
 

 

 

 

 

 

 

 

Automatic Task Update in Agilefant 

 

 

 

 

 

 

 

 

 

 

 

Marko Klemetti 

T-86.5150 Special Assignment on Enterprise Information Systems P 

Mar 23, 2010



 

  2 

Table of Contents 

 

1	
   Introduction.................................................................................................. 3	
  
1.1	
   Research Framework .........................................................................................3	
  
1.2	
   Objectives ...........................................................................................................4	
  
1.3	
   Scope..................................................................................................................4	
  
1.4	
   Structure of this Work .........................................................................................4	
  

2	
   Background.................................................................................................. 5	
  
2.1	
   Agile Software Development ..............................................................................5	
  
2.2	
   User Stories ........................................................................................................6	
  
2.3	
   Test-driven Development....................................................................................7	
  
2.4	
   Definition of Done ...............................................................................................8	
  
2.5	
   Continuous Integration........................................................................................8	
  
2.6	
   Acceptance Testing ..........................................................................................11	
  

3	
   Agile Development Workflow................................................................... 12	
  
3.1	
   Workflow using a Scrum Task Board................................................................12	
  
3.2	
   Workflow using an Electronic Project Management Tool .................................13	
  

4	
   Task Updating Models .............................................................................. 16	
  
4.1	
   The Example Application ..................................................................................16	
  
4.2	
   Developing a Task Manually.............................................................................17	
  
4.3	
   Developing a Task using Eclipse and Mylyn ....................................................19	
  
4.4	
   Developing a Task using continuous integration ..............................................22	
  
Developing a Task using Eclipse, Mylyn and continuous integration ........................26	
  

5	
   Model Evaluation....................................................................................... 27	
  
5.1	
   Small Scale Build Environments .......................................................................27	
  
5.2	
   Large Scale Build Environments.......................................................................28	
  

6	
   Tool Development ..................................................................................... 29	
  
6.1	
   Hudson CI Plugin for Agilefant..........................................................................29	
  
6.2	
   Mylyn Connector for Agilefant...........................................................................29	
  

7	
   Conclusions............................................................................................... 30	
  

8	
   Discussion and Future Work.................................................................... 31	
  
8.1	
   Reliability and Validity of the Research ............................................................31	
  
8.2	
   Applicability of the Results................................................................................31	
  
8.3	
   Suggestions for Further Research....................................................................31	
  

 

 



 

  3 

 

1 Introduction 

The past few years have been a revolution to the mainstream of software development when 
even the largest IT companies have realized the benefits of agile development. Responsibility 
and code ownership has been handed back to the developers and teams from oppressive 
management and middle-layer of the companies’ organizational structure. Software is 
developed in short iterations instead of long development steps, and the customer 
representatives have become a vital part of successful projects. 

At the same time the development environments and programming languages have evolved so 
that the initial learning curve and code overhead has almost disappeared. The developers can 
concentrate on the program logic instead of the overhead of low-level programming languages 
like memory management. Code level testing has become a standard for almost all of the 
programming languages and suddenly the developers can become testers at the same time they 
are writing new code. The unit testing and iterative development enables better documentation 
and structuring of the code, further making it possible for teams to develop features instead of 
owning separate software components. 

Since the automatic building and integrating has become popular in software development, it is 
only natural to enable a flexible way of updating task statuses using automation. Instead of 
manually verifying that developed features actually work, the team could create a build 
configuration, which verifies both the already developed features and the new features work as 
planned. 

The purpose of this study is to define different workflow patterns in individual developer’s 
software development practices, and to find the most suitable combination of tools for the 
development work and automatic feature verification. This work first clarifies the roles and 
expected behaviors for team members, and then identifies the automatic and manual steps in 
software development. This work presents four different workflow models for an individual 
developer, after which the models are discussed and evaluated. 

1.1 Research Framework 

This study is based on the experiences from different customer organizations that have all 
successfully adopted agile development practices and have started using continuous integration 
as a part of their development work. 

 

 



 

  4 

1.2 Objectives 

There are 4 objectives in this study: 

1. How the development workflow enables automatic task update?  
The objective is to define different development workflows and come up with a model 
how the workflows could include automatic update of tasks in a backlog management 
tool. 

2. How the tasks could be automatically updated?  
The objective is to define the technical requirements for the automatic task updates. 

3. When is the automatic task update feasible?  
The objective is to define when the automatic task update is feasible and when it should 
not be implemented as a part of the developer’s workflow. 

4. How to implement the automatic task update functionalities in Agilefant? 
The objective is to define the requirements for developing the automatic task update 
functionality to the Agilefant tool. 

1.3 Scope 

The scope of this study is limited to presenting the workflow models using the tools that are 
currently available, and discussing the possible extensions. The theory behind these methods is 
presented where it is necessary for the reader to understand the text without additional material. 

1.4 Structure of this Work 

The content of this work is as follows: 

Chapter 1 has presented the introduction to this work. 

Chapter 2 briefly discusses a background theory as a bibliographical review. 

Chapter 3 presents the development workflow for a single developer using a task board or 
electronic backlog management tool (Agilefant). 

Chapter 4 presents the example application, which is then implemented using four different 
development workflows. 

Chapter 5 evaluates the models presented in chapter 4. 

Chapter 6 presents the different options for developing the tool connectors to Agilefant. 

Chapter 7 discusses the conclusions of this research work. 

Chapter 8 presents the validity of this study and discusses ideas for future research. 

Appendix I contains the instructions to implementing the presented workflows in chapter 4. 

Appendix II contains the code examples that have been left out of the work content. 



 

  5 

2 Background 

2.1 Agile Software Development 

The agile software development model enables adaptive and inspective software development 
by breaking the development into small increments. At the end of each increment the results are 
presented to the stakeholders and further steps are decided. This way the development can adapt 
to changes quickly and possible long-term risks are minimized. Typically the iterations last from 
one week to four weeks. The iterative development practice has been found effective by many 
different agile trailblazers from the Lean Development [1], Extreme Programming [2] and 
traditional agile Development [3]. 

The other important feature of agile is teamwork. The development is divided between cross-
functional teams, which are completely self-organizing. The team members finish their tasks 
from design to acceptance testing together, sharing the responsibility of getting the requirements 
done before the end of iteration [4] and [5]. 

2.1.1 Scrum 

One of the most popular iterative development frameworks that follow agile principles is 
Scrum. It defines a set of practices and predefined roles that enable the self-organizing and 
committed work by teams and their members. While the needs, ideas and influences of all 
stakeholders are taken into account, the team is isolated so that the stakeholders interfere with 
the team’s work [3]. 

In the scrum process the software development is divided into sprints, a fixed length period 
typically from two to four weeks. The sprint framework is illustrated in Figure 1. During the 
sprint, the team creates a working increment of the software. The working increment is often 
referred to as potentially shippable product, to emphasize the fact that the features should be 
completely finished [5]. 



 

  6 

 

Figure 2-1: The Cycle of one Sprint [6] 

The sprint starts with a sprint planning session, where the tasks for the next sprint will be 
selected together with the customer representative. The team is then isolated for the rest of the 
sprint so that they can make their best effort to change the requirements into a working 
increment of the software. 

During the sprint the team meets each other officially once a day in a meeting called daily 
scrum. In the daily scrum, each of the developers answer to three questions: what have you done 
since yesterday, what are you planning to do today and what obstacles do you have. The 
meeting starts at the same time every day, can last maximum of fifteen minutes and only the 
team members are allowed to speak [3]. 

2.2 User Stories 

User stories define system requirements in one or two sentences using the common language of 
the user. The representation of a user story is usually a hand-written paper note and the purpose 
of a user story is to connect the actual users of the system and the developer who implement the 
features that enable the actual execution of the user story. 

In her article Rachel Davies states “user stories present customer requirements rather than 
document them” [7]. According to Mike Cohn’s description, user story describes function that 
is valuable to user, purchaser, system or software. The users stories consist of three parts [6]: 

1. Written story used for planning and as a reminder 
2. Conversations about the story that serve to flesh out the details of the story 
3. Tests that convey and document details and that can be used to determine when a story 

is complete 

The paper note, i.e. the first step contains the condensed text of the story, while the story is 
worked out in the second step and recorded in the third [6]. 

Sprint 
Backlog

Working 
Increment

Sprint

24h



 

  7 

Mike Cohn suggests that the users stories should be formed as sentences in the following form 
“As a <type of user>, I want <some goal> so that <some reason>” [8]. One option for the user 
story of a thirsty customer presented in the previous chapter is shown below. 

As a customer 
I want to buy a cold beverage using coins 
So that I could quench my thirst 

2.3 Test-driven Development 

“Code without tests is bad code. It doesn’t matter how well written it is; it doesn’t 
matter how pretty or object-oriented or well-encapsulated it is. With tests, we can 
change the behavior of our code quickly and verifiably. Without them, we really 
don’t know if our code is getting better or worse.” 
  (Feathers, 2005) 

Test-Driven Development is a practice first presented by Kent Beck (2003). The motivation for 
developing this practice was based on wanting to create “clean code that works”. He presented 
the practice as a method of driving the development with automated tests [2]. 

2.3.1 Red – Green – Refactor 

These two rules imply that the developer must be able to receive rapid feedback from the 
running development environment. Kent Beck then derived these two rules into industrially 
well-known TDD mantra “Red – Green – Refactor”:  
 

• Red: Write a little test that doesn't work, and perhaps doesn't even compile at first. 
• Green: Make the test pass with as little coding as possible. 
• Refactor: Eliminate all of the duplication created in merely getting the test to work. 

 

Figure 2-2: Illustration of the Red-Green-Refactor Development Cycle 

RED GREEN

REFACTOR



 

  8 

2.3.2 Test-driven Development Cycle 

The test-driven development follows the sequence of development steps, which are 
continuously repeated: 

1. Add a test 
2. Run all tests and see the new one fail 
3. Make a little change 
4. Run all tests and see them all succeed 
5. Refactor to remove duplication 

2.4 Definition of Done 

Each agile team should have their own set of Definition of Dones [9] for each step of their 
development process. Definition of Done is a set of rules which explicitly states what needs to 
happen for an item to be called Done. There is usually different set of rules for a task to be 
called done, and for a feature (or a story) to be done, and the definition of done for a feature (or 
story) might require that all of the tasks are done according to their Definition of Done. 

For a feature or a story the Definition of Done could be for example [10]: 

• All tasks of a story should have at least one automated acceptance test. 

• The story should have working code supported by unit tests that provide around 
60 – 70 percent coverage. 

• The story should have well defined acceptance criteria. 

• Code must be completely checked in to the source control system and the build 
should pass with all the automated tests running. 

2.5 Continuous Integration 

Martin Fowler presented the idea of continuous integration already in 2000. He defined 
continuous integration as a practice where members of the team integrate their code frequently 
and each integration is verified by an automatic build to detect errors as quickly as possible 
[11]. 

The continuous integration Cycle is presented in Figure 2. 



 

  9 

 

Figure 2-3: The Continuous Integration Cycle 

Paul Duvall describes continuous integration by defining the following steps that must be 
followed [12]: 

• All developers run private builds on their own workstations before committing their 
code to the version control repository to ensure that their changes don’t break the 
integration build. 

• Developers commit their code to a version control repository at least once a day. 
• Integration builds occur several times a day on a separate build machine. 
• 100% of tests must pass for every build. 
• A product is generated (e.g., WAR, assembly, executable, etc.) that can be functionally 

tested. 
• Fixing broken builds is of the highest priority. 
• Some developers review reports generated by the build, such as coding standards and 

dependency analysis reports, to seek areas for improvement. 

2.5.1 Benefits of Continuous Integration 

In the authors experience the best benefits of this practice are: 

• Shorter Feedback Time 
Through the automated framework every stakeholder of the project can know the latest 
status of the project. Short feedback also shortens the time between when the defect is 
introduced and when it’s fixed [12]. 

• Better Visibility  
Since the continuous integration reports can be seen online with a browser, everybody 
can go and see the current status and reports of the project.  

• Remove Repetitive Manual Processes  
In order to do continuous integration, the build process has to be automated. This way 
the often manual build processes are automated. 



 

  10 

• Developers have greater confidence  
When the developers know that there is an automatic process working as a safety net, it 
is easier to take risks and try out things that would be avoided, often causing a quality 
loss. 

Needless to say that these benefits all cause overall quality improvement of both the software 
and the development. 

2.5.2 Hudson in Action 

In this work the Hudson tool is used as the continuous integration server, because it’s an open 
source tool and the community is the most active at the time of writing. The Hudson Project 
Dashboard view is shown in Figure 2-4. The dashboard shows the status and latest information 
of all projects (content area), status of the currently building projects (lower left) and the 
configuration options (left menu). 

 

 

Figure 2-4: The Hudson Dashboard 

For a single project the Hudson shows latest results and all the analysis that has been connected 
to the project. For the quitter-example –project the Figure 2-5 shows latest statistics, test result 
trend and test coverage. 



 

  11 

 

Figure 2-5: Project main view 

2.6 Acceptance Testing 

The acceptance tests are not the same as unit tests, since their purpose is to make sure that the 
functionality works from the user’s point of view, hence the name. The Acceptance tests should 
be automatic, even though sometimes the acceptance tests are executed manually. 

Often the acceptance tests are developed with another test framework like Robot [34], FIT [35] 
or Cucumber [36], since the test cases are more extensive and treat the tested system as a black 
box [13]. They could e.g. do complete operations like adding items to database through a user 
interface or test a WebService –inteface through a running test server. The acceptance tests take 
longer time to run than unit tests and they are usually not run as a part of the developer’s private 
build. 

The acceptance tests could be developed together with all of the team members, and then 
enabled in the build at the same time as the task or story is finished. On the other hand the team 
could have a dedicated tester, who writes the acceptance tests and the developer then enables 
them as they get the functionality ready for testing. Since the acceptance tests are usually 
automatic, they should be included as a part of the continuous integration Build. 



 

  12 

3 Agile Development Workflow 

This chapter describes the developer’s regular agile or more specifically Scrum workflow of a 
task. The workflow has been observed as two separate processes: a manual process using 
physical task board with yellow notes and an online process using the Agilefant backlog 
management tool. 

3.1 Workflow using a Scrum Task Board 

Traditionally once the Sprint backlog has been set, the tasks are written on paper notes and 
attached to a scrum task board, which contains all of the tasks from the team’s sprint backlog 
(see Figure 3-1). 

The tasks are then developed so that the developers pick a task from To Do -column, and move 
it to In Progress -column. Once the task is verified and finished according to the team’s 
definition of done, the developer moves it to Done. The Developer then picks a new task, moves 
it to In Progress and starts working with the new task. This workflow is illustrated in Figure 3-
2. 

If the team is estimating the work used, the estimates are usually updated to the notes during the 
Daily Scrum. Once the task is done, the remaining estimates are crossed out. 

 

Figure 3-1: Manual Task Board [15] 



 

  13 

 

Figure 3-2: The task workflow for a Developer 

3.2 Workflow using an Electronic Project Management Tool 

The developers can also use an electronic tool as the agile backlog management tool. This work 
concentrates on Agilefant [16]. The purpose of Agilefant is to integrate the daily work and long-
term product and release planning. With Agilefant the teams can manage the backlogs and the 
developers can manage their tasks, task statuses and effort estimates on daily basis. This enables 
better visibility into the project status and offers more information for product development 
planning. 

In Agilefant the tasks contain: 

• State: Not started (similar to To Do), Started, Pending, Blocked, Implemented and 
Done  

• Responsible: The team member who is currently responsible (implementing) the task 
• Original Estimate: The original hourly estimate of the task workload. In manual 

workflow this is usually marked in the lower right corner of the task note. 
• Estimated Left: The estimated amount of work left for the task 

These task properties enable similar workflow shown in Figure 5. 

  

Figure 3-3: Task development using Agilefant 

Pick a Task from 
To Do

Move it to
In Progress

Development

Move the Task to 
Done

Update estimates 
in Daily Scrum

Design and Implement

Verify

Commit Version 
Control

Select a task Change state to 
Started

Development
Change state to 

DoneDesign and Implement

Verify

Commit

Agilefant

Version 
Control



 

  14 

3.2.1 Workflow using an IDE Connector to an Electronic Tool 

For some of the electronic agile backlog and defect management tools there are existing 
connectors to the commonly used IDE’s (Integrated Development Environment). For example 
the Eclipse development IDE contains a connector tool called Mylyn, which can be connected 
to some of the most popular project and defect management tools like Rally, Mingle, Trac, Jira, 
Bugzilla, Mantis and Google Code. In this work we will concentrate on the Rally tool, since 
although not an open source solution, the Rally tool is feature-wise similar to and already has 
existing connector solutions. 

With the combination Eclipse [17] + Mylyn [18] + Rally [19] the development cycle would be 
the following: 

 

Figure 3-4: Development cycle using IDE and a connector to an online project 
management tool 

When using Mylyn, the developer can easily manage the project statuses in the same place he is 
developing the features. The task view in Eclipse + Mylyn is illustrated in Figure 3-5. The same 
tasks in the Rally agile Project Management tool are illustrated in Figure 3-6 and in Agilefant 
Figure 3-7. 

 

Figure 3-5: Task view in Eclipse + Mylyn 

Eclipse IDE

2. Design and Implement

3. Verify

4. Commit

Rally

1. Select a Task

Mylyn 
Connector

5. Change the state to 
Done

Version 
Control



 

  15 

 

Figure 3-6: Task view in Rally 

 

Figure 3-7: Task view in Agilefant 

 



 

  16 

4 Task Updating Models 

This chapter discusses four different development workflows for one example feature presented 
in section 4.1. The workflows are: 

1. Completely manual development 
2. Development using an IDE and a Connector 
3. Development using continuous integration  
4. Development using IDE and continuous integration. 

To demonstrate the workflow models, the same feature will be implemented with all of the four 
workflows. For the manual and continuous integration demonstrations the Ruby programming 
language is used, and for development using the IDE the Java programming language and the 
Eclipse IDE are used. 

In this chapter the Agilefant tool is used for demonstrating the online task management 
workflow when developing with manual or CI approaches. For the IDE development models the 
combination Java, Eclipse, Mylyn and Rally is used. These tools have been presented in the 
corresponding section. 

4.1 The Example Application 

In order to demonstrate the development workflow models, we will develop a simple Soda 
Vending Machine application. This vending machine will have three essential features: inserting 
coins, selecting the drink and vending the correct can. These functionalities can be defined with 
the following user story: 

As a customer 
I want to buy a cold beverage using coins 
So that I could quench my thirst 

This user story is split further to tasks by the development team. In this example the user story 
is split into five subtasks: 

• Creating a Vending Machine 
• Creating a Coin Collector 
• Creating a Coda Can 
• Creating a Soda Can Holder 
• Creating the Vending Functionality 

As already stated in the second chapter, the stories and tasks should not be defined too 
thoroughly on the paper. The most important part of the requirement specification is the 
knowledge exchange and discussion behind the story and task topics. 



 

  17 

4.2 Developing a Task Manually 

For the manual development we will use the Ruby programming language and Git version 
control [20] system provided by Github [21]. The files associated to this section can be found 
from: 
git@github.com:mrako/vending-machine.git 

Now as we follow the section 3.1.2 for the manual development, the first thing to do is to log in 
to Agilefant, select the correct task and mark it as Started. This operation is illustrated in Figure 
4-1. 

 

Figure 4-1: Setting a task Started 

Then we can proceed to implementing the feature using Test-driven Development. Let’s first 
write a test (spec/unit/vending_machine_spec.rb): 

require File.dirname(__FILE__) + '/../spec_helper' 
 
require 'vending_machine' 
 
describe VendingMachine do 
  before :each do 
    @vending_machine = VendingMachine.new 
  end 
 
  it "should initially exist" do 
    @vending_machine.should_not be_nil 
  end 
end 

Then we need to make sure that the test fails: 

$ rake spec 
 
./spec/unit/vending_machine_spec.rb:3:in `require': no such file to 
load -- vending_machine (LoadError) 



 

  18 

And continue to implement the feature to (vending_machine.rb): 

class VendingMachine 
 
end 

Then verify that the test passes: 

$ rake spec 
. 
 
Finished in 0.044637 seconds 
 
1 example, 0 failures 

At this point there is obviously no need for refactoring (see the Test-driven Development loop 
in section 2.3.1). 

Once we are satisfied with the result and the tests pass, we can commit it to the version control 
system (github.com repository): 

$ git commit –am “Created the Vending Machine class” 
$ git push origin master 

And then log back into the Agilefant and mark the task done: 

 

Figure 4-2: Marking a task done in Agilefant 

 



 

  19 

4.3 Developing a Task using Eclipse and Mylyn 

For the IDE development we will use Java programming language. The files associated to this 
section can be found from Google Code [22]: 
https://Agilefant-connector-example.googlecode.com/svn/trunk/vending-machine/java 

Now we will follow the IDE development workflow in section 3.1.3. Let’s first startup Eclipse, 
select the task from Mylyn, set it to In-Progress and click Submit (Figure 4-3). The change is 
immediately synchronized to the Rally server. 

 

 

Figure 4-3: Selecting a task and setting it to In-Progress in Mylyn (with Rally 
connector) 

Next we are ready to implement the Vending Machine class. Let’s start again by writing a test 
the same way we did in the last section, but this time in Java: 

 

Figure 4-4: The first test case in Java using Eclipse 



 

  20 

Usually the IDE forces the developer to create the missing class, before being able to run the 
tests. After adding it we can run the test case and verify that it passes: 

 

Figure 4-5: Running the jUnit test case with Eclipse 

Now that we have successfully implemented and verified the creation of VendingMachine class, 
we are ready to commit the changes to the version control system (for Java we are using the 
Google Code Subversion -repository and the Eclipse Subversive -plugin): 

 

Once the changes have been committed, we are can update the task status with Mylyn by going 
back to the Tasks –tab and setting the task ”creating a Vending Machine” to Completed: 



 

  21 

 

Figure 4-6: Setting a task completed in Eclipse 

Additionally we could see from the continuous integration server or from any of the CI radiators 
like a lavalamp [37] that the build has passed before marking the task done in Mylyn (this is 
discussed further in section 4.5). There is also a plugin for Eclipse to show the build results 
automatically in the IDE [38]. 

The continuous integration build is shown in Figure 4-7 and the task update in Rally is shown in 
Figure 4-8. 

 

Figure 4-7: continuous integration Build results after the Commit from Eclipse 

 

 

Figure 4-8: Task update in Rally (marked red) 



 

  22 

4.4 Developing a Task using continuous integration 

The instructions for setting up the continuous integration server can be found from Appendix I. 
Once the server is set up and the build passes, we can start developing the features. 

Basically the workflow is the same as in section 4.2, but in addition to the tests passing on the 
local computer, or in private build, the tests must pass in continuous integration server. Also if 
there are acceptance tests in place, those must pass too. 

If the project is much larger than the example below, the private build might contain only the 
unit tests, and the acceptance or regression tests are run as a part of the continuous integration 
build. To simulate this behavior, we’ll create a few acceptance tests that are separated from the 
unit tests. These tests are not run as a part of the private build, but only in the CI server. 

Once the feature has been developed, the acceptance tests have been enabled and the CI build 
passes, the CI server could automatically update the feature to the agile backlog management 
tool. Since there are no such existing backlog management tools, the behavior needs to be 
mimicked. 

4.4.1 Creating the Acceptance Tests 

First we will define the acceptance tests (for a full listing of the tests, see Appendix II): 

• it "should return nil if no cans are loaded" 
• it "should return nil if not enough money is inserted" 
• it "should receive coins, drop a can and deposit coins" 

These tests could have been agreed on and even written long before the feature is developed, but 
they will be enabled in the CI loop only when the feature is ready for acceptance testing. This 
will also ensure that the latest builds will always verify the correct functionality of that feature. 

For the demonstration purposes, the acceptance tests have been written to “spec/acceptance/” 
folder and they are run only with the command “rake acceptance”. The acceptance tests are 
presented completely in the Appendix II, below is presented only the essential parts of the tests: 

 



 

  23 

describe "As a customer I want to buy a cold beverage using coins so 
that I could quench my thirst" do 
 
  before :each do 
    @vending_machine = VendingMachine.new 
  end 
   
  describe "select and drop" do 
     
    before :each do 
      @coke_can = SodaCan.new(:coke) 
      @coke_can.price = 1 
    end 
 
    it "should receive coins, drop a can and deposit coins" do 
      @vending_machine.insert 1 
     
      @coke_can = SodaCan.new(:coke) 
      @coke_can.price = 1 
     
      @vending_machine.load_cans @coke_can 
     
      @vending_machine.select_and_drop(:coke).should == @coke_can 
      @vending_machine.inserted_coins.should == 0 
    end 
  end 
end 

4.4.2 Continuous Integration Build 

Once the features have been implemented (see Appendix II or the source code from github) and 
the new code + the acceptance tests have been committed to the version control, the continuous 
integration Build should start automatically: 

 

Figure 4-9: Continuous integration build containing the acceptance tests 



 

  24 

4.4.3 Setting the Task Done Automatically 

If the continuous integration Build passes, it could automatically update the task to the backlog 
management system, namely Agilefant. This feature has not been properly developed to any of 
the competitors, even though there are some existing plugins to e.g. Trac, Jira, Rally and 
Mantis. The existing plugins mainly create links between the build in the CI server and the task 
in the project management tool, although they should additionally update the status as Done in 
the project management application once the build passes successfully. 

If the task completion were automatic, instead of logging back into the backlog management 
tool after finishing the task, it’s enough that the developer commits her code with a certain 
commit message format into the version control system. The continuous integration Server 
notices the change and starts an automatic Build. If the build is successful, the task is 
automatically marked as Done in the tool. 

For Mantis there exists an alpha version of a plugin, which updates the status automatically to 
the tracker after a successful build [23]. The developer uses a predefined commit message 
format, containing the id (000001): 

$ git commit –am “fix issue 000001 Created acceptance tests \ 
                for buying a can of coke” 
$ git push origin master 

And after the continuous integration server has noticed the change and successfully built the 
project, the build report contains a link to the tracker (Figure 4-9): 

 

Figure 4-10: Link pointing to the Mantis bug tracker 

And the tracker shows that the issue has been fixed (Figure 4-10): 

 

Figure 4-11: Automatically updated status in Mantis tool from Hudson 



 

  25 

This functionality is illustrated in Figure 4-11. The only drawback to this technique is that the 
developer must know the identifier of the task he’s currently developing. If he had to log in to 
the backlog management tool to check the id, the whole process would be practically useless 
since the manual steps would not decrease. 

 

Figure 4-12: Manual Development with Automatic Task Acceptance 

On the other hand the team could agree the acceptance tests together and if the User Stories 
behind the acceptance tests match with the ones in Agilefant, the CI Server plugin and Agilefant 
could automatically agree on the correct identifiers according to the user story.  The developer 
could for example write a part of the User Story to the commit message, and the tools could find 
the correct story automatically. 

The developers could also add a metadata identifier of the Agilefant story id to the acceptance 
test. If the tests are written before the implementation, the tests could already contain the story 
id in Agilefant. In Java, this could be added as a Javadoc metadata: 

/** 
 * @story 000001 
 */ 
@Test 
public void testShouldReceiveCoinsDropACanAndDepositCoins() { 
    ... 
} 

It wouldn’t matter what the developers wrote to the commit message, since the story id or ids 
would be interpreted from the metadata information. This behavior could be easily extended to 
any other test framework. 

Change state to 
Done

Development

2. Design and Implement

3. Verify

4. Commit

Agilefant

CI Server

Did the 
Build 
Pass?

YES

1. Select a Task

NOInform the 
Developer

Developer
Version 
Control



 

  26 

Developing a Task using Eclipse, Mylyn and continuous integration 

If the developer used Eclipse and Mylyn for the development, the problem of knowing the 
correct task or story id disappears. The developer can update the status straight from Eclipse 
after verifying that the unit tests pass, all of the functionalities have been properly implemented 
and the code has been committed to the version control repository. The developers could this 
way benefit from the status division in the Agilfant tool: Developers set the task Implemented, 
and the CI Server changes it to Done after the build containing the Acceptance Tests passes. 

Eclipse + Mylyn combination should even support automatic commit messages [24], [25] and 
[33], although that functionality is still very young and has not been implemented to any of the 
backlog management tools. When using the task-based development with Mylyn, the default 
format of an automatic commit message is: 

${task.status} - ${connector.task.prefix} ${task.key}: 
${task.description} 
 
${task.url} 

The suggested development workflow using this combination is illustrated in Figure 4-10. 

 

Figure 4-13: Development Workflow using Eclipse, Mylyn and continuous 
integration 

 

Change state to 
Done

Project 
Management 

Tool

CI Server

Did the 
Build 
Pass?

YESNOInform the 
Developer

Developer Version 
Control

Eclipse IDE

2. Design and Implement

3. Verify

4. Commit

1. Select a Task

Mylyn 
Connector

5. Change the state to 
Implemented



 

  27 

5 Model Evaluation 

The previous chapter presented four different ways of developing software using an online 
project management tool. Optimally the developers’ results were verified automatically with a 
set of Acceptance Tests that have been agreed with the customer on a conceptual level. These 
acceptance tests are enabled separately for each of the developed feature or user story and are 
run either as a part of the developer’s private build or an automatic continuous integration build. 
The user story statuses are updated to the project management tool automatically. 

The major problem seems to be the connectivity between different tools. When developing the 
code completely manually (see section 4.2), it is completely the developer’s responsibility to 
make sure that the feature actually has been developed, that it’s working properly (i.e. the tests 
pass) and that the online backlog management tool has been updated accordingly. Once the 
automation level is increased (see sections 4.3 - 4.5), the developer runs into various 
connectivity problems. Either he has to know the issue number or identification from the project 
management tool (see section 4.4) to let it be marked Done automatically, or he has to have a 
tool connection like Eclipse and Mylyn already set up for the backlog management tool (see 
section 4.3). 

When developing with high-level programming languages like Ruby or Python, it seems to be 
beneficial to just enable the acceptance tests for the continuous integration build. Once the 
developer sees it pass he can either set the task Done in the backlog management tool interface 
or e.g. ask another team member to do a short exploratory test session before closing the task 
(i.e. setting it as Done). For Java development this could be improved slightly with the Mylyn 
Connector, which enables the task view in the development tool. However the Mylyn is at its 
best when used only manually: The developer checks the continuous integration build result and 
sets the task in Mylyn to Done by hand after a passing build. 

5.1 Small Scale Build Environments 

The more the developer has tools, the more fragile the development environment becomes. The 
author of this work ran into various problems when setting up the environments. And once they 
were all properly set up, there was always something that prevented the full implementation of 
the toolset – further leading to doing exactly as much work as with the manual approach 
(section 4.2). 

 



 

  28 

5.2 Large Scale Build Environments 

If the build environment was large, i.e. the acceptance tests are not run as a part of the 
developer’s private build and the generated product (from a continuous integration build) is 
further tested in some QA organization, there could be a need for backtracking the bugs to 
specific revisions of the code (see section 4.4). For this purpose a continuous integration plugin 
that connects the tasks or issues to the specific build version could be feasible. This would also 
be rather simple to implement, since it only displays the relations between the project 
management tool and the CI build, and such plugins already exist [26]. 

Nonetheless, this will not help with the tool selection. The developers would still have to update 
the task relationships between the version control and the project management tool. Eclipse + 
Mylyn (see section 4.3) gets closest to solving this problem; there is even a possibility for 
automatic version control messages [24]. However the author was not able to make that process 
even nearly as easy as just checking the task number from the Mylyn tool (or straight from 
Agilefant) and adding it to the version control commit message manually. This procedure is in 
any case too complex to be used - unless its absolutely necessary for the project organization 
and the build environment. 

 



 

  29 

6 Tool Development 

This chapter describes briefly the starting points for developing the automation interfaces for 
Agilefant. The major issue in the tool development is that the Agilefant WebService-interface is 
still in incubation, and the plugins cannot be tested, nor finished, at least with the current 
version of Agilefant. 

6.1 Hudson CI Plugin for Agilefant 

Developing the Hudson plugin itself is rather simple. The process has been defined [27] and 
there are many similar plugins, which all are open source products [26]. 

For example the Trac has an XML-RPC interface, which has an existing documentation [28]. 
Additionally the Trac community has created clients to that interface for different platforms, e.g. 
the ruby interface has a plugin called trac4r [29]. Also the Hudson plugin sources are accessible 
to anyone [30]. 

6.2 Mylyn Connector for Agilefant 

The Mylyn connector is also pretty simple to implement if the project management tool’s web 
service interface is well defined. Mylyn supports natively the same XML-RPC interface as for 
example Trac, and there are plugins for Jira and Trac, which are already implemented and are 
developed on open source basis [31]. 

 



 

  30 

7 Conclusions 

This work has introduced the concept of automatic status update of a task using both IDE tools 
and continuous integration and thus answered the research questions 1. How the development 
workflow enables automatic task update and 2. How the tasks could be automatically updated? 
(See chapter 1.2 for research questions) These solutions were built upon existing tools and they 
were documented in chapter 4. 

The objectives of this study also included the feasibility study of the automatic task update 
(research question 3. When is the automatic task update feasible?) and based on this work the 
tools that are needed for doing automatic task updates are not mature enough for commercial 
software development. However the tools are constantly being developed towards easy and 
robust development environment, and probably one day the developers can combine a 
development IDE, online backlog management tool (Agilefant), and continuous integration 
together. 

The last research question: 4. How to implement the automatic task update functionalities in 
Agilefant was briefly discussed in chapter 6. Basically the tool implementations can be done 
easily by following the existing solutions, but the more arduous problem is that the Agilefant 
tool does not yet support any WebService interfaces, which in the end enables the interaction 
between tools. 



 

  31 

8 Discussion and Future Work 

8.1 Reliability and Validity of the Research 

This work has been a quick glance at the task automation concept using a backlog management 
tool together with development IDE connector and the continuous integration practice. It should 
be viewed as a preliminary vision of the topic for further research and concept development. 
The conclusions have been made by the author and therefore there is much room for future 
discussions especially in the open source community developing these tools further. 

8.2 Applicability of the Results 

The concepts presented in chapter 4 have all been implemented using the authors existing 
experience of software development in commercial companies. Therefore the development 
methods can be used as such, at least to the extent where the existing tools make it possible. 
Even if the IDE tools or programming languages are different, the continuous integration 
practice and using the Agilefant backlog management tool still can be implemented using the 
methods presented in this work. 

8.3 Suggestions for Further Research 

Since most of the tools presented in this work are being developed with accelerating pace by the 
open source community, it is important that the results from this work are constantly reviewed 
and re-evaluated. It is almost sure that the concepts that were too complex for implementation 
according to this study will become feasible one day. 

According to this study the Agilefant tool desperately needs an open two-way interface for 
connecting other applications. The suggested method according to this work is using the XML-
RPC library from Apache [32]. 

 



 

  32 

Appendix I: Setting it All Up 

This chapter contains the installation instructions for various tools used for the actual 
development presented in this work. 

 

Installing Ruby 

If Ruby programming language is not yet supported by your Operating System, go to 
http://www.ruby-lang.org/en/downloads/ to install the latest version on any platform. 

 

Installing Eclipse and Tools 

Installing Eclipse is best described here: http://www.eclipse.org/downloads/ 

Installing the Eclipse Mylyn Connector can be found from here: 
http://www.eclipse.org/mylyn/downloads/ 

The Subversive SVN -plugin is distributed as a supplemental part of the Eclipse distribution. 
The clearest installation instructions at the time of writing have been written by Ben Christensen 
in his blog: http://benjchristensen.com/2009/06/24/eclipse-galileo-3-5-and-subversion/ 

 

Installing continuous integration Server and Projects 

The continuous integration concept is presented in Chapter 2.5, and the information provided by 
a continuous integration server is shown in Figure 4-8. 

Downloading and starting the Server 

• Download Hudson: https://hudson.dev.java.net/ 
• Start it up by running the following command 

java –jar hudson.war 

• Open your browser to http://localhost:8080/ 



 

  33 

Adding the Necessary Plugins 

• Add the Git version control support by installing the plugin at Manage Hudson -> 
Manage Plugins -> Choose tab Available -> Select: 

o Select Git Plugin 
o Select Rake plugin 
o Select Ruby Metrics Plugin 
o Click Install 

• Restart the Hudson server from the Shell  

 

Creating the Ruby Project 

For the Ruby-based Build reporting you will additionally need a plugin called ci_reporter. This 
is installed in the shell by typing: 

sudo gem install ci_reporter 

Add the Ruby Example Project to the Hudson by following these steps: 

• In the front page of the server click New Job 
• Type “vending-machine” as the Job Name 
• Select Build a free-style software project 
• Click OK 

 
• Go to section Source Code Management 

o Select Git and add the repository location: git@github.com:mrako/vending-
machine.git 

• Go to section Build Triggers and select Poll SCM 
o Type “* * * * *” to Schedule to check for changes in the repository every 

minute. 
• Go to tab Build 

o Add build step Invoke Rake and type “ci” to the Tasks –field 
• Go to Post-build Actions 

o Select Publish JUnit test result report and type “spec/reports/*.xml” 
o Select Publish RCov report and type “coverage” as the Rcov report directory 
o Select Publish Rails stats report 

• Click Save 
 

• Now the build can be started by clicking Build Now 
 

 



 

  34 

Creating the Java Project 

Add the Java Example Project to the Hudson by following these steps: 

• In the front page of the server click New Job 
• Type “vending-machine-java” as the Job Name 
• Select Build a free-style software project 
• Click OK 

 
• Go to section Source Code Management 

o Select Subversion and add the repository location: https://Agilefant-connector-
example.googlecode.com/svn/trunk/vending-machine/java 

• Go to section Build Triggers and select Poll SCM 
o Type “* * * * *” to Schedule to check for changes in the repository every 

minute. 
• Go to tab Build 

o Write test to Goals and Options -field 
• Click Save 

 
• Now the build can be started by clicking Build Now 

 



 

  35 

Appendix II: The Acceptance Tests in Ruby 

 

require File.dirname(__FILE__) + '/../spec_helper' 
 
require 'vending_machine' 
require 'soda_can' 
 
describe "As a customer I want to buy a cold beverage using coins so 
that I could quench my thirst" do 
  before :each do 
    @vending_machine = VendingMachine.new 
  end 
   
  describe "select and drop" do 
     
    before :each do 
      @coke_can = SodaCan.new(:coke) 
      @coke_can.price = 1 
    end 
 
    it "should return nil if no cans are loaded" do 
      @vending_machine.select_and_drop(:coke).should be_nil 
    end 
 
    it "should return nil if not enough money is inserted" do 
      @coke_can = SodaCan.new(:coke) 
      @coke_can.price = 1 
      @vending_machine.load_cans @coke_can 
   
      @vending_machine.insert 0.5 
       
      @vending_machine.select_and_drop(:coke).should be_nil 
    end 
   
    it "should receive coins, drop a can and deposit coins" do 
      @vending_machine.insert 1 
     
      @coke_can = SodaCan.new(:coke) 
      @coke_can.price = 1 
     
      @vending_machine.load_cans @coke_can 
     
      @vending_machine.select_and_drop(:coke).should == @coke_can 
      @vending_machine.inserted_coins.should == 0 
    end 
  end 
end 



 

  36 

References 

[1] Poppendieck M. and T. (2003). Lean Software Development: An agile Toolkit. Addison-
Wesley Professional. 

[2] Beck K. (1999). Extreme Programming Explained. Addison-Wesley Professional. 

[3] Schwaber, K., Beedle M. (2001). agile Software Development with Scrum. Prentice Hall. 

[4] Cohn M. (2005). agile Estimating and Planning. Prentice Hall. 

[5] Cohn M. (2009). Succeeding with agile: Software Development Using Scrum. Addison-
Wesley Professional. 

[6] Cohn, M. (2004). User Stories Applied: For agile Software Development. Addison-
Wesley Professional 

[7] Davies, R. (2001) The Power of Stories. Practitioners report/poster presentation 

[8] Cohn, M. (2008). http://blog.mountaingoatsoftware.com/advantages-of-the-as-a-user-i-
want-user-story-template 

[9] Pichler, R. (2010). agile Product Management with Scrum: Creating Products that 
Customers Love. Addison-Wesley Professional. 

[10] http://agilefaq.net/2007/10/24/what-is-definition-of-done/ 

[11] http://www.martinfowler.com/articles/continuousIntegration.html 

[12] Duvall P. (2007). continuous integration: Improving Software Quality and Reducing Risk. 
Addison-Wesley Professional 

[13] Patton R. (2005). Software Testing, Second Edition. Sams. 

[14] Koskela, L. (2007). Test Driven: TDD and Acceptance TDD for Java Developers. 
Manning Publications 

[15] http://blog.xebia.com/wp-content/uploads/2008/09/task-board-no-toploading.png 

[16] http://www.Agilefant.org/ 

[17] http://www.eclipse.org/ 

[18] http://www.eclipse.org/mylyn/ 

[19] http://www.rallydev.com/ 



 

  37 

[20] http://git-scm.com/ 

[21] https://github.com/ 

[22] http://code.google.com/ 

[23] http://wiki.hudson-ci.org/display/HUDSON/Mantis+Plugin 

[24] http://www.easyeclipse.org/site/plugins/subclipse-mylyn.html 

[25] http://www.ibm.com/developerworks/java/library/j-mylyn2/ 

[26] http://wiki.hudson-ci.org/display/HUDSON/Plugins 

[27] http://wiki.hudson-ci.org/display/HUDSON/Plugin+tutorial 

[28] http://trac-hacks.org/wiki/XmlRpcPlugin 

[29] http://github.com/csexton/trac4r 

[30] https://hudson.dev.java.net/svn/hudson/trunk/hudson/plugins/trac/ (username: guest, 
password: <blank>) 

[31] http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.mylyn/?root=Tools_Project 

[32] http://ws.apache.org/xmlrpc/ 

[33] http://wiki.eclipse.org/Mylyn_User_Guide#Automatic_Commit_Messages 

[34] http://code.google.com/p/robotframework/ 

[35] http://fit.c2.com/ 

[36] http://cukes.info/ 

[37] http://wiki.hudson-ci.org/display/HUDSON/Hudson+Build+Status+Lava+Lamps 

[38] http://code.google.com/p/hudson-eclipse/ 

 


