. & Brown, S.,L. 1998, "Time Pacing: Competing in Markets
that Won't Stand Still", Harvard business review, vol. 76, no. 2, pp. 59-69.

Elonen, S. & Artto, K.A. 2003, "Problems in managing internal development
projects in multi-project environments", International Journal of Project
Management, vol. 21, no. 6, pp. 395-402.

Englund, R.L. & Graham, R.J. 2001, "From experience: linking projects to
strategy", IEEE Engineering Management Review, vol. 28, no. 1, pp. 58-69.

Engwall, M. & Jerbrant, A. 2003, "The resource allocation syndrome: The prime
challenge of multi-project management?", International Journal of Project
Management, vol. 21, no. 6, pp. 403-409.

Ferrari, E. 2008, Product Management for Software - simple processes for
great results, Mondo Strategies Press.

Fisher, K.G. & Bankston, A. 2009, "From Cradle to Sprint: Creating a Full-
Lifecycle Request Pipeline at Nationwide Insurance", in Proceedings of the
2009 Agile Conference (Agile2009), Chicago, IL: IEEE computer society, pp.
223-228.

Fleury, A.L., Hunt, F., Spinola, M. & Probert, D. 2006, "Customizing the
technology roadmapping technique for software companies", in Proceedings of
the 2006 Portland International Conference on Management of Engineering
and Technology (PICMET '06), Istanbul, Turkey: IEEE, pp. 1526-1538.

Fogelström, N.D., Gorschek, T., Svahnberg, M. & Olsson, P. 2010, "The Impact
of Agile Principles on Market-Driven Software Product Development", Journal
of Software Maintenance and Evolution: Research and Practice, vol. 22, no. 1,
pp. 53-80.

Fricker, S., Gorschek, T., Byman, C. & Schmidle, A. 2010, "Handshaking with
Implementation Proposals: Negotiating Requirements Understanding", IEEE
Software, vol. 27, no. 2, pp. 72-80.

Galen, R. 2009, Scrum product ownership: balancing value from the inside out
- stories, ideas, lessons and practices for becoming a great product owner,
RGalen Consulting Group.

Gersick, C.J.G. 1994, "Pacing Strategic Change: The Case of a New Venture",
Academy of management journal, vol. 37, no. 1, pp. 9-45.

Glass, R.L., Vessey, I. & Ramesh, V. 2002, "Research in software engineering:
an analysis of the literature", Information & Software Technology, vol. 44, no.
8, pp. 491-506.

References

216

Gorchels, L. 2003, The product manager's field guide, New York, NY: McGraw-
Hill.

Gorschek, T. & Wohlin, C. 2006, "Requirements Abstraction Model",
Requirements Engineering, vol. 11, no. 1, pp. 79-101.

Greer, D. & Ruhe, G. 2004, "Software Release Planning: An Evolutionary and
Iterative Approach", Information and Software Technology, vol. 46, no. 4, pp.
243-253.

Haapala, A. 2010, Enhanced tool support for daily work management in agile
software development, master's thesis, Oulu University, industrial engineering
and management.

Hansson, C., Dittrich, Y., Gustafsson, B. & Zarnak, S. 2006, "How agile are
industrial software development practices?", Journal of Systems and Software,
vol. 79, no. 9, pp. 1295-1311.

Harris, J.R. & McKay, J.C. 1996, "Optimizing product development through
pipeline management" in The PDMA handbook of new product development,
ed. M.D. Rosenau Jr., New York, NY: John Wiley & Sons, pp. 63-76.

Heikkilä, V., Jadallah, A., Rautiainen, K. & Guenther, R. 2010, "Rigorous
support for flexible planning of product releases - a stakeholder-centric
approach", in Proceedings of the 43th Hawaii International Conference on
System Sciences (HICSS-43), Kauai, HI: IEEE, pp. 1-10.

Heikkilä, V., Rautiainen, K. & Jansen, S. 2010, "A Revelatory Case Study on
Scaling Agile Release Planning", in Proceedings of the 36th EUROMICRO
Conference on Software Engineering and Advanced Applications
(EUROMICRO SEAA 2010), Lille, France: IEEE, pp. 289-296.

Highsmith, J.A.,III 2002, Agile software development ecosystems, Boston, MA:
Addison-Wesley.

Highsmith, J.A.,III 2000, Adaptive Software Development: A Collaborative
Approach to Managing Complex Systems, New York, NY: Dorset House
Publishing.

Hodgkins, P. & Hohmann, L. 2007, "Agile Program Management: Lessons
Learned from the VeriSign Managed Security Services Team", in Proceedings of
the AGILE 2007 Conference (AGILE 2007), Washington, DC: IEEE computer
society, pp. 194-199.

Ivarsson, M. & Gorschek, T. 2009, "Technology transfer decision support in
requirements engineering: a systematic review of REj", Requirements
Engineering, vol. 14, no. 3, pp. 155-175.

Jennings, P. & Beaver, G. 1996, "The Performance and Competitive Advantage
of Small Firms: A Management Perspective", International Small Business
Journal, vol. 15, no. 2.

References

217

Johnson, M.W. 2010, Seizing the white space: business model innovation for
growth and renewal, Boston, MA: Harvard Business Press.

Kahn, K.B., Castellion, G.A. & Griffin, A. (eds) 2005, The PDMA handbook of
new product development, 2nd ed., Hoboken, NJ: John Wiley & Sons.

Kappel, T. 2001, "Perspectives on roadmaps: how organisations talk about the
future", IEEE Engineering Management Review, vol. 29, no. 3, pp. 36-48.

Karlsson, J., Olsson, S. & Ryan, K. 1997, "Improved practical support for large-
scale requirements prioritising", Requirements Engineering, vol. 2, no. 1, pp.
51-60.

Karlsson, J. & Ryan, K. 1997, "A cost-value approach for prioritizing
requirements", IEEE Software, vol. 14, no. 5, pp. 67-74.

Karlström, D. & Runeson, P. 2006, "Integrating agile software development into
stage-gate managed product development", Empirical Software Engineering,
vol. 11, no. 2, pp. 203-225.

Kaulio, M.A. 2008, "Project leadership in multi-project settings: Findings from
a critical incident study", International Journal of Project Management, vol.
26, no. 4, pp. 338-347.

Kettunen, P. 2007, "Extending Software Project Agility with New Product
Development Enterprise Agility", Software Process Improvement and Practice,
vol. 12, no. 6, pp. 541-548.

Kettunen, P. & Laanti, M. 2006, "Combining agile software projects and large-
scale organizational agility", Software Process Improvement and Practice, vol.
13, no. 2, pp. 183-193.

Kittlaus, H. & Clough, P.N. 2009, Software product management and pricing:
key success factors for software organizations, Berlin, Germany: Springer-
Verlag.

Kniberg, H. & Skarin, M. 2010, Kanban and Scrum - making the most of both,
lulu.com.

Koivisto, N. 2010, "How Can Academic Business Research Support the Finnish
Software Industry?", in Proceedings of the first International Conference on
Software Business (ICSOB 2010), Jyväskylä, Finland: Springer, pp. 211-216.

Kostoff, R.N. & Schaller, R.R. 2001, "Science and Technology Roadmaps", IEEE
Transactions on Engineering Management, vol. 48, no. 2, pp. 132-143.

Krebs, J. 2008, Agile Portfolio Management, Redmond, WA: Microsoft Press.

Kruchten, P. 2000, The rational unified process: an introduction, 2nd ed.,
Reading, MA: Addison-Wesley.

References

218

Ktata, O. & Levesque, G. 2009, "Agile development: issues and avenues
requiring a substantial enhancement of the business perspective in large
projects", in Proceedings of the 2nd Canadian Conference on Computer Science
and Software Engineering (C3S2E '09), Montreal, Quebec, Canada: ACM, pp.
59-66.

Ladas, C. 2008, Scrumban, Seattle, Washington: Modus Cooperandi Press.

Lago, P., Muccini, H. & Vliet, H.,van 2009, "A scoped approach to traceability
management", Journal of Systems and Software, vol. 82, no. 1, pp. 168-182.

Larman, C. & Vodde, B. 2010, Practices for Scaling Lean & Agile Development:
Large, Multisite, and Offshore Product Development with Large-Scale Scrum,
Upper Saddle River, NJ: Addison-Wesley Professional.

Larman, C. & Vodde, B. 2008, Scaling Lean & Agile Development: Thinking
and Organizational Tools for Large-Scale Scrum, Westford, MA: Addison-
Wesley Professional.

Laslo, Z. & Goldberg, A.I. 2008, "Resource allocation under uncertainty in a
multi-project matrix environment: Is organizational conflict inevitable?",
International Journal of Project Management, vol. 26, no. 8, pp. 773-788.

Leffingwell, D. forthcoming 2011, Agile Requirements: Lean Requirements
Practices for Software Teams, Programs and the Enterprise, Addison-Wesley
Professional.

Leffingwell, D. 2009, The Big Picture of Enterprise Agility (rev. 2),
http://scalingsoftwareagility.files.wordpress.com/2007/03/the-big-picture-of-
enteprise-agilitywhitepaper.pdf.

Leffingwell, D. 2007, Scaling Software Agility: Best Practices for Large
Enterprises, Reading, MA: Addison-Wesley Professional.

Leffingwell, D. & Aalto, J. 2009, A Lean and Scalable Requirements
Information Model for the Agile Enterprise,
http://scalingsoftwareagility.files.wordpress.com/2007/03/the-big-picture-of-
enteprise-agilitywhitepaper.pdf.

Lehto, I. 2010, Using backlogs for linking long-term product plans and
development tasks in agile software development, master's thesis, Helsinki
University of Technology, Software Business and Engineering Institute.

Lehto, I. & Rautiainen, K. 2009, "Software Development Governance Challenges
of a Middle-Sized Company in Agile Transition", in Proceedings of the 2009
ICSE Workshop on Software Development Governance (SDG '09), Vancouver,
Canada: IEEE computer society, pp. 36-39.

http://scalingsoftwareagility.files.wordpress.com/2007/03/the-big-picture-of-enteprise-agilitywhitepaper.pdf
http://scalingsoftwareagility.files.wordpress.com/2007/03/the-big-picture-of-enteprise-agilitywhitepaper.pdf
http://scalingsoftwareagility.files.wordpress.com/2007/03/the-big-picture-of-enteprise-agilitywhitepaper.pdf
http://scalingsoftwareagility.files.wordpress.com/2007/03/the-big-picture-of-enteprise-agilitywhitepaper.pdf

References

219

Lehtola, L. 2006, Providing value by prioritizing requirements throughout
software product development - state of practice and suitability of
prioritization methods, licenciate's thesis, Helsinki University of Technology.

Lehtola, L. & Kauppinen, M. 2006, "Suitability of Requirements Prioritization
Methods for Market-Driven Software Product Development ", Software process
improvement and practice, vol. 11, no. 1, pp. 7-19.

Lehtola, L., Kauppinen, M., Komssi, M. & Vähäniitty, J. 2009, "Linking business
and requirements engineering: is solution planning a missing activity in
software product companies?", Requirements Engineering, vol. 14, no. 2, pp.
113-128.

Lehtola, L., Kauppinen, M. & Kujala, S. 2005, "Linking the business view to
requirements engineering: long-term product planning by roadmapping", in
Proceedings of the 13th IEEE International Requirements Engineering
Conference (RE'05), Paris, France: IEEE, pp. 439-443.

Lehtola, L., Kauppinen, M. & Vähäniitty, J. 2007, "Strengthening the link
between business decisions and RE: Long-term product planning in software
product companies", in Proceedings of the 15th IEEE International
Requirements Engineering Conference (RE'07), New Delhi, India: IEEE, pp.
153-162.

Levine, H.A. 2005, Project Portfolio Management: A Practical Guide to
Selecting Projects, Managing Portfolios, and Maximizing Benefits, San
Francisco, CA: Jossey-Bass.

Li, M., Huang, M., Shu, F. & Li, J. 2006, "A risk-driven method for eXtreme
programming release planning", in Proceedings of the 28th International
Conference on Software Engineering (ICSE 2006), Shanghai, China: ACM, pp.
423-430.

MacCormack, A., Verganti, R. & Iansiti, M. 2001, "Developing products on
Internet time: the anatomy of a flexible development process", Engineering
management review, vol. 29, no. 2, pp. 90-104.

Mader, D.P. 2004, "Selecting Design for Six Sigma Projects", Quality Progress,
vol. 37, no. 7, pp. 65.

Maham, M. 2008, "Planning and Facilitating Release Retrospectives", in
Proceedings of the Agile 2008 conference (AGILE '08), Toronto, Canada: IEEE,
pp. 176-180.

Martin, J. 1991, Rapid Application Development, New York, NY: Macmillan
Publishing Company.

Martinsuo, M. 2001, "Project portfolio management: contingencies,
implementation and strategic renewal" in Project portfolio management -
strategic management through projects, eds. K. Artto, M. Martinsuo & T. Aalto,
Project Management Association Finland, pp. 61-77.

References

220

Martinsuo, M. & Lehtonen, P. 2007, "Role of single-project management in
achieving portfolio management efficiency", International Journal of Project
Management, vol. 25, no. 1, pp. 56-65.

Mc Elroy, J. & Ruhe, G. 2010, "When-to-release decisions for features with
time-dependent value functions", Requirements Engineering, vol. 15, no. 3, pp.
337-358.

McCarthy, J. & McCarthy, M. 2002, Software for your head - core protocols for
creating and maintaining shared vision, Pearson Education, Inc.

McConnell, S. 1996, Rapid Development, Redmond, WA: Microsoft Press.

McDonough, E.F. & Spital, F.C. 2003, "Managing project portfolios", Research
Technology Management, vol. 46, no. 3, pp. 40-46.

McGrath, M. 2000, Product Strategy for High Technology Companies,
McGraw Hill Text.

McGrath, M.E. (ed) 1996, Setting the PACE in product development : a guide to
Product And Cycle-time Excellence, Boston, MA: Butterworth-Heinemann.

Miettinen, O., Mazhelis, O. & Luoma, E. 2010, "Managerial Growth Challenges
in Small Software Firms: A Multiple-Case Study of Growth-Oriented
Enterprises", in Proceedings of the First International Conference on Software
Business (ICSOB 2010), Jyväskylä, Finland: Springer, pp. 26-37.

Mohan, K., Ramesh, B. & Sugumaran, V. 2010, "Integrating Software Product
Line Engineering and Agile Development Methods", IEEE Software, vol. 23, no.
3, pp. 48-55.

Nambisan, S. 2001, "Why Service Businesses are not Product Businesses", MIT
Sloan Management Review, vol. 42, no. 4, pp. 72-80.

Nambisan, S. & Wilemon, D. 2000, "Software Development and New Product
Development: Potentials for Cross-Domain Knowledge Sharing", IEEE
Transactions on Engineering Management, vol. 47, no. 2, pp. 211-220.

Ngo-The, A. & Ruhe, G. 2009, "Optimized Resource Allocation for Software
Release Planning", IEEE Transactions on Software Engineering, vol. 35, no. 1,
pp. 109-123.

Ngo-The, A. & Ruhe, G. 2008, "A systematic approach for solving the wicked
problem of software release planning", Soft Computing - A Fusion of
Foundations, Methodologies and Applications, vol. 12, no. 1, pp. 95-108.

O'Connor, P. 2004, "Spiral-up implementation of NPD portfolio and pipeline
management" in The PDMA Toolbook for New Product Development , eds. P.
Belliveau, A. Griffin & S. Somermeyer, John Wiley & Sons, pp. 461-492.

References

221

Patton, M.Q. 2002, Qualitative Research & Evaluation Methods, 3rd ed.,
Thousand Oaks, CA: Sage Publications.

Payne, J.H. 1995, "Management of multiple simultaneous projects: A state-of-
the-art review", International Journal of Project Management, vol. 13, no. 3,
pp. 163-168.

Pichler, M., Rumetshofer, H. & Wahler, W. 2006, "Agile Requirements
Engineering for a Social Insurance for Occupational Risks Organization: A Case
Study", in Proceedings of the 14th IEEE International International
Requirements Engineering Conference (RE'06), Minneapolis-St. Paul, MN:
IEEE, pp. 251-256.

Pichler, R. 2010, Agile Product Management with Scrum: Creating Products
that Customers Love, Addison-Wesley Professional.

Pino, F.J., Pardo, C., García, F. & Piattini, M. 2010, "Assessment methodology
for software process improvement in small organizations", Information and
Software Technology, vol. 52, no. 10, pp. 1044-1061.

Pittman, M. 1993, "Lessons Learned in Managing Object-Oriented
Development", IEEE Software, vol. 10, no. 1, pp. 43-53.

Poppendieck, M. & Poppendieck, T. 2009, Leading Lean Software
Development: Results Are not the Point, Addison-Wesley.

Ramesh, B., Cao, L. & Baskerville, R. 2010, "Agile requirements engineering
practices and challenges: an empirical study", Information Systems Journal,
vol. 20, no. 5, pp. 449-480.

Rautiainen, K. 2004, Cycles of Control: A Temporal Pacing Framework for
Software Product Development Management, licentiate's thesis , Helsinki
University of Technology.

Rautiainen, K., Lassenius, C. & Sulonen, R. 2002, "4CC: A framework for
managing software product development", EMJ - Engineering Management
Journal, vol. 14, no. 2, pp. 27-32.

Rautiainen, K., Lassenius, C., Vähäniitty, J., Itkonen, J., Mäntylä, M., Rusama,
M. & Vanhanen, J. 2006, Pacing Software Product Development: A
Framework and Practical Implementation Guidelines , Helsinki University of
Technology, Software Business and Engineering Institute, Espoo, Finland.

Reinertsen, D.G. 2009, The principles of product development flow - second
generation lean product development, Redondo Beach, CA: Celeritas
publishing.

Repenning, N.P. 2001, "Understanding fire fighting in new product
development", The Journal of Product Innovation Management, vol. 18, no. 5,
pp. 285-300.

References

222

Rico, D.F., Sayani, H.H. & Sone, S. 2009, The business value of agile software
methods - maximizing ROI with just-in-time processes and documentation, J.
Ross Publishing.

Rönkkö, M., Ylitalo, J., Peltonen, J., Koivisto, N., Mutanen, O., Autere, J.,
Valtakoski, A. & Pentikäinen, P. 2009, National Software Industry Survey
2009, Helsinki University of Technology.

Rothman, J. 2009, Manage your project portfolio: increase your capacity and
finish more projects, Raleigh, NC: Pragmatic Bookshelf.

Rothman, J. 2007, Manage it! : your guide to modern, pragmatic project
management, Raleigh, NC: The Pragmatic Bookshelf.

Ruhe, G. 2010, Product Release Planning : Methods, Tools and Applications,
Boca Raton, FL: Auerbach Publications.

Ruhe, G. & Momoh, J. 2005, "Strategic Release Planning and Evaluation of
Operational Feasibility", in Proceedings of the 38th Annual Hawaii
International Conference on System Sciences (HICSS '05), Hawaii, HI: IEEE,
pp. 313b.

Ruokonen, M. 2008, "Market orientation and product strategies in small
internationalising software companies", The Journal of High Technology
Management Research, vol. 18, no. 2, pp. 143-156.

Saastamoinen, I. & Tukiainen, M. 2004, "Software Process Improvement in
Small and Medium Sized Software Enterprises in Eastern Finland: A State-of-
the-Practice Study", in Proceedings of the 11th European Conference on
Software Process Improvement (EuroSPI 2004), Trondheim, Norway:
Springer, pp. 69-78.

Sahlman, K. & Haapasalo, H. 2009, "Perceptions of strategic management of
technology in small high-tech enterprises", in Proceedings of the 2009 Portland
International Conference on Management of Engineering & Technology
(PICMET 2009), Portland, OR: IEEE, pp. 93-104.

Savolainen, J., Kuusela, J. & Vilavaara, A. 2010, "Transition to agile
development - rediscovery of important requirements engineering practices", in
Proceedings of the 18th International IEEE Requirements Engineering
Conference (RE'10), Sydney, Australia: IEEE Computer Society, pp. 289-294.

Schiel, J. 2009, Enterprise-Scale Agile Software Development, Boca Raton:
CRC Press.

Schwaber, K. 2007, The Enterprise and Scrum, Redmond, WA: Microsoft Press.

Schwaber, K. 1995, "SCRUM Development Process", in Proceedings of the
OOPSLA Workshop on Business Object Design and Implementation, Austin,
TX: pp. 117-134.

References

223

Schwaber, K. & Beedle, M. 2002, Agile software development with Scrum,
Upper Saddle River, NJ: Prentice-Hall.

Schwaber, K. & Sutherland, J. 2010, Scrum Guide, Agile Alliance,
http://www.scrum.org/storage/scrumguides/Scrum%20Guide.pdf.

Shalloway, A., Beaver, G. & Trott, J. 2009, Lean-agile software development:
achieving enterprise agility, Upper Saddle River, NJ: Addison-Wesley.

Smith, P.G. 2008, "Change: embrace it, don't deny it", Research-Technology
Management, vol. 51, no. 4, pp. 34-40.

Stober, T. & Hansmann, U. 2010, Agile software development - best practices
for large software development projects, Springer.

Sutherland, J. & Altman, I. 2010, "Organizational Transformation with Scrum:
How a Venture Capital Group Gets Twice as Much Done with Half the Work", in
Proceedings of the 43rd Hawaii International Conference on System Sciences
(HICSS-43), pp. 1-9.

Sutherland, J. 2005, "Future of scrum: Parallel pipelining of sprints in complex
projects", in Proceedings of Agile Conference 2005 (AGILE 2005), Denver,
Colorado: IEEE, pp. 90-99.

Sutherland, J., Schoonheim, G. & Mauritz, R. 2009, "Fully distributed scrum:
replicating local productivity and quality with offshore teams", in Proceedings
of the 42nd Hawaii International Conference on System Sciences (HICSS-42),
Big Island, HI: IEEE, pp. 1-8.

Sutherland, J., Viktorov, A., Blount, J. & Puntikov, N. 2007, "Distributed scrum:
agile project management with outsourced development teams", in Proceedings
of the 40th Hawaii International Conference on System Sciences (HICSS-40),
Big Island, HI: IEEE, pp. 274a-274a.

Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S.B. & Shafique,
M.U. 2010, "A systematic review on strategic release planning models",
Information and Software Technology, vol. 52, no. 3, pp. 237-248.

Syed-Abdullah, S., Holcombe, M. & Gheorge, M. 2006, "The Impact of an Agile
Methodology on the Well Being of Development Teams", Empirical Software
Engineering, vol. 11, no. 1, pp. 143-167.

Takeuchi, H. & Nonaka, I. 1986, "The New New Product Development Game",
Harvard business review, vol. 64, no. 1, pp. 137-146.

Tengshe, A. & Noble, S. 2007, "Establishing the Agile PMO: Managing
variability across Projects and Portfolios", in Proceedings of the AGILE 2007
Conference, Washington, DC: IEEE computer society, pp. 188-193.

http://www.scrum.org/storage/scrumguides/Scrum%20Guide.pdf

References

224

Vähäniitty, J. 2004, "Commercial product management" in Pacing software
product development: a framework and practical implementation guidelines,
eds. K. Rautiainen & C. Lassenius, Helsinki University of Technology, Software
Business and Engineering Institute, pp. 19-35.

Vähäniitty, J., Rautiainen, K. & Lassenius, C. 2010, "Small software
organizations need explicit project portfolio management", IBM Journal of
Research and Development, vol. 54, no. 2, pp. 1:1-1:12.

Vähäniitty, J. & Rautiainen, K. 2008, "Towards a conceptual framework and
tool support for linking long-term product and business planning with agile
software development", in Proceedings of the 1st international workshop on
Software development governance (SDG '08), Leipzig, Germany: ACM, pp. 25-
28.

Vähäniitty, J. & Rautiainen, K. 2005, "Towards an Approach for Development
Portfolio Management in Small Product-Oriented Software Companies ", in
Proceedings of the 38th Hawaii International Conference on System Sciences
(HICSS-38), Big Island, HI: IEEE, pp. 314-314.

Valkenhoef, G.,van, Tervonen, T., Brock, B., de & Postmus, D. 2010, "Product
and Release Planning Practices for Extreme Programming", in Proceedings of
the 11th International Conference on Agile Software Development (XP2010),
Trondheim, Norway: Springer, pp. 238-243.

VersionOne Inc. 2009, 4th Annual "State of Agile Development" Survey,
http://pm.versionone.com/StateOfAgileSurvey.html.

Vlaanderen, K., Jansen, S., Brinkkemper, S. & Jaspers, E. 2011, "The Agile
Requirements Refinery: Applying SCRUM Principles to Software Product
Management", Information and Software Technology, vol. 53, no. 1, pp. 58-70.

Vlaanderen, K., Jansen, S., Brinkkemper, S. & Jaspers, E. 2009, "The Agile
Requirements Refinery: Applying SCRUM Principles to Software Product
Management", in Proceedings of the 3rd International Workshop on Software
Product Management (IWSPM 2009), Atlanta, Georgia: IEEE, pp. 1-10.

Wallin, C., Ekdahl, F. & Larsson, S. 2002, "Integrating business and software
development models", IEEE Software, vol. 19, no. 6, pp. 28-33.

Wangenheim, C.G.,von, Weber, S., Hauck, J.C.R. & Trentin, G. 2006,
"Experiences on establishing software processes in small companies",
Information and Software Technology, vol. 48, no. 9, pp. 890-900.

Weerd, I.,van de, Brinkkemper, S., Nieuwenhuis, R., Versendaal, J. & Biljsma, L.
2006, "Towards a Reference Framework for Software Product Management", in
Proceedings of the 14th IEEE International Requirements Engineering
Conference (RE'06), Minneapolis/St. Paul, MI: IEEE, pp. 319-322.

http://pm.versionone.com/StateOfAgileSurvey.html

References

225

Wheelwright, S.C. & Clark, K.B. 1995, Leading product development: the senior
manager's guide to creating and shaping the enterprise, New York, NY: The
Free Press.

Wheelwright, S.C. & Clark, K.B. 1992, "Creating Project Plans to Focus Product
Development", Harvard business review, vol. 70, no. 2, pp. 70-82.

Zika-Viktorsson, A., Sundström, P. & Engwall, M. 2006, "Project overload: An
exploratory study of work and management in multi-project settings",
International Journal of Project Management, vol. 24, no. 5, pp. 385-394.

The editors, (from left) Ville Heikkilä, Jarno Vähäniitty and Kristian
Rautiainen, relaxing in Volendam after a hard day’s work.

We hope you enjoyed reading the book as much as we enjoyed writing it!

ISBN 978-952-60-3498-0

Aalto University's Software Process Research Group (SPRG) offers re-

search collaboration, evidence-based training and consultancy for a sober

price.

Contact us to learn more at sprg@soberit.hut.fi.

	Cover

	Text pages

	Foreword
	Why Should You Care About Agile Product and Portfolio Management?
	How to Read This Book
	Who Wrote This Book
	How To Cite This Book
	Acknowledgements
	Contents
	Part I: Introduction to Time Pacing and Agile Product and Portfolio Management
	Chapter 1 : Using Time Pacing to Manage Software Development
	1.1 Motivation
	1.2 Definition of time pacing
	1.3 Overview of time pacing on different time horizons
	1.3.1 Iteration
	1.3.2 Release project
	1.3.3 Heartbeat
	1.3.4 Long-term planning and portfolio management

	1.4 Implementing Time Pacing
	1.4.1 Organizational change
	1.4.2 Basic principles of software process improvement
	Commitment must start from the top
	Improvement requires practitioner buy-in
	SPI must have a champion
	Improvement requires investment
	First understand the current process
	Do not underestimate the importance of feedback for motivation
	Change must become a way of life
	Institutionalizing improvement requires periodic enforcement

	1.4.3 Finding a suitable pace
	1.4.4 Adopting a practice

	1.5 Company experiences
	1.5.1 Resulting processes
	1.5.2 Elapsed calendar time to get the process up-and-running
	1.5.3 Overall impressions of practitioners
	1.5.4 Success factors
	1.5.5 Factors impeding deployment

	Chapter 2 : Agile Product and Portfolio Management – Crucial for Competitiveness
	2.1 What is agile software development?
	2.2 What is product management?
	2.3 What is portfolio management?
	2.4 So, what is the problem?
	2.4.1 Most companies are hybrids
	2.4.2 The hybrid business model needs agile product and portfolio management
	2.4.3 Agile is disconnected from product & portfolio management

	2.5 How this book helps you

	Chapter 3 : The Gap in the Literature
	3.1 Software product management
	3.2 Key processes for agile product management: product and release planning
	3.2.1 Product planning a.k.a. roadmapping
	3.2.2 Release planning
	3.2.3 Software Product Management literature is Disconnected from Agile

	3.3 Portfolio management
	3.3.1 Agile vs. phase-gated product development models
	3.3.2 Levels of portfolio management
	3.3.3 Development portfolio management
	3.3.4 An example development portfolio

	Part II: Assessing the Health of Your Portfolio Management
	Chapter 4 : The Portfolio Management Health Barometer
	4.1 Examine your development portfolio management to find out where you stand
	4.2 Hereditary factors
	4.2.1 Leveraging customer-specific work for product development
	4.2.2 Multiple roles and responsibilities
	4.2.3 Dependency on short-term cash flow
	4.2.4 Clarity of strategy
	4.2.5 Appropriateness of incentive systems
	4.2.6 Appropriateness of organizational structure
	4.2.7 Health of individual activities' practices

	4.3 Lifestyle
	4.3.1 Development portfolio structure
	4.3.2 Development portfolio management process and practices

	4.4 Symptoms
	4.4.1 Excessive multitasking
	4.4.2 Firefighting
	4.4.3 Overload
	4.4.4 Ineffective decision-making
	4.4.5 Strategic alignment
	4.4.6 Slipping schedules
	4.4.7 Change in performance
	4.4.8 Perceived improvement needs

	Chapter 5 : Performing a Portfolio Management Health Barometer Study
	5.1 Preparing for a Health Barometer study round
	5.1.1 Selecting the participants
	5.1.2 Preparing and opening the survey
	5.1.3 Booking interview times and the dissemination time
	5.1.4 Preparing and sending instructions

	5.2 Gathering Health Barometer data
	5.2.1 Health Barometer questionnaire
	5.2.2 Health Barometer interviews

	5.3 Analyzing the health barometer data
	5.3.1 Preparing the questionnaire data
	5.3.2 Calculating and analyzing median and dispersion
	5.3.3 Comparing demographics
	5.3.4 Comparing Health Barometer rounds

	5.4 Analyzing the interviews
	5.5 Presenting the results
	5.5.1 Interpreting the numbers
	5.5.2 Visualizing the numbers
	5.5.3 Presenting the interview results
	5.5.4 Then what?

	Chapter 6 : The Health Barometer Tool
	6.1 Where to find the HB tool
	6.2 Administration tasks
	6.2.1 Creating a survey
	6.2.2 Maintaining the user base
	6.2.3 Extracting the data from the filled in questionnaire

	6.3 User tasks

	Appendix A : Instructions for the Health Barometer
	Appendix B : ATMAN Default Questionnaire in English
	Appendix C : ATMAN Default Questionnaire in Finnish
	Part III: Framework and Practices for Agile Product and Portfolio Management
	Chapter 7 : Agile Product Management
	7.1 What is release planning?
	7.2 What is roadmapping?
	7.3 Linking agile with long-term product and release planning
	7.3.1 Roadmapping, release planning and the product backlog
	7.3.2 Splitting work items and traceability
	7.3.3 From strategy to action and back again

	Chapter 8 : Portfolio Management and Agile Software Development
	8.1 Levels of portfolio management in an agile enterprise
	8.1.1 Setting investment levels for business areas
	8.1.2 Setting product and business goals
	8.1.3 Development portfolio resourcing
	8.1.4 Resolving mid-iteration emergencies
	8.1.5 Time management conducted by individuals
	8.1.6 Summary: portfolio management decisions on different levels

	8.2 Setting up agile-compatible portfolio management
	8.2.1 Step 1: Appoint who is responsible for what
	8.2.2 Step 2: Compile a list of all ongoing activities
	8.2.3 Step 3: Identify development activity types
	8.2.4 Step 4: Set target spending levels
	8.2.5 Step 5: Check incentive systems
	8.2.6 Step 6: Synchronize the portfolio
	8.2.7 Steps 7-8: Define enterprise cadence via portfolio control points
	8.2.8 Step 9: Curb excessive multitasking
	8.2.9 Step 10: Keep the enterprise cadence going!
	8.2.10 Setting up agile portfolio management in the literature

	Chapter 9 : Agile Development Portfolio Management
	9.1 Why have teams work concurrently on multiple projects?
	9.2 Controlled multi-tasking with floating backlogs
	9.3 Towards a feasible level of multiple concurrent assignments

	Chapter 10 : The Agile Requirements Refinery
	10.1 An Approach to Agile Software Product Management
	10.1.1 Background: Scrum development method
	10.1.2 Adapting Scrum to Agile SPM
	10.1.3 Managing the Backlog: The Requirements Refinery
	10.1.4 Timing of SPM sprints and Development sprints

	10.2 Agile SPM in Practice
	10.2.1 Standard PMSB items
	10.2.2 Roles and Tasks

	10.3 Lessons learned

	Chapter 11 : Scaling Up Agile Release Planning
	11.1 Introduction
	11.2 Background
	11.3 The joint release planning method
	11.3.1 Preparation
	11.3.2 Introduction and guidance
	11.3.3 Team planning breakouts
	11.3.4 Plan and risk review
	11.3.5 Monitoring and steering a release projects
	11.3.6 Continuous improvement

	11.4 Motivation
	11.4.1 Joint release planning is cost effective.
	11.4.2 The release planning method helps uncover and solve potential problems.
	11.4.3 Release planning mitigates problems resulting from component teams.

	Chapter 12 : Kanban for Software Development
	12.1 Definition of Kanban
	12.2 Kanban for software development
	12.3 Revisiting controlled multitasking with Kanban board

	Chapter 13 : Requirements for a Backlog Management Support Tool for Agile Product and Portfolio Management
	13.1 Scope of the discussion
	13.2 Product management
	13.2.1 Work item hierarchy and the backlog
	13.2.2 Roadmapping
	13.2.3 Release planning and monitoring

	13.3 Development portfolio management
	13.3.1 Portfolio overview
	13.3.2 Load management

	13.4 Daily work

	References

	Back cover

