A Revelatory Case Study on Scaling Agile Release Planning

Ville Heikkild, Kristian Rautiainen
School of Science and Technology
Aalto University
Helsinki, Finland
{firstname.lastname} @soberit.hut.fi

Abstract

A way to scale up agile release planning to meet the re-
quirements of multi-team agile development is a practice
called joint release planning. A software product company
piloted the joint release planning method. The aim of the
company was to improve coordination of work of multiple
agile development teams who develop a large legacy soft-
ware product. Another aim was to improve communication
between product management and development. We con-
ducted a case study to explore how the new release plan-
ning method was executed. We gathered data by observ-
ing two release planning events, observing event planning
meetings, and by conducting surveys. The events were at-
tended by approximately 140 stakeholders, including over
10 development teams, who spent several days in a com-
mon space. The participants liked the method and consid-
ered it efficient. This revelatory case study provides the first
detailed empirical description of this emerging method for
multi-team agile release planning.

1. Introduction

Planning the next product release is recognised to be one
of the most challenging parts of market-driven product de-
velopment [7] and a critical success factor in agile soft-
ware development projects [6]. The main goal of release
planning is to find an appropriate scope for a release while
taking into account budget, resource, technical, and other
constraints [7, 10].

Joint release planning has recently emerged in the in-
dustry for multi-team agile release planning for complex
systems [9]. Similarly to the single team agile release plan-
ning, the basic idea of the joint release planning method is to
gather all development teams and internal stakeholders in a
single space to perform release planning together. However,
the sheer number of people, requirements and dependencies
makes joint release planning difficult to perform efficiently.

Slinger Jansen

Department of Information and Computing Sciences

Utrecht University
Utrecht, Netherlands
S.Jansen@cs.uu.nl

Scaling the agile release planning up to a multi-team envi-
ronment where many teams are developing the same prod-
uct at the same time also introduces technical complexity.
The teams cannot plan releases in isolation, since require-
ments are selected from the same product backlog and co-
ordination of who-does-what is required. In an ideal agile
world all requirements are independent and can be imple-
mented in isolation. In the real world there are often ar-
chitectural complexities which result in a network of de-
pendencies between requirements [5]. This also affects the
implementation order of the requirements.

In this paper we report findings from a company that
adopted the joint release planning method. The introduced
release planning method was chosen in order to better co-
ordinate multiple agile teams simultaneously developing a
large legacy software product and to improve communica-
tion between product management and development. We
conducted a case study to explore how the joint release plan-
ning method was executed and accepted in the case organi-
zation. The joint release planning method in question or
any empirical evidence regarding it has not been described
in any scientific publication the authors know of. This case
study is a revelatory study [18] of the joint release planning
method. Our goal in this paper is to provide the first detailed
empirical account of the use of the method in a multi-team
development project in a software product company.

2. Related work

The majority of publications on software release plan-
ning focus on different kinds of mathematical models and
simulations designed to create most optimal or risk free
release plans when key parameters such as resource avail-
ability, value of requirements, development effort and risk
factors are known or can at least be estimated somewhat
accurately [16]. The model or simulation is then used to
generate one optimal release plan or a set of near-optimal
release plans. Such models are called strategic release plan-
ning models [13].

The validity of most of the strategic release planning
models in large scale industrial setting is questionable.
Svahnberg et al. [16] reviewed 22 strategic release plan-
ning models. Only four of those models had been validated
in large scale industrial use. In addition, the model-driven
approach to release planning has proven to be problem-
atic in practice, as many software companies do not have
a software development process which could be relied on
to record or generate required key parameters [4] and often
requirements change so frequently that any long term plan
quickly becomes obsolete [2]. Agile software development
methods claim to mitigate these issues by not creating de-
tailed long term plans and by adapting to changing require-
ments and priorities when needed [1].

Release planning in the agile software development con-
text has only been slightly addressed in scientific literature.
The little existing literature applies the plan-driven release
planning approach in agile software development context,
and usually without taking into account that following a
highly detailed release plan is not considered necessary or
even useful in agile software development (see e.g. [3, 8]).

The Scrum process model [14] defines the product owner
role, whose responsibility is managing the development of
a product. The agile release planning process in a single-
team single-product development scenario is simple. The
team and a product owner discuss the features that could
be included in the next release until an agreeable plan is
reached. The agreed-upon release plan then acts as a vision
for planning the individual iterations [14, 15, 12].

3. Research methodology

Release planning of a new version of a product that be-
longs to an existing product line was studied in this longi-
tudinal case study [18]. Two successive joint release plan-
ning events of the next product release were observed. The
first event was an initial joint release planning event (called
Event A hereafter) and the second was a release re-planning
event conducted eight weeks later (called Event B here-
after).

3.1. Case background

The agile software development process in the case com-
pany is based on Scrum [14]. Except for the parts that are
directly related to describing the release planning events,
a more precise description of the case company’s develop-
ment and product management model is out of the scope of
this paper. Also, a broader description of the case company
is omitted for confidentiality reasons.

In the case company’s release management model, re-
quirements management is based on a five-level hierarchy
introduced by Leffingwell [9]. Strategic themes denote
strategic focus areas for the company’s business. Within

these, epics form high-level functional goals for the prod-
uct(s). Epics can be split into features, which in turn can
be further split into user stories. Finally, user stories are
refined into development tasks, which denote what needs to
be done technically to implement a user story.

The plans for a release project can be seen on two time
horizons. Roadmaps, which contain epics and features,
show the tentative content of future releases. The next up-
coming release can be split into potentially shippable incre-
ments (PSIs), which are internal releases of the product con-
taining a subset of the intended features of the final, external
release of the product. The joint release planning concen-
trates on planning the next PSI of a product release. The
work during a PSI is done in iterations, which are planned
with detailed tasks. Together these levels of planning form
a rhythm for product development (aka cadence). This way
of planning follows the principle of planning long term with
abstract requirements and short term with detailed require-
ments [11, 17].

The release project in the case company was planned to
last for approximately six months and contain two PSIs.
The first PSI was planned to contain seven two-week itera-
tions. The main purpose of the first joint release planning
event (Event A) was the planning of the next PSI. Since the
joint release planning method was new to the case company
and there were major technical changes in the product archi-
tecture, a release re-planning event (Event B) was scheduled
to follow the fourth (hardening) iteration. Event B was con-
ducted as a normal joint release planning event where the
scope was the rest of the PSI and planning was done taking
into account the progress of the PSI so far. Figure 1 shows
the case company’s planned release project cadence.

The release project organization we studied in the case
company consists of over 10 development teams, a user ex-
perience team, a system team, and a product management
team including a release project manager. Each develop-
ment team consists of 6-8 developers and has a scrum mas-
ter and a product owner as additional members. However,
all teams do not have a dedicated scrum master or product
owner. The system team is a specialized group that is re-
sponsible for system level quality assurance, development
infrastructure and continuous improvement of development
practices. The product management team is responsible for
the operational management of the release project.

3.2. Data collection

Two researchers observed both release planning events.
The researchers wrote separate observation notes during the
events. Two voice recorders were used to record presenta-
tions and different discussions. Also, a survey was con-
ducted after each event. The description of the case in this
paper is based on those observations, notes, recordings, and
survey results. After Event A the researchers compiled a

Potentially shippable
increment 1 (PSI1)

Hardening
iteration

Iteration 1Y Iteration 2\ Iteration 3 Iteration 5\ Iteration 6

Release project

Hardening)
iteration

Potentially shippable
increment 2 (PSI2)

Ak PR T LeT TN eI PRI
s,/ Iterations, ,* ., ./ Hardening
v p-1 v lterationn'v iteration

\\ ’ \\ 4
. , . ,
Iteration 8'vTteration 9 4 4 «

PSI1 release
planning (Event A)

Re-planning
(Event B)

PSI2 release
planning

Public
release

Figure 1. Case company development cadence

report for the case company. The report contained observed
weaknesses in the process and improvement suggestions.
The researchers also participated in a preparatory meet-
ing for Event B, where the survey results, the report, and
changes to the planning process were discussed with release
project stakeholders.

A survey was conducted after Event A to gather opinions
on the planning method and planning success from the par-
ticipants. The survey contained questionnaire statements on
a six-point Likert-like scale with items “strongly disagree”
(1), “disagree” (2), slightly disagree” (3), “slightly agree”
(4), “agree” (5) and “strongly agree” (6). In addition, the
item “not applicable / cannot say” was provided. The sur-
vey also contained free-text fields for textual feedback, a
question to grade the event on a scale from one to six and
questions for gathering demographic information.

A second survey was conducted after Event B. It con-
tained a subset of statements from the first questionnaire and
additional statements regarding the new practices taken into
use in Event B. All participants of the events were invited to
answer the questionnaires. The Event A survey was sent to
140 participants and answered by 33 respondents, and the
Event B survey was sent to 136 participants and answered
by 26 respondents. The questionnaires were conducted with
an online survey software and they were completely anony-
mous to increase the validity of the results.

4. Results
4.1. Overview of the joint release planning events

During both events, most members of all development
teams were in present. Three of the development teams
were offshored and had only three representatives present
at the release planning sessions. In addition to the devel-
opment teams, a user experience team representative, the
system team, several representatives of the product man-
agement team and several other internal stakeholders with
dependencies to the product were present in the events. The
total number of participants was approximately 140 in both
events.

The release planning facility had a separate area for
the different stakeholder presentations and for the teams to
present their plans. Team breakout areas were separated by

movable walls which acted as planning boards and damp-
ened noise, but also provided easy access between the dif-
ferent areas. In Event B an area was reserved for product
managers, architects, and other internal stakeholders where
they could be found when they were not with a team during
team breakout sessions.

A facilitator had an important role in the joint release
planning events. The facilitator was responsible for making
sure that the event was proceeding as planned and within
schedule, and solving conflicts and impediments that rose
during the events. A process consultant facilitated Event A
and the preceding training day, and acted as an advisor for
the project manager who facilitated Event B.

Because the joint release planning method was previ-
ously unfamiliar to the case company, a training session was
conducted a day before Event A started. During the training
session the facilitator gave presentations on general princi-
ples of agile development and on how to perform the release
planning.

The joint release planning events in the case company
followed the general structure presented in Figure 2. The
events started with a presentation of the overview of the
event. In Event B it was followed by a role-specific project
retrospective. In Event A the project retrospective was not
held, since the project had not yet started. Different stake-
holders then presented their visions for the product. Next,
instructions on how to perform the planning were given
by the facilitator. After the presentations the development
teams started planning the release in team breakout ses-
sions. During Event A the breakout sessions ended in col-
lective status presentations before lunch and at the end of
the day. During Event B there were hourly status checks in
addition to end-of-the-day status presentations.

At the end of the events, the teams’ plans were collec-
tively reviewed and open risks were processed. As a final
step, an event retrospective was held to improve the plan-
ning method. Each step of the event structure is described
in more detail in the following sections.

The case company’s planning events span over several
days. Event A was originally scheduled to take two days
with one day in reserve in case the planning could not be
completed in two days. After the first actual planning day
the facilitator and the project manager came to the conclu-

| Start

Team
breakout
planning

sessions End

|Introduction |Project retrospective |Visi0n presentations| lnstructions|\Status check | Plan review| Planning retrospective|

Figure 2. A generic timeline of the joint sprint planning events (not in scale)

sion that the planning needed to be extended into the third
day. Event B was originally scheduled to take one and a half
days with the rest of the second day in reserve. However,
the project manager decided to extend Event B to take the
whole second day before the event had started.

4.2. Presentations and project retrospective

Event A began with an introductory overview of the
release project. The topics covered were project back-
ground, product positioning in the market, target cus-
tomers, overview of the competition, project organization
and project cadence. In addition an overview of the event
schedule was given. In Event B, the presentation was
shorter and contained only changes to event practices and
schedule.

In Event A, the introduction was followed by the first vi-
sion presentation. It was given by the head of product man-
agement. He presented the product’s vision and business
themes and the epics for the whole release project as well
as the ones intended for PSI1. Several representatives from
different specialized teams and other internal stakeholders
gave their own vision presentations: a product architecture
manager, a user experience team representative, a research
department representative and a system team representative.
Since the development of the new version of the product
was initiated in Event A, it also acted as a project kickoff.
Handouts of each presentation and additional in-depth in-
formation on the topics were distributed to all participants.

In Event B, the introduction was followed by a release
project retrospective. The purpose of the release project
retrospective was to find and solve impediments and learn
from the good and bad practices observed during the release
project so far. The retrospective was performed in role-
based teams. The different teams were software engineers,
test engineers, architects, scrum masters, and product man-
agement. Each team had a named facilitator selected from
the team. The teams were free to conduct the retrospec-
tive as they preferred, but they were requested to produce a
briefing of corrective actions to present for the other teams
and describe one or two things that went well or did not go
well since the beginning of the release project.

The retrospective was followed by a presentation of the
requirements for the rest of PSI1. One notable change from
Event A was that product managers had prioritized features
and created preliminary team assignments for them. Next,
a representative from each development team gave a short

presentation on the team’s progress in the release project so
far. There was no mandatory format to show the progress
information, and nearly all presentations presented the in-
formation in a different way. The development team pre-
sentations were followed by a presentation on overall status
of the project and by a short system architecture status up-
date presentation.

4.3. Instructions

Event A release planning instructions contained several
practical issues: the different colors of sticky notes to use
for recording user stories, dependencies, objectives, and
risks, as well as recommendations for writing requirements
as user stories and to split user stories if they are too large
to fit in an iteration. The user stories were recommended
to contain the user or customer of the story, what he or she
needs to accomplish, and motivation for the action. The
teams were instructed to write high level objectives for the
whole PSI based on the user stories included in it. At a
philosophical level, the teams were instructed to plan ac-
cording to the simplest thing that would probably work in
the next product release. The teams were also instructed to
start the breakout sessions by discussing the product vision
and epics assigned to the team with product owners. Shorter
instructions with similar contents were given in Event B.

4.4. Team breakouts

In general, the way teams worked during most breakout
sessions in both events was quite uniform. They sat or stood
around a table in their designated area and discussed how a
feature should be split. Most of the teams did not write user
stories from a user’s point of view. Instead they split fea-
tures into large technical tasks. During Event A they were
repeatedly instructed by the facilitator to write user stories,
but we observed no changes. User stories were not usu-
ally estimated immediately after creation, and scheduling
was done by first putting stories in implementation order
and then estimating and dividing them into iterations based
on the team’s projected velocity. There was one breakout
session during day one of Event A, two breakout sessions
during day two and one breakout session during day three.
In Event B, there was one breakout session during day one
and two breakout sessions during day two.

The first team breakout session of Event A started in
the afternoon of the first day. Everything was new for the

teams, from the planning process itself to the new architec-
ture planned for the product. The planning breakout ses-
sion appeared disorganized and non-productive. The teams
seemed to have problems to understand which features they
were supposed to plan for. Product management together
with architects decided to prepare pre-assignments of fea-
tures for the teams for the second day of Event A. The
pre-assignments were given in the beginning of the second
planning day of Event A and they seemed to help most of
the teams to get the planning on track. Based on our ob-
servations, they seemed to also work fairly well in Event
B. However, based on the free-text feedback from the ques-
tionnaires, the teams would have preferred to receive the in-
depth planning material (including feature pre-assignments)
well in advance.

The teams did not have clear priorities for the features in
Event A. The problem became evident especially for one
team («), who started planning one feature the first day
of Event A. The feature was then changed to another fea-
ture the second day, until product management noticed that
one very important feature had not been included in any
teams’ planning. This feature was then assigned to Team
« to be planned during the third day and all previous plans
Team « had prepared were discarded. In Event B, materi-
als included a priority ordered list of features to be planned,
which seemed to alleviate the problem of changing priori-
ties.

In the beginning of the breakout sessions in Event A the
teams did not immediately start discussing with each other,
even when they noticed dependencies between teams. We
discussed this observation with the facilitator. The facilita-
tor had instructed that the teams should write the dependen-
cies on sticky notes and they would then be discussed in the
status checks. However, his original intent was that teams
would only write dependencies that could not be immedi-
ately resolved in the team or between the participants. The
following day the instructions were made clearer, and we
observed much more interaction between the teams. This
was considered one of the best things about the joint release
planning in Event A questionnaire free-text feedback. In
Event B, the interaction started immediately from the first
day and continued throughout the whole event.

In Event A, the teams would have needed more sup-
port and guidance from all the stakeholders than was avail-
able. More preparatory work was done by the architects for
Event B. They had prepared views of the overall architec-
ture, which were actively used by the teams for planning
during Event B. Also, product management had a so-called
base station where the representatives could be easily found
if they were not working with a team. One team added a
new type of sticky note called “help wanted” to their wall
to signal their needs to passing stakeholders and to act as
reminders in the status checks.

In an Event B preparatory meeting the case company’s
product management representatives reported that it was
difficult to keep track on who was planning what during
the breakout sessions, and whether everything was getting
proper attention. To allievate this in Event B, product man-
agement had given unique identifiers to the features and
brought less features to the planning. The teams were in-
structed to always make a reference from the stories they
created to the associated features, both on the sticky notes
and in the status checks. No problems regarding this prac-
tice were neither reported in the feedback questionnaire nor
observed during Event B.

4.5. Status checks

The purpose of status checks was to coordinate the plan-
ning work of the teams and to make the progress of plan-
ning visible to stakeholders. In Event A each team had a 4-
minute time box in which they shortly described what was
on their wall and how their plan contributed to the overall
goals (features) of the PSI. The short time box was enforced
to limit the length of the status checks which, nevertheless,
took more than an hour each. The walls had wheels and
they were rolled in front of the event participants who were
gathered in the presentation area for the status check. The
participants were encouraged to ask questions and comment
the presentations. There was one status check presentation
at the end of the first day and two status check presentations
during the second day of Event A.

According to the questionnaire free-text feedback, the
feelings about frequent status checks during Event A were
mixed. On the one hand there was positive feedback about
being able to see and listen to what the other teams had
planned. But on the other hand some stated that planning
was interrupted too often by the status checks. Based on our
observations, some problems were uncovered and resolved
too late in Event A because status checks were too infre-
quent. This resulted in seemingly unnecessary re-planning
for some teams.

In order to limit the disturbance to the teams, a scrum-
of-scrums practice was introduced in Event B. In scrum-
of-scrums, one representative from each team, typically the
scrum master, presented the status of the team’s planning
to the other teams’ representatives. Meanwhile, the rest of
the team members kept on planning. Scrum-of-scrums was
conducted once an hour during the team breakout sessions
and seemed to work well. According to the questionnaire
conducted after Event B, it was also well accepted: state-
ment 6 (“Scrum of Scrums status check was a useful prac-
tice”) (see Table 2) got mode answer of “agree” and median
of 5.0.

The information gained from status check presentations
and scrum-of-scrums was used in coordinating the remain-
der of the planning events. After each status check the sur-

Table 1. Ratings of the planning events

Event
Rating A (m=33) B(n=26)
6 (excellent) | 5 1
5 17 10
4 9 13
3 1 2
2 0 0
1 (poor) 1 0
Median 5.0 4.0

faced impediments and dependencies were discussed in a
group consisting of the facilitator of the event and represen-
tatives from different stakeholder groups. Whatever solu-
tions for resolving the impediments and dependencies were
figured out, they were either immediately communicated
to the affected parties, or communicated in the following
status check, depending on the urgency. Halfway through
Event B one important problem was uncovered, as a rep-
resentative of one team questioned the ability of all teams
to actually deliver what they had planned. This observation
led to a joint decision by product management and scrum
masters to extend PSI1 with one iteration.

4.6. Final plan review and planning retrospective

The final plan reviews of both events were conducted in
a similar fashion as collective status check presentations.
Each team had a 6 minute time box to present the plan
and objectives they had for PSI1. Risks written on sticky
notes during the team breakout sessions were annotated to
the team and gathered on a wall. Each risk was assigned to a
person or team who is responsible for mitigating it, accepted
as something that might happen but requires no additional
preparation, or had already been mitigated by the team who
recorded it and no further action was required.

A vote of confidence in the PSI1 plan was done in two
parts. First, all developers voted on how confident they were
in their team’s plan and then everyone present voted for con-
fidence on the whole plan. Both votes showed high overall
confidence level.

In the Event A retrospective everyone was asked to voice
their opinions on what went well and what should be im-
proved, and the results were recorded. The results were later
on recorded electronically so they could be easily accessed
in further event planning. A planning retrospective was not
conducted in Event B because the time allocated for it was
needed to complete the planning.

4.7. Opinions toward the created plans and the
planning method

According to the survey answers, the opinions on plan-
ning method and output are mostly positive. Table 1 shows

results of rating the planning events from the surveys. The
question was “Overall, how would you rate the whole re-
lease planning/re-planning event? (1 = Poor, 6 = Excel-
lent)”. Event A had mode rating of 5 and median of 5.0,
while Event B had mode rating of 4 and median of 4.0.
While Event B got one step lower rating than Event A, both
sessions got positive ratings overall.

Table 2 shows the results from the questionnaire state-
ments on opinions toward the planning method and plan-
ning. The Value-columns show the number of answers on
each step of the scale, which ranged from 6 (“Strongly
agree”) to 1 (“Strongly disagree”). The n-column shows
the number of answers for each statement. Statements one,
two, and three gathered confidence ratings of the output of
Event A. The mode answer is “Agree” and median value 5.0
for all three statements, which indicates good confidence
toward the planning output. Statements four and five gath-
ered attitudes toward the method itself after Event A. Both
statements had mode answer of “Agree” and median value
5.0, which indicates that the method was well liked. Figure
3 shows the results from the questionnaire statements on
opinions toward the guidance the developers received from
the stakeholders in Event A (a) and Event B (b). The ques-
tionnaire contained one statement in the form “During the
team breakout our team got all needed guidance from stake-
holder group X” for each internal stakeholder group (X).
The “product management and/or product owner” stake-
holder group was split into two groups in the Event B ques-
tionnaire.

5. Discussion
5.1. Lessons learned

5.1.1. Features should be tentatively pre-assigned. The
first breakout during Event A was disorganized and non-
productive. The pre-assignments helped most of the teams
to get the planning on track. Based on our observations, this
seems to be a practical limit of self-organization in this type
of release planning, as it is not practical to have all teams
discuss the feature assignments together.

5.1.2. Features should be prioritized in advance. Dur-
ing Event A clear priorities for features were missing. The
problem became evident especially for Team o whose fea-
ture assignments were changed three times during Event A.
Features should be prioritized in advance. This was done
in Event B, where materials included a rank ordered list of
features to be planned, and we observed that it increased the
efficiency of the planning.

5.1.3. Stakeholders should be available at the planning
event and prepare materials in advance. Product man-
agement representatives and system architects were a bot-
tleneck for planning in Event A (see Figure 3(a)). They

Table 2. Opininons on the method and output

Value

Statement 6 5 4 3 2 1|n

1. “T have a clear vision of what I am going to do for the next 90 days” 8 2 7 0 1 129
2. “My team’s plan for creating the next Potentially Shippable Increment is realistic” | 6 4 4 2 0 1|27
3. “I believe this project will create a successful solution”® 5 5 10 1 1 1|33
4. “I like this method of release planning” 11 12 3 4 0 1|31
5. “This method of release planning is effective” 8 5 4 2 1 1|31
6. “Scrum of Scrums status check was a useful practice”® 5 7 5 2 2 0|21

a Lo . .
Solution is a term used in the case company for commercial software products.

could not help all the teams at the same time with the new
architecture and features. The improved preparatory work
and presence in Event B helped and the teams got better
support (see Figure 3(b)). However, the teams would have
still preferred to have the materials in advance.

5.1.4. A combination of infrequent thorough status
checks and frequent short status checks should be used.
Based on our observations, status checks were too infre-
quent during Event A to uncover important dependencies
and impediments. On the other hand, many participants
thought that the status check presentations took too long
and were not useful. The combination of infrequent long
status checks to give everyone an overview of the plan and
short frequent status checks to solve impediments and de-
pendencies alleviates both problems. In addition, scrum-of-
scrums -style status checks do not interrupt the planning of
the whole team.

5.1.5. Dependencies should be resolved immediately
when possible. In the beginning of Event A the teams
did not immediately start discussing dependencies between

b From Event B questionnaire.

teams after the teams were instructed to solve dependencies
immediately and only defer problems they could not solve
to the next status check.

5.1.6. The number of included features should be lim-
ited and the included features should be traced. The case
company’s product management representatives had diffi-
culties in keeping track of the planning during breakout ses-
sions. One reason for this was that many non-important fea-
tures were included in the list of features, even though they
had no chance to be included in PSI1. Another reason was
that the features did not have unique identifiers so that the
teams could have easily associated their stories to related
features. In Event B unique identifiers were given to fea-
tures and references from stories to the associated features
were made. According to our observations and feedback
from the questionnaire, these practices helped product man-
agement to trace features’ planning status.

5.1.7. The release planning method helps uncover po-
tential problems for the whole project. In Event A the
teams filled their iterations with stories based on the teams’

teams. We observed much more interaction between the projected velocity without accounting for the uncertainty in
100% - 100% -
90% - 90% -
80% - 80% |
70% - 70% -
60% - s | 60% - s |
trongly agree trongly agree
50% B Agree 30% 7 B Agree
40% - m Slightly agree 40% B Slightly agree
30% | B Slightly disagree 30% - B Slightly disagree
20% ODisagree 20% - ODisagree
0% | S O Strongly disagree 10% | O Strongly disagree
0% 0% T T T |
product architect user scrum master product productowner architect scrummaster
management experience and/or management and/or
and/or product expert facilitator facilitator
owner
(a) (b)

Figure 3. Results of the statement “During the team breakout our team got all needed guidance from
stakeholder group X” after Event A (a) and Event B (b)

their effort estimations. Many details of the new architec-
ture were unknown and the complexity of the whole sys-
tem was high, which resulted in effort estimates that were
too optimistic. This problem was uncovered in a scrum-of-
scrums during Event B and a solution was created. This can
be seen as a strength of the joint release planning method,
which allowed a participant to uncover a potential problem
for the whole project and made it possible to take corrective
action immediately.

5.2. Limitations

Three types of triangulation were utilized to increase
the construct validity of the results [18]. The observa-
tions were carried out by two researchers. This paper was
also reviewed by a case company representative who par-
ticipated in both release planning events (investigator tri-
angulation). The researchers wrote separate observation
notes which were compared and consolidated, two voice
recorders were used to record the event, and the recordings
were used to validate the observation notes during data anal-
ysis (data triangulation). In addition to passively observing
the events, the observations and improvement suggestions
created based on the release planning event were reviewed
and discussed together with case company representatives
(methodological triangulation). The fourth type of triangu-
lation, theoretical triangulation, is of no importance to this
paper, as the case is not explanatory nor builds a theory.
This paper only describes a single revelatory case study. It
should not be read as a generalization of the method, but as
a description of an interesting phenomenon.

6. Conclusions and future work

The main contribution of this paper is a revelatory case
study report of two joint release planning events in a
Finnish software product company. In addition, we describe
improvements made between the two events and present
lessons learned. The description of the two joint release
planning events can be utilized by other companies to help
them set up their own joint release planning events. Com-
panies already utilizing a similar method can get ideas on
what works and what does not work and improve their re-
lease planning events.

We believe that the joint release planning method is a sig-
nificant advancement in the continuing effort in the industry
and the research community to find ways to scale agile soft-
ware development methods to multi-team software devel-
opment contexts. We continue to study the release planning
events in the case company. In addition, we aspire to study
additional software product companies which use similar
methods for release planning to build a generic model of
the joint release planning method. We also encourage other
researchers to study and report any instances of similar re-
search planning methods they encounter.

References

(1]

(2]
(3]

(4]
(3]

(6]

(7]

(8]
(9]

(10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

P. Abrahamsson. New directions on agile methods: A com-
parative analysis. In Proc. International Conference on Soft-
ware Engineering (ICSE 2003), 2003.

B. W. Boehm. Requirements that handle ikiwisi, cots, and
rapid change. Computer, 33(7):99-102, 2000.

B. W. Boehm and R. Turner. Balancing agility and disci-
pline: a guide for the perplexed. Addison-Wesley, Boston,
MA, 2003.

L. Cao and B. Ramesh. Agile requirements engineering
practices: An empirical study. Software, 25(1):60-67, 2008.
P. Carlshamre. Release planning in market-driven software
product development: Provoking an understanding. Re-
quirements Engineering, 7(3):139-151, 2002.

T. Chow and D.-B. Cao. A survey study of critical success
factors in agile software projects. Journal of Systems and
Software,, 81(6):961-971, 2008.

N. D. Fogelstrom, T. Gorschek, M. Svahnberg, and P. Ols-
son. The impact of agile principles on market-driven soft-
ware product development. Journal of Software Mainte-
nance and Evolution: Research and Practice, 22(1):53-80,
2010.

J. A. Highsmith. Agile software development ecosystems.
Addison-Wesley, Boston, MA, 2002.

D. Leffingwell. Scaling Software Agility: Best Practices for
Large Enterprises. Addison-Wesley Professional, Reading,
MA, 2007.

A. Ngo-The and G. Ruhe. A systematic approach for solv-
ing the wicked problem of software release planning. Soft
Computing - A Fusion of Foundations, Methodologies and
Applications, 12(1):95-108, 2008.

K. Rautiainen, C. Lassenius, and R. Sulonen. 4cc: A frame-
work for managing software product development. EMJ -
Engineering Management Journal, 14(2):27-32, 2002.

J. Rothman. Manage it!: your guide to modern, pragmatic
project management. The Pragmatic Bookshelf, Raleigh,
NC, 2007.

G. Ruhe and J. Momoh. Strategic release planning and
evaluation of operational feasibility. In Proc. 38th An-
nual Hawaii International Conference on System Sciences
(HICSS °05), 2005.

K. Schwaber and M. Beedle. Agile software development
with Scrum. Prentice-Hall, Upper Saddle River, NJ, 2002.
A. Shalloway, G. Beaver, and J. Trott. Lean-agile software
development: achieving enterprise agility. Addison-Wesley,
Upper Saddle River, NJ, 2009.

M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, S. B.
Saleem, and M. U. Shafique. A systematic review on strate-
gic release planning models. Information and Software
Technology, 52(3):237-248, 2010.

K. Vlaanderen, S. Jansen, and S. Brinkkemper. The agile
requirements refinery: applying scrum principles to software
product management. In Proc. 3rd International Workshop
on Software Product Management, 2009.

R. K. Yin. Case study research: design and methods. SAGE
Publications, Thousand Oaks, CA, 1994.

